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Abstract—As the number of cores in a chip multiprocessor
(CMP) increases, the need for larger on-chip caches also
increases in order to avoid creating a bottleneck at the off-chip
interconnect. Utilization of these CMPs include combinations
of multithreading and multiprogramming, showing a range of
sharing behavior, from frequent inter-thread communication to
no communication. The goal of the CMP cache design is to
maximize capacity for a given size while providing as low a
latency as possible for the entire range of sharing behavior.

In a typical CMP design, the last level cache (LLC) is shared
across the cores and incurs a latency of access that is a function
of distance on the chip. Sharing helps avoid the need for replicas
at the LLC and allows access to the entire on-chip cache space
by any core. However, the cost is the increased latency of
communication based on where data is mapped on the chip.
In this paper, we propose a cache coherence design we call
POPS that provides localized data and metadata access for
both shared data (in multithreaded workloads) and private data
(predominant in multiprogrammed workloads). POPS achieves
its goal by (1) decoupling data and metadata, allowing both to
be delegated to local LLC slices for private data and between
sharers for shared data, (2) freeing delegated data storage
in the LLC for larger effective capacity, and (3) changing
the delegation and/or coherence protocol action based on the
observed sharing pattern.

Our analysis on an execution-driven full system simulator
using multithreaded and multiprogrammed workloads shows
that POPS performs 42% (28% without microbenchmarks)
better for multithreaded workloads, 16% better for multipro-
grammed workloads, and 8% better when one single-threaded
application is the only running process, compared to the base
non-uniform shared L2 protocol. POPS has the added benefits
of reduced on-chip and off-chip traffic and reduced dynamic
energy consumption.
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I. INTRODUCTION

As advances in technology result in increased on-chip tran-
sistor density, designers are challenged to provide higher per-
formance without significant changes to power budgets and pin
counts. The extra transistors will likely be used both for more
functionality (increasing core count) and more storage (larger
caches). The larger number of cores places increasing pressure
on on-chip cache resources to deliver low latency access to
a large amount of data. Workloads on these future many-
core processors will include combinations of single-threaded,
multithreaded, and multiprogrammed workloads with a range
of sharing and memory access behavior — from frequent
inter-thread communication to essentially private data with no
communication.

In order to improve scalability, the last level cache (LLC)
is typically shared across the cores and incurs a latency of
access that is a function of distance on the chip. Sharing

helps avoid the need for replicas at the LLC when data is
shared by more than one core and allows access to the entire
on-chip cache space by any core. However, the cost is the
increased latency of communication based on where data is
mapped on the chip. In a conventional directory-based protocol
for such a shared L2 cache (L2S), cache lines are distributed
among the nodes in a straightforward interleaved fashion.
Such an interleaving allows easy determination of the home
node, but also creates overheads in coherence activities. First,
communicating processor cores may be close to each other
physically and yet have to route their invalidation and fetch
requests indirectly via the arbitrarily designated home node.
Second, the home node retains a copy of data even when the
copy is stale. Many server applications lose almost half of their
potential performance (assuming all data could be accessed at
the latency of the local cache) due to the increased latency of
on-chip cache accesses [14].

Several coherence protocol optimizations to address the chal-
lenge of the non-uniform latency while retaining the benefits
of a shared cache have been proposed in the literature [5],
[7], [10], [15], [17], [32]. Each of these addresses aspects
of optimizing data communication for specific workload sce-
narios. For example, DDCache [17] focuses on streamlining
shared data communication and evaluates performance on
multithreaded workloads. Victim migration [32] focuses on
providing the latency of a localized/private LLC while still
taking advantage of a shared LLC. Eviction from the cache
levels closer to the processor results in a replica being created at
the local L2 slice so that subsequent misses are able to retrieve
data faster. Capacity pressure due to the replicas is mitigated
through the use of victim tags at the home (pointers to the
current data holder(s) that do not need associated data space).

Both DDCache and victim migration (VM) suffer from
performance anomalies for specific workloads. Using access
pattern specific optimizations as well as metadata delegation
to L1 caches, DDCache optimizes traffic for actively shared
data and performs well for multithreaded workloads that share
data. However, for private data predominant in single-threaded
or multiprogrammed workloads, the latency of communicating
with the data home must be paid when the L1 cache capacity
is exceeded, and the performance gain over L2S is small.
Victim migration, on the other hand, uses local LLC slices to
increase the range of data that can be served with low latency.
While capacity pressure from this replication is eliminated
by deleting the data at the home, sharing by more than one
core still creates multiple replicas with its corresponding cache
pressure. Hence, VM improves performance over L2S for
multiprogrammed workloads, but shows very little performance
gain for multithreaded workloads.

In this paper, we propose a cache coherence design we call
POPS (coherence Protocol Optimization for Private and Shared
data) that provides optimized coherence, localized data and
metadata access for both shared data (in multithreaded work-



loads) and private data (predominant in multiprogrammed and
single-threaded workloads), and larger effective LLC capacity.
POPS achieves its goals by (1) decoupling data and metadata,
allowing each to be delegated to either an L1 cache or a local
LLC slice when evicted from the L1 (in the latter case, for
private data), resulting in lower access latency, (2) freeing
delegated data storage in the LLC, thereby ensuring a single
copy in the LL.C or one or more copies in the levels closer to the
processor, resulting in larger effective cache capacity, and (3)
changing the delegation and/or coherence protocol action based
on the observed sharing pattern, supporting fine-grain sharing
through L1-L1 direct accesses (no directory indirection) via
prediction and access-pattern specific optimizations.

Our analysis on an execution-driven full system simulator
using multithreaded and multiprogrammed workloads shows
that POPS performs 42% (28% without microbenchmarks)
better for multithreaded workloads, 16% better for multipro-
grammed workloads, and 8% better when one single-threaded
application is the only running process, compared to the base
non-uniform shared L2 protocol. POPS has the added benefits
of reduced on-chip and off-chip traffic and reduced dynamic
energy consumption.

II. DESIGN OVERVIEW

Figure 1 presents a high-level block diagram view of a tiled
CMP architecture that we use as the base for our design. Each
tile in the CMP contains a processor core, private L1 caches,
and a slice of the globally-shared L2 cache (the last level
cache), which is statically-mapped (line interleaved) by phys-
ical address in the base protocol. The tiles are interconnected
by a 4x4 mesh network (for a 16-core system).
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Figure 1. Block diagram of the underlying tiled CMP architecture depicting
a processor with 16 cores where the right side highlights details inside a tile
with additions for POPS identified by the white (unshaded) regions.

Changes to the base design in order to support the POPS
protocol are shown in white (unshaded) in Figure 1. To support
delegation, a sharer bit vector is added to the L1D cache line
tags along with extra metadata ways in each L2 set. As a result,
an L1D can be delegated to keep the coherence. At any time,
only a single node (either the original L2 node, an L1D, or
another L2 node) is in charge of keeping/maintaing coherence
for a particular line. This node is referred to as the coherence
keeper (or keeper in short). Also, L2 metadata and data are
not tightly bound. If a line is delegated to some other node,
the L2 cache line in the home node gives up its data space.
When the line is undelegated from the current keeper, new data
space will be requested.

The local L2 slice retains a copy of lines evicted from the
local L1 under certain conditions for faster data availability in
the presence of temporal locality. Specifically, in POPS only
delegated lines that are evicted from the local L1 are migrated
to the local L2 slice. To avoid the extra latency of a local
L2 slice check on a miss in the L1, a bloom filter is added to
represent delegated lines present in the local L2 slice — a miss

indicates the absence of a local replica. On an L1 cache miss,
the coherence logic works as usual by sending the request (e.g.,
read or upgrade) to the coherence keeper. The only difference
is that the keeper is not necessarily the home node; instead it
can be any L1 or L2 (local or remote) slice in the system.

To optimize for fine-grain sharing, this baseline CMP is also
augmented with architectural support (similar to those used in
ARMCO [16]) to identify access patterns and predict coherence
targets.

III. PROTOCOL AND HARDWARE DESIGN
A. Extra Hardware in POPS

Figure 2 provides more details on the structure additions for
POPS. We elaborate on the additions below.

[¥ ragsstate  Sharer Ty Ty
(a) L1D Tag Entry (b) Predictor Table Entry
Data Set Tag Set
20 ﬁ E [MetaDATA

Bloom Filter Hit
4-bit Counterd >0

L2 Data

«Q
N-way = ‘ N+t—way
V |Tag+State| Sharers|

(c) Bloom Filter (d) Decoupled L2 Metadata and Data
Figure 2. Hardware changes made for POPS. Changes and extra structures
are represented using a lighter color.
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1) Hardware for Decoupling and Delegation: Figure 2-(a)
and (d) identify the changes at the L1 and L2 in order to support
decoupling and delegation. Metadata and data in an L2 set
are freed from their logical one-to-one binding and some extra
metadata lines are added.! Metadata lines can point to any
data line in the set or no data. The coherence management
can be shifted to any L1 or L2 slice (delegation) and so
a sharers list bit-vector in each L1D cache line (Sharers in
Figure 2-(a)) is added to support delegation. This node (where
the line is delegated) becomes the coherence keeper and is
responsible for coherence ordering of the line. When the line
is delegated, metadata points to no data in the L2 set and
the sharers bit-vector points to the delegated location. These
changes are similar to changes made in DDCache [17] to
support delegation, with the addition of allowing delegation
to any L2 slice as well as any L1.

2) Hardware for Controlled Relocation to non-Home L2
slice: To optimize access latency, a line evicted from L1 may
be stored in the local L2 slice, essentially making a local
replica. However, replication can reduce effective capacity and
can thus improve on-chip cache access time at the potential
expense of increasing off-chip accesses. We therefore follow a
simple heuristic that only allows “replication” for the delegated
lines evicted from L1. Recall that when a line is delegated, the
directory gives up its data storage. Hence there is no actual
duplication of data at the L2 level (utilizing the structures
outlined in Figure 2-(d)).

When handling an L1 miss, we need to know if the data
is in the node’s local L2 slice. To avoid unnecessary local L2
access, there is one 4-bit counter-based, 1K-entry bloom filter
(shown in Figure 2-(c)) added to the L1 miss path. The bloom
filter tracks the evicted lines kept at the local L2 slice. The
bloom filter table is indexed by indices generated from four
hash functions on the cache line address, each indexing into
a disjoint 256-entry region. Once a delegated line is evicted
from the L1, the line address is added into the bloom filter
and once that line is brought back to the L1 or evicted from

IThe same relative area overhead as the baseline design can be retained
by possibly scavenging the storage of one data line in each L2 set.



the L2, the line address is removed from the bloom filter.
While both false postives and false negatives are possible in this
design, in the common case, there are few false negatives (none
in our experiments). The false positive rate is also relatively
low, 3.14% on average across our workloads for the given
configuration. The consequence of false positives is an extra
local L2 tag access on the critical path and the consequence
of false negatives is to go to the home node and get redirected
back, at which point the bloom filter is updated.

3) Hardware for L1-L1 Communication: An address-based
predictor table is added to the L1-miss path to find a potential
close-by sharer or keeper of the requested line. On an L1
miss, if there is no replica at the local L2, this predictor table
is consulted to find the potential closest data supplier (as in
DDCache [17] and ARMCO [16]). Details of the predictor table
entry are shown in Figure 2-(b).

4) Hardware for Sharing Pattern Optimization: Figure 2-(a)
identifies the changes for sharing pattern optimization. As in
DDCache [17] and ARMCO [16], we use 2logy N +2 bits (N
being the number of tiles in the system) in each L1D cache line
to track the access patterns and to decide appropriate actions
including in-place accesses. The bits are Prg (loga N bits to
identify the last reader), Prw (logz N bits to identify the last
writer), C,, (1 bit flag to track whether multiple accesses have
been made from the local tile without any intervening remote
access), and L, (1 bit flag to determine whether the last access
to the cache line was read or write). On an L1 data cache hit, the
fields Prr, Piw, Cop, and L, are updated in order to maintain
the necessary information to adapt to sharing patterns.

B. POPS Protocol Actions

Figure 3 shows the sequence of messages used to serve an
L1 miss. Originating from the requester L1, a message can
flow along any path between bloom filter, predictor table, local
L2 slice, home L2, close-by sharer L1, and keeper L1. For
any path it takes, the path label (consisting of numbers that
might not be in sequence) represents logical ordering where a
lower value indicates an earlier event. For example, an L1 miss
satisfied (through prediction) by the keeper L1 will follow path

(1) = (2b) — (3a) = (9).

©

@

Bloom
Filter

®

@ Pred. 2

Table

® ©

(L1
miss) among L1 (requestor), bloom filter, predictor table, local L2 slice,
close-by L1 (keeper/sharer), and home L2. Shaded regions are used to
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o At the requester L1: When there is an L1 cache miss and
the local L2 slice is the home node then the request is sent
to the local L2 slice. Otherwise, the bloom filter is consulted
to determine whether the local L2 slice is the keeper of the
requested line or not ((1) in Figure 3). The request is sent to
the local L2 slice if the bloom filter indicates a hit ((2a) in

Figure 3). If the line does not exist in the local L2, or the
bloom filter indicates a miss in the local L2, the predictor is
consulted to find a nearby node that can potentially supply the
data ((2b) in Figure 3). If there is a predictor table hit, the
request is sent to that node ((3a) in Figure 3). This nearby
node can be the keeper or just a sharer of the cache line.
If no prediction is available, the request is sent to the home
node (to be routed to the current keeper, if necessary) ((3b)
in Figure 3).

If there is an eviction from the L1 cache, depending on the
current state of the line, the line may be sent either to the
non-home local L2 slice or to the home node. On eviction,
if the L1 cache is the keeper of the line and there are no
other L1 sharers in the system, the line (and keeper status)
is delegated to the local L2 slice (on the assumption of
temporal locality). If there are other sharers in the system
or if this L1 is not the keeper, then no replica is made. For
the former case, the line is “undelegated” and returned to
the home node. As an optimization (not required for protocol
correctness), sharers are informed about the change in keeper
(no acknowledgements are necessary). If the L1 is not the
keeper, the current keeper is informed of the eviction in order
to keep the sharer bit vector up-to-date.

e At the non-home L2 bank: The non-home L2 slice can
get a request to supply data in two ways. First, the local L1’s
bloom filter identifies the local L2 slice as the keeper ((2a) in
Figure 3). Second, requests from other L1s are forwarded to
the non-home L2 bank from the home L2 ((4) in Figure 3).
Requests from the local L1 are served by moving the line
to the L1 in delegated state ((5a) in Figure 3), after sending
a message to the home L2 about the change in keeper. An
exclusive request from another L1 is served by transferring
keeper status to the requester and a read-only request is served
by supplying a copy of data to the requester as well as
returning keeper status to the home L2. In either case, if the
L2 does not have the data, the request is forwarded to the
home L2.

e At the home L2 bank: When there is a miss in the L1

cache, the bloom filter, or the local L2 slice, and the predictor
table does not yield a predicted keeper, the request is sent to
the home L2 ((3b) in Figure 3). If a request is missed at the
predicted node, the request is also forwarded to the home L2.
If the line is not delegated, the request is serviced just as in the
conventional design. The only difference is that if the request
is for exclusive access, delegation is performed: after sending
invalidations to the current sharers and collecting invalidation
acknowledgments, the line enters delegated (D) state at the
L2. If the requested line is for private access then the line is
also delegated.
A delegated line will be surrendered back to the home L2
if the tag is evicted from the home L2. The keeper L1 will
receive a request from the home to surrender and invalidate
the line.

o At the keeper L.1: When a cache line is delegated, the keeper
will be the coherence ordering point for many requests. A
request may arrive at the keeper in one of three ways. First, the
request may arrive directly from the requester if the requester
correctly predicts the location of the keeper or has the line
in shared state (and thus has metadata that tracks the keeper)
((3a) in Figure 3). Second, the request may be forwarded from
the home ((8) in Figure 3).

Finally, a read-exclusive request can be forwarded to the
keeper by a sharer of the line: When the request is initially



sent to a sharer, the sharer can directly forward it to the
keeper if the line is in delegated mode. Recall that in delegated
mode, the line can be shared among multiple L1 caches. The
metadata of the keeper L.1 maintains the sharers list, while all
other nodes’ sharers lists point to the keeper. Note that if a
read request is sent to a sharer, like in the ARMCO design, the
data is supplied by the sharer ((9) in Figure 3) and coherence
information is updated in the background (as discussed later).
Coherence ordering: All exclusive requests (upgrade or read-
exclusive) entail a transfer of coherence responsibility unless
it is classified as a write-in-place operation to reduce the ping-
pong effect. The requester gets two separate replies. The first
one is a data or access grant reply for the request. After getting
this reply, the line goes into a transient state that allows the
requester itself to read and write but does not allow the node
to supply the line to another node (unless the consistency
model does not require write atomicity). While the change of
ownership is under way, requests coming to the old keeper
will be forwarded to the new keeper. After supplying the
data or upgrade grant, the old keeper sends invalidations to
all sharers (except the new keeper) and, in parallel, sends a
notice of ownership change to the home. After getting the
notice, the home node updates the metadata to point to the new
keeper. After collecting invalidation acknowledgments and
the acknowledgment from the home, the old keeper confirms
ownership transfer to the new keeper. At this time, the line
transitions into stable state in the new keeper’s cache and the
new keeper can service other nodes’ requests.

e At a sharer L1: To expedite communication, we allow an

L1 cache to supply data without ownership of the cache line
as in ARMCO [16]. Specifically, if a read miss request is sent
to a node identified by the predictor as a possible sharer and
the node is indeed a sharer, it will provide a reply with data
and metadata info — the identity of the keeper. Meanwhile,
a notice to update the sharers list is sent to the keeper (if
the sharers list points to a keeper) or home (if the sharers
list is empty, i.e., holds its own id indicating that the line is
not delegated). Until the keeper acknowledges this notice, the
supplier node is temporarily responsible for the coherence of
the requester node and becomes a coherence ordering point.
The keeper also sends an acknowledgment to the requester,
indicating that the transfer is complete. One possible race
condition is if the keeper initiates an invalidation for the line
prior to receiving the sharers list update. In this case, the
keeper acknowledges the data transfer with an indication that
an invalidation is pending. The supplier delays any received
invalidation until the on-going data transfer is acknowledged
by the keeper. At this point, the supplier applies the received
invalidation. (If the invalidation message arrives out of order
with respect to the acknowledgment, the supplier will wait for
the acknowledgement and NACKs any further read request in
the mean time.)
Note that a sharer cannot service any request other than a read.
Exclusive requests are simply forwarded to the keeper or to
the home node depending on whether the line is delegated
((6) in Figure 3).

e At a non-keeper and non-sharer L1: Due to a mispredic-
tion, non-keeper and non-sharer L1s can get requests from
other L1s. The requests are simply forwarded to home L2,
which might serve the requests if the line is not delegated or
forward the request to the keeper if the line is delegated.

C. Optimization for Private and Shared Data

In the optimization decision process, we classify data ac-
cesses into 4 categories: private, shared read-only, shared read-
write, and migratory. The general guideline is to pick the de-
cision that best suits the access pattern. Of course, at run-time,
given a particular access request, we can only approximately

determine the access pattern for the data.
e Private (and migratory) data: Since private data will only

be accessed by one thread, it should always be delegated
to the accessing node. This avoids the need for upgrade
requests and reduces L2 capacity usage. The predictor and the
directory information combined can help us identify private
data. Specifically, when an access misses in the cache, we
use the line address to check the destination predictor table.
Since the predictor tries to capture the location of other shared
copies in the system, a miss in the table suggests that the line
could be a private line. We then send the request to the home
with a hint bit indicating the line is probably private. When
the request arrives at the home and the metadata shows that
it is indeed not shared by other nodes, the line is treated as
private and delegated to the requester. If there is a miss at the
L2, the line will be brought in from memory and delegated —
the home will only keep the metadata (pointer to the current
keeper). When delegated data is evicted from the L1, the line
is replicated at the local L2 slice if there are no other sharers,
as will be the case for private data.

Although migratory data is shared among the cores, its be-
havior is similar to private data as at any time in the system
only one core accesses the data. Hence we follow a similar
optimization strategy for migratory data.

o Shared data: When data is shared, the appropriateness of
delegation depends on the accuracy of the prediction table,
which in turn depends on whether the read-write patterns are
stable. In general, when a line is delegated, correct prediction
speeds up transactions, while misdirections add to the delay.
For read-write data, the home node is likely to have stale data
and has to forward the read request. Therefore, delegating the
line makes more sense as it avoids unnecessary storage use
in the L2 and repeated traffic to update the home version.
For read-only data, maintaining a version at the home node
does not incur extra traffic and allows the home to provide
data without forwarding to the keeper. As such, it favors
not delegating the line. For implementation simplicity, we
delegate for read-write shared data and do not delegate read-
only shared data. Hence, if a line is first believed to be private
and thus delegated, and subsequently read by another node
(thus suggesting shared read-only), we undelegate from the
first requester node. A read-shared line is not replicated at
the local L2 on L1 eviction. Read-write shared lines can be
replicated if at the time of L1 eviction, that is the only copy
in the system.

D. Optimization for Sharing Patterns

When data is shared, unnecessary communication and in-
direction via the directory can be avoided by tailoring the
coherence protocol to the access pattern. By using the hardware
described in Section III-A4 we identify migratory, producer-
consumer, false shared, read-only shared, or read-write shar-
ing patterns and then apply pattern-specific optimizations as
in [16].

E. Destination Prediction

If requests have to go through the home node to determine
the current keeper, there will be little if any benefit from del-



egation. Hence, we use an address-based destination predictor
to decide from where (keeper or a potentially closest regular
sharer) we should fetch the data. When there is an L1 miss and
the local L2 slice does not have the replica, the predictor table
can help avoid indirection via the home.

The predictor table is a cache-like structure that keeps a valid
bit, a tag, and a processor ID for the predicted destination node
(Figure 2-(b)). The table is updated when an invalidation is
received: the tag of the cache line and the ID of the invalidating
processor are recorded in the predictor table. This captures a
fixed producer-consumer relationship very well. Additionally,
when a request is serviced by the keeper or home, the reply
piggybacks information about the closest node that also has
a copy of the data. This information is also updated in the
predictor table, enabling prediction of the closest sharer in case
of invalidation. Each L1D cache line tracks the last reader and
writer of the cache line. During invalidation or eviction of the
line, it also lets the last reader and writer (if not this 1) know
that the line is being evicted so that they may update their
predictor tables.

The sensitivity analysis conducted in [16] on predictor table
size (256, 512, 1K, and 2K entries) and associativity (8 and
16 way) pointed to the use of an 8-way associative 1K-entry
predictor table as a good compromise between performance and
complexity. The accuracy of the prediction ranges from 63%
to 93% (74% on average) for our benchmark suites, similar to
earlier results [16].

F. Replication and Replacement Policy

POPS has two goals: (1) to achieve larger effective cache
capacity and (2) to achieve lower latency when data is in the
cache. Lower latency can be achieve by allocating lines evicted
from the L1 into the local L2 slice as in victim migration [32].
In order to reduce the interference from the displaced lines with
cache lines that normally map to the local L2, POPS allocates
only the delegated lines in the L1 that are not shared at the time
of eviction, into the local L2 slice. The intuition behind this
policy is to identify only the private data for local placement
since maximum latency reduction is achieved for such data and
avoid polluting the local L2 slice with shared data that shows
less latency benefit. In order to further minimize the conflict
between locally delegated and homed cache lines, a pseudo-
LRU replacement policy is used across all lines, which favors
cache lines with higher temporal locality.

IV. PERFORMANCE EVALUATION
A. Evaluation Framework

We use a Simics-based [22] full-system execution-driven
simulator to evaluate the POPS protocol. We use the Solaris
10 operating system and SPARC architecture that is modeled
faithfully in Simics. We use Ruby from the GEMS toolset [23],
which is modified to encode all the protocols used in our
analysis for cache memory simulation. For the cache, we model
tag, data, transient buffers (MSHR), input and output queues,
and coherence protocol. On top of the cache model, we also
use a detailed model of the on-chip network (4x4 mesh), which
models switches, 10 buffers, and links between switches. We
use GEMS and SLICC [23] to model the action of the protocol
state machine as well as structures needed for POPS. Protocol
actions that require accessing the bloom filter and predictor
incur extra latency which delays the resulting network packets.

Our base design is a 16-core tiled CMP with a 4x4 mesh
interconnect and an 8-core tiled CMP with a 2x4 mesh in-

terconnect. Each tile contains separate private L1 instruction
and data caches and a slice of the shared L2 as in the base
system. The L1 cache and local L2 cache can communicate
directly without going through the switch/mesh interconnect
(Figure 1). The main parameters are summarized in Table I. For
the baseline coherence protocol, we used a statically-mapped
line-interleaved non-uniform-shared L2 (L2S) with a MOESI-
style directory-based protocol.

We compare POPS to DDCache [17], Victim Migration [32],
and the base L2S. We also developed a version of Victim
Migration with bloom filters to bypass local L2 access when
there is no replica (which we call Modified Victim Migration).
Table I provides the system configuration used in our simu-
lation. The L2 is organized differently in different protocols.
The base protocol, L2S, uses a 16-way set-associative shared
L2 slice. POPS uses 16 metadata-data lines and 16 metadata-
only lines in a set. DDCache uses a 20-way set-associative
shared L2 slice with 16 metadata-data lines and 4 metadata-
only lines. Victim Migration (VM) has a 16-way set-associative
shared L2 slice along with a 16-way set-associative victim tag.
The choice of metadata/victim tag ways added is a function
of the potential for creating additional capacity. POPS and
VM add 16 additional metadata tags (equal to the number
of ways in the base L2S design). In the case of DDCache,
the number of extra metadata ways is determined by the ratio
of L1 capacity to L2 capacity. Empirical evidence suggests
that DDCache’s performance is best with the 4 extra metadata
ways — additional ways are not well utilized. Modified Victim
Migration adds a counting bloom filter (4 hash functions, each
with 256 entries, 4-bit counters) to Victim Migration [32].
Additionally, both POPS and DDCache have a 512-entry 8-way
associative predictor table on the L1 miss path. POPS also has
a bloom filter as in modified victim migration.

Table T
SYSTEM PARAMETERS

16-way/8-way CMP, Private L1, Shared L2
Processor cores | 16 in-order, single issue, 3GHz cores.
Non-memory IPC=1, sequentially consistent (8
cores for 8-way CMP)
64KB 2-way each, 64-byte blocks, 2-cycle
512 entry 8-way associative
4 hash functions, 256-entry each, 4-bit counters
16MB, 16-way set associative, 16 banks (8
banks for 8-way CMP), 64-byte blocks, Sequential
tag/data access, 14-cycle
4GB, 300-cycle latency
4x4 mesh (2x4 mesh for 8-way CMP), 4-cycle
link latency, 128-bit link width, virtual cut-through
routing

L1 (I and D) cache
Predictor table
Bloom filter

L2 cache

Memory
Interconnect

The interconnect network is modeled using GEMS [23].
The network link width is 16 bytes and so is the flit size.
Messages of three different sizes (8 bytes, 16 bytes, and
72 bytes) are used for data and command communications.
L2S and Victim Migration use 8-byte and 72-byte messages
while DDCache and POPS use 8-byte, 16-byte, and 72-byte
messages. The network link is shared at an 8B granularity,
i.e., two 8B messages (or one 8B message and part of a 16B
or 72B message) can be transmitted simultaneously, assuming
both messages are ready to be transmitted. Messages exchanged
between L1s and L2s are treated as on-chip traffic and messages
communicated between L2s and memory controller are treated
as off-chip traffic. For power consumption modeling, we use
Cacti 6.0 [26] to model power, delay, area, and cycle time for
the individual cache banks as well as the interconnect switches.



All process-specific values used by Cacti 6.0 are derived from
the ITRS roadmap. We use a 45 nm process technology and
focus on dynamic energy.

B. Workloads

For our study, we use a wide range of programs that include
single-threaded, multithreaded, and multiprogrammed work-
loads. Table II lists all the benchmarks used in all three types
along with their input specifications. Single-threaded workloads
are taken from SPEC CPU2006. Multiprogrammed workloads
are the 8-way mixes of single-threaded workloads from SPEC
CPU2006and SPEC CPU2000. Multithreaded workloads are
from the commercial, scientific, mining, and branch and bound
domains, or from microbenchmarks. In order to demonstrate
efficiencies for specific access patterns, we have developed
microbenchmarks with producer-consumer and migratory ac-
cess patterns. To demonstrate the effectiveness of local data
replication, we have developed PrvRW benchmark that reads
and writes a specified amount of privately allocated memory
(larger than L1 size but smaller than L2 bank size) repeatedly.
As commercial workloads, we use the Apache web server with
the surge [4] request generator and SPECjbb2005. Alameldeen
et al. described these commercial workloads for simulation [2].
For scientific benchmarks, we have a large set of applications
and kernels from the SPLASH2/SPLASH suites [31], which
include Barnes, Cholesky, FFT, LU, MP3D, Ocean, Radix,
and Water. Our multithreaded workload suite also includes a
graph mining application [6] and a branch-and-bound based
implementation of the traveling salesman problem (7'SP).

All the single-threaded and multiprogrammed workloads use
an 8-way CMP and the multithreaded workloads use a 16-
way CMP as specified in Table I. They are compiled with
optimization flags enabled before creating the checkpoints.
As specified in Table II, most multithreaded workloads are
simulated to completion using default input sets except in a
few cases where small inputs were used to keep the simu-
lation time manageable. Other multithreaded workloads are
transaction-based and are simulated for a specific number of
transactions. Single-threaded and multiprogrammed workloads
are fast-forwarded for 40 billion instructions and then simulated
for 100 million instructions for each of the programs. Faster
programs are allowed to continue execution till the slowest one
completes 100 million instructions. Reference inputs are used
for all of these SPEC CPU programs for both single-threaded
versions and multiprogrammed workload mixes.

Future server workloads are likely to run on CMPs with
many cores, while multi-programmed desktop workloads are
likely to run on CMPs with fewer cores that free die area for
a larger on-chip cache. We therefore use an 8-core CMP for
multiprogrammed and single-threaded workload simulation. In
multiprogrammed mode, any set of programs can run concur-
rently and so we randomly chose a set of programs to form a
mix. All possible combinations of 8 programs could be chosen.
However, simulation time would be excessive. Our choice of
mixes show a range of behavior with varying numbers of high
and low miss rate applications in the mix, each with a different
fraction of replica utilization.

C. POPS Performance Improvement

As a performance metric, we use (1) execution time in
terms of processor cycles required to do the same amount
of work for multithreaded workloads and (2) throughput in
terms of instructions per cycle (IPC) for whole systems for

multiprogrammed workloads. For single-threaded workloads,
we also use throughput in terms of instructions per cycle
executed on the core that the thread uses.

Figures 4, 5, and 6 show the performance improvements
of POPS (normalized to L2S) for multithreaded, multipro-
grammed, and single-threaded workloads respectively. On av-
erage, POPS improves performance by 42% (by 28% when
3 microbenchmarks are not included) for multithreaded, by
16% for multiprogrammed, and by 8% for single-threaded
workloads.

2.0 . 2.16 2.12 : 2.032.172.91
- [ IDDCache
T 1.8[ |[Mvictim Migration 1
b1 [l Modified Victim Migration
£ 16- 1
=
3 140
£
= 12
A |
g‘ 1.0 il I Ne il .
ol LT T A
0.8 = g = = 2 A = % 5 =2 A E g 2 £
S B &€ £ = 2 @ § "8 £ & 2 & B =~ §
g B 5§ = & 8 ks § s = 5 £ £ =
2 2 = © S £ O
Figure 4. Performance improvement of POPS (normalized to L2S) along

with DDCache, Victim Migration, and Modified Victim Migration for
multithreaded workloads.

There are several contributing factors for POPS’s speedup
including (1) faster data availability by serving the request from
the local L2, close-by L1 sharer, or keeper, (2) faster coherence
via direct L1-L1 communication using delegation, (3) larger
effective cache capacity by decoupling L2 metadata and data
in a set and by adding extra metadata, and (4) sharing access
pattern specific optimizations. The speedups of DDCache, VM,
and Modified VM are shown along with POPS’s speedup to
justify the values of these contributing factors.

The PrvRW microbenchmark (in Figure 4) is designed to
show the potential of faster data availability from controlled
local L2 replication and achieves the maximum speedup of
2.9X. PrvRW is a multithreaded benchmark mimicking multi-
programmed behavior. Each thread allocates 128KB of memory
in its stack and reads/writes that memory repeatedly (512
times). POPS delegates all these lines to the corresponding core
as they are identified as private lines. Since the L1 cache size is
64KB, each iteration will result in data spilling to the local L2,
which is large enough to hold them. Except for cold misses,
accesses will be served by the local L2 slice for each thread
and this will be much faster than going to the home L2 node as
in L2S. Moreover, POPS has some added benefits from faster
coherence using prediction and sharing pattern optimizations
as in DDCache. VM should have performed close to POPS for
PrvRW but does not because (1) delegated lines preferentially
evict regular lines resulting in higher miss rates for data that
maps to the local L2, (2) shared lines that are evicted due
to capacity conflicts from multiple L1s can result in multiple
replicas (at several L2 slices); (3) the local L2 slice is always on
the critical path even when lines are not delegated, and (4) the
L1 is in the communication path between the local L2 slice and
the home L2 slice when the line is delegated (example, when
supplying data to other L1s). In Modified Victim Migration, we
address problem (3) with the bloom filter used in POPS, and
see noticeable improvements. However, this does not address
problems (1), (2), and (4). These problems still affect OS and
shared library code and data. They play a significant role in the
case of PrvRW (e.g., 13% L1 misses from supervisor code itself
in PrvRW). VM creates replicas for all these shared lines (1.2X



Table II
WORKLOADS AND INPUT SPECIFICATION. SINGLE-THREAD WORKLOADS COMPLEMENTED WITH L2 MPKI IN L2S AND REPLICA UTIL. (%) IN POPS.

Multithreaded Multiprogrammed (CPU 2006, ref input) Single-thread

Name Input specifications Mix1 bzip2, gcc, mcf, milc, namd, SPEC CPU 2006
Apache 80K Tx fast forward, 2K Tx warmup, and 3K Tx for data gobmk, dealll, soplex (L2 MPKI) (Replica

collection Mix2 povray, gcc, mcf, milc, hmmer, Util%)
JBB2005 350K Tx fast forward, 3K warmup, and 3K for data collection gobmk, dealll, soplex astar (0.37) (86)
Barnes 8K particles; run-to-completion Mix3 bzip2, sjeng, mcf, milc, namd, bzip2 (0.58) (65)
Cholesky Ishp.0; run-to-completion h264ref, dealll, soplex dealll (0.33) (91)
FFT 64K points; run-to-completion Mix4 Ibm, sjeng, mcf, milc, omnetpp, gcc (0.20) (97)
LU 512x512 matrix, 16x16 block; run-to-completion h264ref, dealll, soplex gobmk (0.38) (92)
MP3D 40K molecules; 15 parallel steps; warmup 3 steps Mix5 Ibm, astar, mcf, milc, omnetpp, Ibm (22.7) (37)
Ocean 258x258 ocean gcc, sphinx, soplex mcf (8.33) (16)
Radix 550K 20-bit integers, radix 1024 Mix6 Ibm, astar, Xalan, milc, omnetpp, milc (15.0) (16)
Water 512 molecules; run-to-completion h264ref, sphinx, soplex namd (0.10) (94)
GraphMine | 340 chemical compounds, 24 different atoms, 66 atom types, and || Mix7 bzip2, astar, Xalan, milc, gcc, omnetpp (6.8) (65)

4 types of bonds; 200M instr.; warmup 300 nodes exploration h264ref, hmmer, soplex povray (0.01) (92)
TSP 18 city map; run-to-completion Mix8 bzip2, astar, mcf, milc, gcc, sjeng (0.3) (70)
Migratory 512 exclusive access cache lines h264ref, specrand, dealll soplex (13.3) (34)
ProdCon 2K shared cache lines and 8K private cache lines Mix9 (CPU 2000) gzip, vpr, mcf, sphinx (10.4) (75)
PrvRW 128KB memory private read-write access/thread parser, eon, bzip2, twolf, mcf Xalan (1.15) (67)

w.r.t. POPS) resulting in reduced effective L2 capacity and for
PrvRW we see 19X more L2 evictions in VM w.r.t. POPS.
Moreover, as VM does not maintain copies at the home for
shared lines (but POPS does as shared lines are not delegated),
supplying data to the subsequent sharers incurs extra latency.
POPS attains a speedup of 2.9x for PrvRW. Although PrvRW
amplifies the consequences of the differences in policies, these
differences also affect, to varying degrees, other workloads,
whether multithreaded or multiprogrammed. (Figure 7 later
shows the effect on L2 misses.)
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Figure 5. Performance improvement of POPS (normalized to L2S) along

with DDCache, Victim Migration, and Modified Victim Migration for
multiprogrammed workloads.

POPS also improves system performance via faster data
availability by predicting a close-by keeper/sharer. Delegation
avoids the need to communicate metadata to the home L1.
POPS therefore improves performance significantly for multi-
threaded workloads. MP3D, TSP, GraphMine, and Producer-
Consumer are a few that get most of the benefits from this
delegation and direct L1-L1 communications through predic-
tion. Migratory, TSP, and MP3D are applications that gain
most from the migratory sharing pattern optimization where
the requester is provided write permission proactively upon
issuing read-shared requests. A significant improvement in 7SP
comes from a false-sharing optimization where cache lines are
pinned down at the dominating writers’ L1. Ocean, Barnes,
and Produce-consumer benefit from the producer-consumer
sharing pattern optimization. By adding extra metadata lines
and decoupling metadata and data in each L2 set, POPS
eliminates data copies at the home when the line is delegated
and provides a larger effective L2 capacity. Apache, JBB,
Ocean, and Radix are the multithreaded workloads that benefit

most from this larger effective capacity.
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Figure 6. Performance improvement of POIQ’S (normalized to L2S) along
with DDCache, Victim Migration, and Modified Victim Migration for single-
threaded workloads.

POPS improves the performance of multiprogrammed work-
loads via a larger effective capacity, faster data supply through
delegation to the local L2, and reduced coherence communica-
tion (by delegation). Figure 5 reflects the performance improve-
ment for multiprogrammed workloads. Since POPS delegates
data in a controlled manner, the L2 is not overwhelmed by
delegated lines. Additionally, the replacement policy at the L2
does not distinguish between home and delegated L2 lines.
As in Modified VM, POPS improves single-threaded workload
performance (Figure 6) due to local replication. Additionally,
POPS reduces coherence communication for shared lines (from
OS and shared library code and their data) as in DDCache.

In summary, POPS performs robustly across all types of
workloads. In subsequent sections, we analyze different aspects
of POPS such as L2 miss reduction, on-chip and off-chip traffic
reduction, dynamic energy reduction, L2 size sensitivity, replica
utilization, and storage overhead.

D. Effect on L2 Misses

Figure 7 shows L2 misses for the different protocols for
multithreaded and multiprogrammed workloads, normalized to
L2S. The L2 misses include all the misses in the system
including those generated by OS and shared library code
execution while executing the workloads. POPS reduces 20%
of the L2 misses of L2S for multithreaded and 4% of the
L2 misses of L2S for multiprogrammed workloads. DDCache
exhibits behavior similar to POPS. However, VM and modified
VM increases L2 misses on average.

The L2 miss rate is a function of cache capacity provided the



3.1 225
C_1DDCacheE=IVictim Migr, BBModified Victim Migr. BBlPOPS

SN I

15 o L2S 4

ol M

v Mix1 Mix2 Mix3 Mi‘x4 Mix5 Mix6 Mix7 Mix8 Mix9 GMean
Figure 7. Comparative L2 misses (normalized to L2S) of DDCache, Victim
Migration, Modified Victim Migration, and POPS for multithreaded and
multiprogrammed workloads.
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workloads and the replacement policies are the same, although
the benefit of better cache space utilization is a (highly non-
linear) function of the working sets. If cache size is increased
just enough to capture the next working set size, L2 misses
would reduce dramatically. POPS has the advantage of extra
effective cache capacity as POPS adds 16 metadata tags per
L2 set, which can be used to link the data lines that are
delegated to some L1s without storing the data at the L2, and
so we see reduced L2 misses in POPS. DDCache also employs
a similar technique to increase cache capacity by adding 4
extra metadata tags per L2 set. POPS has slightly higher L2
misses w.r.t. DDCache due to some replacement interference.
Although there is at most one copy in the L2, moving the line
to the local L2 interferes with the replacement policy for data
for which the local L2 is the home. Both VM and modified VM
use uncontrolled replication of evicted L1 data that is shared,
which creates significant capacity pressure at the L2; we see
that L2 misses increase, on average, by 15% for multithreaded
and 40% for multiprogrammed workloads in the VM protocols.

The trend for L2 misses is that POPS exhibits slightly higher
L2 misses than DDCache, but much lower L2 misses than
L2S, VM, and modified VM. PrvRW is an exception to this
trend. This is due to the fact that POPS is 2.8X faster than
DDCache for PrvRW. The extra time under DDCache implies
that more OS time-dependent code is executed, for which
DDCache incurs extra misses. For VM and modified VM, LU
and Ocean have very high L2 misses because of the fact that
VM creates many replicas but only a few of them are used
by the local core (see Section IV-G). Since VM preferentially
evicts regular lines without any L1 sharer over replicas, this
results in more misses.

E. Effect on on-Chip and off-Chip Traffic

On-chip and off-chip traffic are measured in terms of flit-
hops, which is calculated by adding the number of hops
traversed by all the flits in a control or data message. Traffic
communicating between Lls and L2s are classified as on-
chip and traffic communicating between L2s and memory are
classified as off-chip traffic. Off-chip traffic is proportional to
the number of L2 misses and L2 writebacks. Communication
between L1 and local L2 slice is not counted toward network
traffic since it does not traverse the network switch. Figure 8
shows on-chip network traffic for the different protocols for
multithreaded and multiprogrammed workloads, normalized to
L2S.

Since data messages contribute 5X-9X traffic compared to
control messages, reduced data communication will directly
translate into reduced overall traffic. POPS reduces both data
and coherence communication for both private and shared
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Figure 8. Comparative on-chip traffic generated (normalized to L2S) by
DDCache, Victim Migration, Modified Victim Migration, and POPS for
multithreaded and multiprogrammed workloads.
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cache lines by (1) delegating the coherence to an L1, (2)
accessing shared data from close-by cores using prediction, (3)
accessing private data from the local L2 slice when delegated,
and (4) supporting access pattern-optimized communications.
Due to these mechanisms, POPS reduces on-chip traffic, on
average, by 45% for multithreaded workloads and by 48%
for multiprogrammed workloads. DDCache reduces traffic for
shared cache lines only. VM reduces on-chip traffic mainly by
reducing data communication, since delegated data is trans-
ferred between local L1 and L2 without traversing the network
switch.

Figure 9 shows off-chip network traffic normalized to L.2S
for the different protocols for multithreaded and multipro-
grammed workloads. The off-chip traffic generation largely
follows the L2 miss patterns. POPS reduces off-chip traffic,
on average, by 21% for multithreaded workloads and by 6%
for multiprogrammed workloads due to reduced L2 misses and
reduced memory writebacks from L2. DDCache also reduces
off-chip traffic but for VM and modified VM, off-chip traffic
increases significantly due to increased L2 misses and increased
evictions incurred due to the lower effective cache capacity.
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Figure 9. Comparative off-chip traffic generated (normalized to L2S) by

DDCache, Victim Migration, Modified Victim Migration, and POPS for
multithreaded and multiprogrammed workloads.

FE Effect on Dynamic Energy

Table III lists the energy consumption per access derived
from Cacti 6.0 [26]. These numbers, along with collected
access statistics, are used to derive dynamic energy numbers
for each of the protocols.

Table III
DYNAMIC ENERGY CONSUMPTION VALUES PER ACCESS FOR INDIVIDUAL
STRUCTURES IN POPS AND OTHER COMPARING PROTOCOLS USING
45NM TECHNOLOGY (VALUES ARE IN FEMTO-JOULES (FJ))

L1$ Predictor | Bloom fltr L2$ Router/Interconnect
Tag Data | Access Access Tag Data | BufRd BufWr Xbar Arbiter
2688 16564 | 18593 9640 58299 76621 | 760 1187 24177 402

Figure 10 shows dynamic energy consumption normalized to




L2S for the different protocols for multithreaded and multipro-
grammed workloads. These energy numbers only account for
on-chip storage resources and do not include energy consumed
for off-chip communication and DRAM accesses. Network
energy consumption can be saved by reducing traffic generation
(especially reducing data communication). Cache (L1 and L2)
energy consumption can be reduced by reducing L2 accesses,
which can be replaced by L1 accesses for shared data.
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Figure 10. Comparative dynamic energy consumption (normalized to L2S)
of DDCache, Victim Migration, Modified Victim Migration, and POPS for
multithreaded and multiprogrammed workloads.

Dynamic energy consumed by POPS ranges between 18%
and 103% of the dynamic energy consumed by L2S for
multithreaded workloads and between 47% and 82% for mul-
tiprogrammed workloads with a suite-wise average of 60%
for multithreaded workloads and 63% for multiprogrammed
workloads. Since POPS reduces data and metadata commu-
nication by delegation, prediction, and localization of private
data, and reduces coherence communication by delegation and
access pattern optimization, we see significant reductions in
energy consumption. DDCache also saves dynamic energy
for multithreaded workloads but increases dynamic energy for
multiprogrammed workloads. The VM protocols good energy
reductions for both multithreaded and multiprogrammed work-
loads. Keep in mind, however, that their energy increase and
performance loss comes from off-chip accesses, the energy for
which is not included in Figure 10.

G. Replica Utilization

POPS uses a controlled mechanism to decide which evicted
L1 lines to delegate to a local L2 slice. We have measured,
over the execution, how many lines are delegated to the local
L2, how many of those delegated lines are used by the local
core, and how many requests from other cores are serviced by
the local L2. We see that, on average, 57.4% of the delegated
lines are used by the local core (100% would mean all the
lines are used by the local core), while 8.5% of the delegated
lines serve requests from other cores in POPS for multithreaded
workloads; for multiprogrammed workloads, the numbers are
51.7% and 0.04% respectively.

Comparing POPS with VM in terms of replica creation and
utilization, we see that VM creates almost 10X more replicas
compared to POPS although their utilization percentages are
similar to POPS. In VM, for multithreaded workloads, the local
core uses 55.8% replicas and other cores are served by 10.6% of
the replicas; for multiprogrammed workloads, the numbers are
59% and 0.4% respectively. Among multithreaded workloads
that require L2 cache capacity, LU and Ocean have the least
replica utilization, which results in more L2 misses.

H. Sensitivity Analysis of L2 Size

We analyze the sensitivity of protocol behavior to L2 cache
sizes by varying the L2 cache size between 4 MB and 32 MB.
Figure 11 shows the performance of the protocols normalized to
L2S with the corresponding changed L2 size for multithreaded
and multiprogrammed workloads. On average, POPS speedup
over L2S ranges from 39% to 43% for multithreaded workloads
and from 10% to 16% for multiprogrammed workloads. The
general trend is that with the increase of L2 size, POPS
performs better. This is due to the fact that POPS can keep
more delegated lines that have been evicted from the L1 at
the local L2 slice to reduce on-chip L2 access time. For some
applications, a main benefit is the larger effective L2 cache
size; this benefit reduces as the total L2 size increases (e.g.,
Radix).
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Figure 11. POPS’s sensitivity to L2 size for multithreaded and mul-
tiprogrammed workloads. For each configuration, POPS performance is
normalized to L2S with the correspondingly L2 size.

1. Storage Overhead

In Section III-A, we described the extra structures and fields
added to implement POPS compared to L2S. We consider only
the storage bits required for on-chip storage. POPS adds 16
metadata tags to each L2 set. It is worth noting that these
extra metadata lines are smaller in size than regular metadata
lines as they do not require a full sharers vector (N-bit) —
instead, logyN bits are sufficient to identify the node to which
the line is delegated. POPS also uses a 1K 4-bit counter-based
bloom filter, a 512-entry 8-way associative predictor table per
node, and L1D tags augmented with 10 bits for sharing pattern
detection as well as N bits for the sharers vector. Taking all
extra storage into account, POPS requires 3.72% extra storage
compared to L2S. In comparison, DDCache requires 1.22%
extra storage, VM requires 5.24% extra storage, and Modified
VM requires 5.28% extra storage.

V. RELATED WORK

A large number of non-uniform cache designs with adaptive
protocols have recently been proposed in order to reduce L1
miss penalties and reduce off-chip traffic [5], [7], [9], [10],
[16], [17], [20], [27], [28], [32], [33]. We focus here on those
most directly related to POPS.

ARMCO [16] allows data to be sourced from any sharer (not
necessarily the owner) via direct L1-L.L1 communication, with
the goal of leveraging locality of access. Although ARMCO
removes L2 directory/home access from the critical path, the
directory must still be kept up to date, requiring global (across
chip) communication. DDCache [17] improves on ARMCO
to achieve larger effective cache capacity via decoupling of
data and metadata and delegation of metadata ownership to
an L1 cache. DDCache improves performance significantly



for multithreaded workloads but does not improve single-
threaded and multiprogrammed workloads. Like DDCache,
Direct Coherence [27], [28] also tries to avoid the home
node indirection of directory protocols by storing the directory
information with the current owner/modifier of the block and
delegating coherence responsibility to this node. The home
node has the role of storing the identity of the owner and is
notified only if there is a change in ownership.

Victim Migration (VM [32]) tries to provide faster data
availability by creating a replica at the local L2 slice. VM
uses victim tags at the home L2 slice in order to eliminate
data copies at the home, thereby mitigating some of the
capacity pressure created by the replicas. Multiple replicas
(upto numeores — 1) may however be created for shared data.
In contrast, POPS effectively increases LLC capacity by main-
taining at most one data copy at either a local or home L2 (and
can even have no data copy at the L2 if there are active sharers).
Although VM has the potential to provide a performance boost,
several shortcomings must be overcome. These include VM’s
need to access the local L2 slice to check for replicas, as well
as the cache pressure due to the extra replicas.

Reactive-NUCA (RNUCA) [15] optimizes block placement
for different access types through cooperation with the op-
erating system. RNUCA places private data at the local L2
slice, and instruction and shared read-only data in a cluster
formed by neighboring L2 slices; however, it leaves shared
modified data placement unchanged, defaulting to the base L2S
mapping. RNUCA utilizes rotational interleaving to lookup
the nearest neighbor where the shared read-only data might
reside. The RNUCA proposal operates at a page granularity
to relocate private data to the local L2 bank. In comparison,
POPS classifies data at a finer (line level) granularity, resulting
in reduced misprediction. RNUCA requires changes in the OS,
page table, and TLB while POPS is transparent to everything
other than the coherence hardware. In addition, POPS also
provides fine-grain sharing support (for both read-only and
read-write shared data) via direct L1-L1 transfer of data.

CMP-NuRAPID [10] adapts to different sharing patterns
by either replicating data at the L2 for read-shared data or
performing in-situ communication for read-write or false shared
data. CMP-NuRAPID also migrates data to L2 banks closer
to the accessing cores. CMP-NuRAPID doubles L2 tag space
and requires forward pointers (data group and frame number)
and backward pointers (set index, tag, and processor id),
which might have higher storage costs. In-situ communication
requires a write-through L1 cache, which can increase both
bandwidth and energy demands on the L1-L2 interconnect.

Adaptive Selective Replication (ASR [5]) enhances CMP-
NuRAPID by controlling replication of read-shared data based
on a cost/benefit analysis of increased misses versus reduced
hit latency. ASR also creates LLC capacity pressure similar
to VM due to the replication. ASR is optimized only for read-
shared data. Private and read-write data default to the base L2S
mapping.

Cooperative Caching [7] borrows concepts from software co-
operative caching [3], [13], [30] to allow controlled sharing of
essentially private caches, but requires a centralized coherence
engine. Huh et al. [18] study controlled replication, migration,
and cache sharing in a CMP NUCA cache. In the presence of
migration, however, successive lookups across tags of all banks
may be required.

Eisley et al. [12] reduce cache miss latency and on-
chip bandwidth requirements by using a directory structure

embedded in the network in order to get data directly from a
sharer/owner that is on the way to the home node. Set-up/tear-
down of the directory tree, however, can make overall latency
variable due to potential deadlock recovery.

Several proposals [1], [16], [24] use prediction to avoid
indirection through a home/keeper in order to get to data faster.
Some proposals [19], [21], [25] predict coherence actions
and optimize coherence communication accordingly. Several
coherence protocols that detect and optimize coherence actions
for specific sharing patterns have been proposed in the past [8],
[11], [29]. These protocols were leveraged for sharing pattern
optimizations in ARMCO [16].

VI. CONCLUSIONS

We have developed the POPS cache design and protocol
optimization that localizes data and coherence for both private
and shared data through delegation and controlled local mi-
gration. POPS also provides a larger effective last level cache
(LLC) capacity through decoupling, supports fine-grain sharing
through L1-L1 direct accesses (no directory indirection) via
prediction, and supports sharing and access pattern specific
optimizations. The benefits of POPS include improvement
in performance and reduction of energy and traffic. To the
best of our knowledge, no other cache design supports such
optimizations across all types of data and workloads.

Results on multiprogrammed and single-threaded workloads
demonstrate that POPS is able to provide low latency access for
multiprogrammed and single-threaded workloads, effectively
treating the local L2 slice of a core as a large victim buffer. Re-
sults on multithreaded workloads show that POPS is also able
to effectively localize communication for shared data between
the sharers. POPS also provide a larger effective cache capacity
by allowing the L1 and L2 caches to be non-inclusive, while
using extra L2 cache tags to ensure coherence. Performance
simulation on multithreaded and multiprogrammed workloads
shows that POPS performs 42% better for multithreaded work-
loads, 16% better for multiprogrammed workloads, and 8%
better when one single-threaded application is the only running
process, compared to the base non-uniform shared L2 protocol.
By lowering both on-chip and off-chip traffic, and reducing
overall energy consumption, POPS presents a more complexity-
effective design alternative to conventional shared L2 caches in
a tiled architecture.
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