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ABSTRACT
Networks of workstations (NOWs), whih are generally om-

posed of autonomous ompute elements networked together,

are an attrative parallel omputing platform sine they of-

fer high performane at low ost. The autonomous nature of

the environment, however, often results in ineÆient utiliza-

tion due to load imbalanes aused by three primary fators:

1) unequal load (ompute or ommuniation) assignment

to equally-powerful ompute nodes, 2) unequal resoures at

ompute nodes, and 3) multiprogramming. These load im-

balanes result in idle waiting time on ooperating proesses

that need to synhronize or ommuniate data. Additional

waiting time may result due to loal sheduling deisions in a

multiprogrammed environment. In this paper, we present a

ombined approah of ompile-time analysis, run-time load

distribution, and operating system sheduler ooperation for

improved utilization of available resoures in an autonomous

NOW. The tehniques we propose allow eÆient resoure

utilization by taking into onsideration all three auses of

load imbalane in addition to loality of aess in the pro-

ess of load distribution. The resulting adaptive load dis-

tribution and ooperative sheduling system allows applia-

tions to take advantage of parallel resoures when available

by providing better performane than when the loaded re-

soures are not used at all.

1. INTRODUCTION
Networks of workstations (NOWs), whih are generally

omposed of autonomous ompute elements (whether unipro-

essors or symmetri multiproessors (SMPs)) networked to-

gether, are an attrative parallel omputing platform sine
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they o�er high performane at low ost. There are sev-

eral fators that interfere with the eÆient utilization of au-

tonomous NOWs for parallel omputing. The parallelization

strategy used by an appliation ould result in load imbal-

anes due to unequal load assignment or exess ommuni-

ation among some nodes. In addition, load imbalanes an

arise due to hardware inequalities. It is very likely that a

NOW is made up of old and new hardware as mahines are

upgraded. Finally, multiprogramming in ombination with

independent sheduling deisions on eah of the nodes an

result in additional slowdown of a parallel appliation trying

to take advantage of the distributed autonomous resoures.

The default programming paradigm that is supported in

hardware is message passing aross the nodes, and shared

memory among proesses within a node. Unfortunately, the

message passing paradigm requires expliit ommuniation

management by the programmer or parallelizing ompiler.

This ommuniation management an be very omplex, es-

peially for appliations with dynami aess patterns, or

for multiprogrammed platforms or platforms with unequal

resoures. The most eÆient workload and ommuniation

shedule an be impossible to predit statially.

An alternative programming paradigm is software-based

distributed shared memory (SDSM). An SDSM protool

(e.g., [3, 17, 26℄) provides the illusion of shared memory

aross a distributed olletion of mahines, providing a uni-

form and perhaps a more intuitive programming paradigm.

A shared memory paradigm provides ease-of-use and addi-

tionally leverages an SMP workstation's available hardware

oherene to handle sharing within the SMP. SDSM has

been shown to be an e�etive target for a parallelizing om-

piler [5℄. Sine data ahing and ommuniation is imple-

mented by the run-time system, ompile-time omplexity is

redued. Previous work [7, 19℄ has integrated ompile-time

information within the run-time system in order to improve

performane. Aess patterns from the ompiler are used

by the run-time system to optimize ommuniation, provid-

ing a signi�ant improvement in performane. Our goal is

to leverage the exibility a�orded by the SDSM system to

e�et load balaning in autonomous environments.

Load balaning and/or loality management has been ex-

tensively studied by many researhers espeially in the on-

text of loop sheduling [12, 18, 27, 23, 15, 8℄. All these

studies deal with the issue of either load balane or loality

or both but not with sheduling issues. Ioannidis et al. [12℄

propose a method of assigning loops to eah of the pro-



esses based on the observed relative power and the loality

of data (in order to minimize steady-state ommuniation).

Lowenthal et. al. [18, 11℄ use a global strategy for optimizing

the exeution path through the data distribution graph of a

program, whih is exeuted at runtime and direted by the

number of inurred page faults and omputation time of eah

parallel region. The other studies mentioned suggest various

heuristis for seleting tasks from a task queue. Task queue

tehniques inherently assume a tightly oupled environment

where synhronization is fairly inexpensive ompared to the

amount of omputation. In addition, none of these studies

address the problem of ommuniation delay introdued by

sheduling in a multiprogrammed environment.

On the other hand, many researhers have onsidered the

problem of sheduling a parallel appliation in a parallel

or distributed system. The goal here is essentially to redue

ommuniation delay by ensuring that ooperating proesses

are sheduled at the same time [22, 25, 6, 28℄. Ouster-

hout [22℄ shows that osheduling is desirable and desribes

di�erent algorithms for aomplishing it. Ousterhout's work

assumes that sheduling deisions are made entrally, by a

single operating system running aross all proessors. Sobal-

varro et. al. [25℄ and Dusseau et. al. [6℄ assume a loosely ou-

pled system and make sheduling deisions based on om-

muniation patterns. Tuker et. al. [28℄ propose keeping the

number of runnable proesses of a single appliation equal

to the number of available proessors.

We argue that neither pure load balaning tehniques nor

the sheduling mehanisms proposed thus far allow for eÆ-

ient use of autonomous NOWs. Load balaning and loality

management tehniques are e�etive when the imbalane is

aused by di�erent hardware or disproportionate data distri-

bution, but they tend to be ine�etive in multiprogrammed

environments. Wait time of a sender or reeiver ould be

as high as one sheduling quantum (the time between on-

seutive ontext swithes) for a message and signi�antly

more for synhronization. Furthermore, as the number of

ooperating proesses inreases, the wait time may inrease

linearly in multiprogrammed situations. Cosheduling teh-

niques, on the other hand, assume equal levels of multipro-

gramming and work on all nodes. In the presene of unequal

levels of multiprogramming, trying to get the same propor-

tion of the proessor from an overloaded node would result

in either starvation for other proesses on the overloaded

node or wasted proessor yles on an underloaded node.

The solution we propose for e�etive utilization in the

presene of load imbalane is a ombination of ompile-time

program analysis, runtime load balaning in ombination

with SDSM, and operating system sheduling support to re-

due ommuniation and synhronization delay. At ompile

time, we analyze the program to apture the aess patterns

and instrument the ode with alls to the runtime library.

Our stati instrumentation feeds loop and aess informa-

tion to our runtime system. The runtime system uses this

information to partition the available work based on loality

of data aess as well as resoure availability. The runtime

library is the glue between the appliation and the operat-

ing system, ontinuously monitoring ongoing ativity and

making deisions as to when to willingly yield the proessor

in order to give the sheduler more exibility. The operat-

ing system responds to appliation-spei� information on

sheduling needs while respeting fairness. The operating

system also provides feedbak to the appliation about the

sheduling status of ooperating proesses, allowing the run-

time to make resoure management deisions based on this

information.

The remainder of the paper is organized as follows. Se-

tion 2 desribes our approah to the problem, Setion 3

presents our experimental setup and an evaluation of our

system, and �nally Setion 4 onludes and disusses future

work.

2. DESIGN AND IMPLEMENTATION
As mentioned in Setion 1, our programming environ-

ment is software distributed shared memory (SDSM). The

use of SDSM redues the omplexity of the ompiler (or

hand-oded) parallelization, sine ommuniation is man-

aged by the runtime system. Our system uses a ombination

of stati program analysis, runtime monitoring and load re-

distribution, and operating system sheduling support in or-

der to intelligently maximize available resoure utilization.

We elaborate on eah of the omponents in the following

subsetions.

2.1 The Base Software DSM Runtime System
Our run-time system, Cashmere-2L (CSM) [26℄, is a page-

based software DSM system that has been designed for SMP

lusters onneted via a low-lateny remote-write network.

The system implements a multiple-writer [4℄, \moderately"

lazy release onsisteny protool [14℄, and requires applia-

tions to adhere to the data-rae-free, or properly-labeled,

programming model [1℄. E�etively, the appliation is re-

quired to use expliit synhronization to ensure that non-

loal hanges to shared data are visible. The moderately

lazy harateristi of the onsisteny model is due to its im-

plementation, whih lies in between those of TreadMarks [3℄

and Munin [4℄. Invalidations in CSM are sent during a re-

lease and take e�et at the time of the next aquire, regard-

less of whether they are ausally related to the aquired

lok.

A unique point of the CSM design is that it targets low-

lateny remote-write networks, suh as DEC's Memory Chan-

nel [9℄. These networks allow proessors in one node to di-

retly modify the memory of another node safely from user

spae, with very low (miroseond) lateny. CSM utilizes

the remote-write apabilities to eÆiently maintain inter-

nal protool data strutures. As an example, CSM uses the

Memory Channel's remote-write, broadast mehanism to

maintain a repliated diretory of sharing information for

eah page (i.e., eah node maintains a omplete opy of the

diretory). The per-page diretory entries indiate who the

urrent readers and writers of the page are.

Under CSM, every page of shared data has a single, dis-

tinguished home node that ollets modi�ations at eah

release, and maintains up-to-date information on the page.

Initially, shared pages are mapped only on their assoiated

home nodes. Other nodes obtain opies of the pages through

page faults, whih trigger requests for an up-to-date opy of

the page from the home node. Page faults due to write a-

esses are also used to keep trak of data modi�ed by eah

node, for later invalidation of other opies at the time of a

release. If the home node is not atively writing the page,

then the home node is migrated to the urrent writer by sim-

ply modifying the diretory to point to the new home node.

If there are readers or writers of a partiular page on a node

other than the home node, the home node downgrades its



writing permissions to allow future possible migrations. As

an optimization, however, we also move the page into ex-

lusive mode if there are no other sharers, and avoid any

onsisteny ations on the page. Writes on non-exlusive

and non-home-node pages result in a twin (or pristine opy

of the page) being reated. The twin is later used to deter-

mine loal modi�ations.

As mentioned, CSM was also designed spei�ally to take

advantage of the features of lusters of SMPs. The protool

uses the hardware within eah SMP to maintain oherene

of data among proesses within eah node. All proessors

in a node share the same physial frame for a shared data

page. The software protool is only invoked when sharing

spans nodes. The hardware oherene also allows software

protool operations within a node to be oalesed, resulting

in redued data ommuniation, as well as redued onsis-

teny overhead.

2.2 Static Program Analysis
We use stati program analysis to identify the aess pat-

tern of our parallel program as well as to insert the library

hooks that monitor the proess ativity and ooperate with

the operating system (OS). One a parallel region is identi-

�ed, there are two dimensions along whih load distribution

deisions an be made. The �rst is the amount of work per

subtask (where a subtask is identi�ed as the smallest inde-

pendent unit of work that an be performed in parallel, e.g.,

a single iteration of a parallel loop). The seond is the data

aessed by eah subtask. For many regular aess patterns,

the ompiler an identify the data aessed by eah parallel

loop. In addition, the ompiler an also attempt to predit

whether eah parallel loop performs the same or di�erent

amounts of work. Our stati analysis [13℄ provides informa-

tion on the above two dimensions wherever possible.

We illustrate the interfae between the ompiler and the

runtime, as well as the information extrated by the om-

piler, through an example parallel loop. Figure 1 shows

pseudo-ode for the original sequential loop. There are sev-

eral piees of information that the ompiler supplies to the

runtime. For every shared data struture, the ompiler ini-

tializes data strutures indiating its size and the number

and size of eah dimension. In addition, for eah parallel re-

gion, the ompiler supplies information regarding the shared

data aessed (in the form of a regular setion [10℄) per loop

(or subtask) in the parallel region. The loop is then trans-

formed as shown in the pseudo-ode in Figure 2. In reality,

muh of the information passed to the runtime task parti-

tioner is initialized in stati data strutures, with only those

variables that hange on eah invoation being updated.

int sh_dat1[N℄, sh_dat2[N℄;

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b℄ += sh_dat2[*i + d℄;

Figure 1: Initial parallel loop. Shared data is indi-

ated by sh .

One the information on the loop bounds and array di-

mensions is available, the amount of omputation and the

loality of aess an be dedued (heuristially) for several

important lasses of appliations. For instane, deteting

that the amount of work per parallel loop is a funtion of

int sh_dat1[N℄, sh_dat2[N℄;

Initialize

parallel loop identifier, /* i */

list of shared arrays, /* sh_dat1, sh_dat2 */

list of types of aesses, /* read/write */

list of lower bounds, /* lower_bound */

list of upper bounds, /* upper_bound */

list of strides, /* stride */

list of oeffiients and

onstants for array indies /* a, , b, d */

taskSet = partition_tasks( );

while there are Tasks in the taskSet

lowerbound = new lower bound for that Task;

upperbound = new upper bound for that Task;

stride = new_stride;

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b℄ += sh_dat2[*i + d℄;

Figure 2: Parallel loop with added pseudo-ode that

serves as an interfae with the run-time library. The

run-time system an then hange the amount of

work assigned to eah parallel task.

the parallel loop index implies that in order to ahieve a bal-

aned distribution of load while preserving loality of aess,

a yli distribution of the parallel loops would be useful

1

.

Similarly, deteting a non-empty intersetion between the

regular setions of adjaent parallel loops implies a stenil-

type omputation with nearest-neighbor sharing, while de-

teting an empty or loop-independent intersetion among

loops implies loop-independent sharing.

Two variables in the data struture for eah parallel re-

gion enode this information | load and aess. load is

urrently de�ned to be one of FIXED or VARIABLE, the

default being FIXED. A VARIABLE load type is urrently

used as an indiation to use a yli load distribution, while

a FIXED load type is used as an indiation to use a blok

load distribution. aess is urrently de�ned to be one of

STENCIL or INDEPENDENT. aess is used to inuene

the type of load distribution used, and to determine the

type of redistribution used. aess an potentially be up-

dated by the runtime based on information about data ur-

rently ahed by the proess. An aess type of STENCIL is

treated as a signal to use a bloked load distribution as well

as a bloked re-assignment of load (i.e., load is re-assigned

by shifting loop boundaries in proportion to the proess-

ing power of the individual proessors). Using this type of

load re-assignment minimizes steady-state ommuniation

due to nearest-neighbor sharing. However, the redistribu-

tion results in data being ommuniated among all neigh-

boring proessors during eah redistribution. An aess type

of INDEPENDENT signals the ability to minimize this om-

muniation by assigning a loaded proessors' tasks diretly

1

In the presene of onditional statements, variable load

per parallel loop annot always be deteted at ompile-time.

Appliation-spei� knowledge ould also be easily enoded

by the user.



to the lightly loaded proessors. Sine data sharing among

loops is iteration-independent, there is no resulting inrease

in steady-state ommuniation.

For soure-to-soure translation from a sequential pro-

gram to a parallel program that is ompatible with our run-

time library, we use the Stanford University Intermediate

Format (SUIF) [2℄ ompiler. The SUIF system is organized

as a set of ompiler passes built on top of a kernel that

de�nes the intermediate format. Eah of these passes is im-

plemented as a separate program that reads its input from

a �le and writes its output to another �le. SUIF �les always

use the same format.

We added two passes to the SUIF system for our purposes.

The �rst pass works before the parallel ode generation and

inserts ode that provides the runtime library with informa-

tion about eah parallel region's aess patterns. The seond

pass works on parallelized programs and modi�es the loop

struture so that a task queue is used.

The standard SUIF distribution an generate a single-

program, multiple-data (SPMD) program from sequential

ode for many simple loops but laks the more omplex

transformations essential to extrat parallelism from less

easily analyzable loops. While our SUIF passes provide

an easy translation mehanism for many programs, it is

straightforward to insert the required data strutures by

hand into an already parallelized program.

2.3 Relative Processing Power
As desribed in [13℄, in order to partition the load aord-

ing to available resoures, we need to be able to estimate the

available omputational resoures and ommuniation over-

heads. Intuitively, elapsed time is a good measure of the

available resoures, sine it aptures a proessor's pereived

load, whether due to proessor speed, multiprogramming,

or ontention for memory and/or the network. Eah proess

queries the operating system to obtain the elapsed time for

the exeution of eah parallel region. The RelativePower

of a proessor is inversely proportional to this time, i.e.,

the faster the proessor, the larger its power relative to the

other proessors. We trak time over several parallel regions

prior to updating the relative powers in order to smooth out

transient spikes in performane. The high-level algorithm

for omputing relative proessing power is shown in Fig-

ure 3. TaskTime is a shared array that is updated prior to

omputing the relative powers. RelativePower is initial-

ized aording to the task distribution strategy used and is

always normalized.

2.4 Task Distribution Strategy
On the �rst exeution of any parallel region, the initial

load assignment made by the runtime is guided by the in-

formation provided by the stati analysis, the urrently per-

eived relative power of eah proessor, and the size of data

elements as well as the size of the oherene unit. The infor-

mation provided by the stati analysis inludes loop bound-

aries, size of data elements, and predited aess patterns.

The runtime library keeps statistis about the pereived

ompute power of eah proessor (whih ould hange over

time based on the level of multiprogramming) and makes

initial assignments proportional to the pereived ompute

power.

Task assignment and exeution takes the topology of the

proessors into aount. For a network of SMPs, work is

float RelativePower[NumOfProessors℄;

// Initialized at program start

// to 1/NumOfProessors

float TaskTime[NumOfProessors℄;

// Exeution time of parallel region

float SumOfPowers=0;

// Calulate new RelativePower

for all Proessors i

RelativePower[i℄ /= TaskTime[i℄;

SumOfPowers += RelativePower[i℄;

endfor

// Normalize based on sum of the RelativePowers

// to ensure the sum of powers is 1.0

for all Proessors i

RelativePower[i℄ /= SumOfPowers;

endfor

Figure 3: Algorithm to determine relative proess-

ing power.

partitioned in a hierarhial manner in order to aount

for the fat that intra-node ommuniation is heaper than

inter-node ommuniation. Task redistribution is performed

aross SMPs. Task stealing is allowed within eah SMP.

Loality has been shown to be more important than load

balaning [20℄. Given the ontinuously inreasing speed gap

between proessors and memory and the use of deeper mem-

ory hierarhies, loality management is an even bigger issue

in today's proessors. In order to preserve loality within

an SMP, eah proessor maintains task aÆnity | it must

�nish its own task assignment prior to stealing a task from

another proessor (similar to [16℄, exept using �xed-size

tasks). This is done by using a per-proessor task queue,

and having a proessor retrieve tasks from the head of its

queue but steal from the tail of another proessor's queue.

One a task is stolen from another proessor's task queue,

it is moved and owned by the stealing proessor. Using a

per-proessor task queue (rather than a shared one for all

proesses on a multiproessor node) helps not only by main-

taining loality but also by reduing ontention for the lok

to aess the shared task queue.

The runtime library partitions the parallel region into

tasks based on the aess pattern, the load per parallel loop,

and the size of the oherene unit. The size of the data el-

ements along with the size of the oherene unit are used

to determine the partitioning in an attempt to redue false

sharing. Work is partitioned so that aesses by eah in-

dividual proess are in multiples of the oherene unit in

order to avoid false sharing aross proessors. Conseutive

loop iterations are bloked together until the data aessed

is the least ommon multiple of the oherene unit and the

data aessed per loop. This de�nes the minimum task size.

One the minimum task size has been determined, a �xed

number of tasks per parallel region are reated and assigned

to proessors using either a blok or yli distribution based

on whether the load is de�ned to be FIXED or VARIABLE,

respetively, or whether the aess pattern is STENCIL. The

size of eah task is an integral multiple of the minimum task

size and enough tasks are reated to allow later redistribu-

tion when relative proessing powers hange.



The goal of the runtime library is to dynamially deter-

mine and partition work in a loality-preserving manner

based on the omputation to ommuniation ratio. Parti-

tioning work to be performed on a single oherene unit will

result in exessive ommuniation due to false sharing, un-

less the amount of omputation per data unit is high relative

to the ommuniation ost. If all the data to be proessed

by the loop resides on a single node and the parallel region's

exeution time is shorter than the time to ommuniate the

data, work is performed on the node that ahes the data.

Within the node, the work is distributed among the pro-

esses sine intra-node ommuniation is fairly inexpensive.

Similarly, the task distribution strategy attempts to pre-

serve loality aross parallel regions. If the same array is

aessed aross multiple parallel regions, a data struture is

maintained for the array to indiate the urrent partition-

ing that has been used. If a parallel region aesses the same

shared array and approximately the same data range within

that array (determined by the task size hosen for the region

sine the runtime reates a �xed number of tasks per parallel

region), the same partitioning is used. If the aess patterns

in the two regions vary onsiderably, ommuniation is as-

sumed to be large due to the neessary redistribution, and a

partitioning is hosen appropriately. At the same time, the

urrent partitioning is updated. This strategy is loalized,

requiring less omputation than the more global strategy

proposed in [11℄.

Reassignment of tasks ours when a signi�ant hange in

the RelativePower is deteted

2

. Task redistribution is per-

formed on the basis of loality. For a STENCIL aess pat-

tern, tasks are redistributed among neighboring proessors

in order to minimize steady-state ommuniation. For an

INDEPENDENT aess pattern, tasks are redistributed by

realloating tasks from the slowest proessors to the faster

proessors. For INDEPENDENT aess patterns, this type

of realloation will result in the minimum overall ommuni-

ation.

2.5 Cooperative Scheduling Support
Multiprogramming adds an additional dimension to the

problem of imbalaned load. Communiation among oop-

erating proesses an result in signi�ant additional over-

head beause of waiting time aused by one of the proesses

being desheduled and unable to respond. Cosheduling [22,

25, 6, 28, 21℄ approahes have been used in the past, where

ooperating proesses are sheduled to exeute simultane-

ously on all proessors. This approah is useful when the

load on all proessors is equal. However, in the presene

of autonomous nodes with unequal levels of multiprogram-

ming at eah proessor, a more distributed and ooperative

approah is required in order to improve eÆieny while re-

taining autonomy.

Our goal is to improve the response times seen by parallel

appliations in the presene of multiprogramming through

the use of a ooperative sheduler. We modi�ed a priority-

based sheduler to ahieve this goal while retaining the fair-

ness and autonomy of the individual shedulers on eah

node. The ooperative interfae has several omponents.

Our implementation is on Compaq's Tru64 (formerly known

as DEC Unix) version 4.0F.

2

The di�erene between the smallest and largest

RelativePower must di�er by more than a hysteresis

fator from its previous value (10% in our ase).

2.5.1 Scheduler Modifications
In order to improve response times, the sheduler must

be willing to shedule an appliation's proess on demand.

However, this annot be aomplished in traditional shed-

ulers without ompromising fairness. To provide the shed-

uler with the exibility to handle these oniting require-

ments, eah proess, upon delaration of its interest in o-

operating with remote proesses, is harged a sheduling

quantum of time. This time is held in a \piggy-bank" for fu-

ture use by the proess. The \piggy-bank" is replenished any

time the proess voluntarily yields the proessor prior to the

expiration of its sheduling quantum (by adding an amount

less than or equal to the remainder of the quantum), but is

guaranteed not to grow larger than one sheduling quantum

of time. This guarantee prevents a proess from taking over

the proessor for long periods of time by yielding often. The

proess is pre-harged for the amount of time put into the

piggy-bank rather than being harged when the piggy-bank

is used. The sheduler an then use the time in the piggy-

bank to shedule the proess on request. Suh a request is

honored only if the proess has some balane in its piggy-

bank. The time used by the proess from the piggy-bank is

subtrated and the balane is saved for future use.

2.5.2 OS-Runtime Interface
For a parallel appliation to request the ooperation of

the sheduler, information about the proess's sheduling

state is required. One way of providing this information is

through a variable shared between the operating system and

the appliation. In addition, one the sheduling status of a

proess is determined, remote proesses need a mehanism

to wake up the proess if it is not urrently running.

We provide a system all that allows eah proess to regis-

ter a memory loation and a signal. The registered memory

loation has two words. The �rst (\sheduling status") is

written by the operating system and provides feedbak to

ooperating proesses regarding the sheduling status of the

registering proess. It is set by the operating system when

the proess is desheduled. The seond (\signaled") an be

written by ooperating proesses and is used to avoid exes-

sive signaling overhead. It is set by a ooperating proess

when a signal has been sent to this partiular proess for

the purposes of being woken up.

The registered signal is used by a ooperating proess as

a wakeup signal. Upon reeiving the signal, rather than de-

livering it, if the operating system an shedule the proess

while ontinuing to guarantee fairness using the piggy-bank

(i.e., if resoure utilization is within limits), it does so. When

the proess is sheduled, both words of the registered mem-

ory are reset, indiating that the proess is sheduled and

no signal is pending.

Ideally, the values written to the registered memory loa-

tions must be available to all ooperating proesses. Hene,

these memory loations are plaed in shared memory and

broadast to all sharers. Sine our network is a memory-

mapped, low lateny remote write network, these memory

loations are mapped into the network address spae and

the sheduler aesses them using ordinary reads and writes.

We believe the additional ommuniation overhead resulting

from this sharing is minimal in omparison to the rest of the

protool and data ommuniation overhead for the applia-

tion. This is espeially true for the medium-sale lusters

used for suh parallel appliations.



2.5.3 Application Cooperation
In order to give the sheduler the exibility to respond to

on-demand sheduling requests, an appliation must volun-

tarily yield the proessor in order to build up its piggy-bank.

A yield system all
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is used to free up resoures preemptively

in order to build up this future \equity".

The yield system all takes one argument to indiate the

lowest priority that the aller is willing to yield to. The

argument spei�es a priority relative to the priority of the

aller. If no other proess within the given priority is avail-

able, the all returns immediately with no e�et. Other-

wise, a runnable proess with the highest priority is piked

and sheduled. A ompliation in implementing this system

all is aounting for resoure usage. In many operating

systems, proesses are harged at the granularity of a lok-

tik, whih is about 1 mse on Tru64 Unix (our experimental

platform). If a proess yields frequently enough, it is fairly

easy for that proess either not to be harged at all for its

use or to be over-harged depending on the relative timing

of a lok tik and the sheduling event. In order to �x

this problem, hardware ounters are used as the basis for

aounting.

The yield all is made by a proess whenever the proess

would otherwise spin waiting for an external event suh as

ommuniation or synhronization with a remote proess. A

spin-blok strategy [21℄ is used in order to avoid unneessary

yields. The spin time is set to be at least twie the round-

trip ommuniation time and is doubled eah time the yield

is unsuessful.

It is important to keep in mind that, unless the newly

added features are used by the appliations, the overhead of

the new sheduling is negligible. Even when these features

are exploited extensively, the overhead is still minimal. The

only overhead inurred is to set/lear the registered mem-

ory loations at eah ontext-swith and keep some extra

aounting information about resoure usage.

3. EVALUATION

3.1 Experimental Platform
Our experimental environment is a luster of Compaq

AlphaServer 4100 servers. Eah AlphaServer is equipped

with four 21164A proessors operating at 600 MHz, 2 GB of

shared memory, and a Memory Channel network interfae.

The Memory Channel [9℄ is a PCI-based rossbar network,

with a peak point-to-point bandwidth of approximately 83

MBytes/se. The network is apable of remotely writing to

memory mapped areas, but does not have remote read apa-

bility. One-way lateny for a 64-bit remote-write operation

is 3.3 �ses.

The 21164A has two levels of ahe on hip. The �rst level

onsists of a split diret-mapped 8 KB instrution and data

ahe, with a line size of 32 bytes. The �rst-level data ahe

is write through. The seond-level ahe is a 96 KB 3-way

set assoiative uni�ed ahe, with a line size of 64 bytes. Our

platform has an 8 MB diret-mapped board level ahe, with

a line size of 64 bytes. Eah AlphaServer runs Digital Unix

4.0F, with TruCluster v. 1.6 extensions. All the programs,

the runtime library, and Cashmere were ompiled with g

version 2.8.1 using the -O2 optimization ag.

3

While some operating systems already provide this ability,

we had to add this system all to Tru64.

On our platform, a sheduling quantum is approximately

10ms and a proess runs until the quantum expires unless

there is a higher priority proess. A null system all takes

approximately 0.5 �s and a ontext swith takes approxi-

mately 6 �s.

In Cashmere, a page feth operation takes approximately

220 �s on an unloaded system, twin operations require 68

�s, and a di� operation ranges from 100{245 �s, depending

on the size.

3.2 Experimental Results
In order to evaluate our system, we used a set of six kernels

as our benhmarks. These benhmarks exhibit a range of

sharing patterns and types of parallel regions. We briey

desribe eah appliation below.

� Matrix Multiply: A simple matrix multipliation

algorithm parallelized by forming tasks with groups

of rows and distributing these tasks among proesses.

The dataset onsists of three 512x512 matries of long

integers (8 bytes eah) | one eah for the multiplier,

multipliand, and result.

� Jaobi: An iterative method for solving partial dif-

ferential equations with nearest neighbor averaging as

the main omputation. We used a matrix of 2048x2048

single preision oating point numbers (4 bytes eah).

� SOR: Suessive-over-relaxation is a nearest neighbor

algorithm from the TreadMarks [3℄ distribution, whih

is also used to solve partial di�erential equations. A

matrix of 4096x1024 of double preision oating point

numbers (8 bytes eah) is used in our experiments.

� Shallow: The shallow water benhmark from the Na-

tional Center for Atmospheri Researh. This ode is

used in weather predition and solves di�erene equa-

tions on a two dimensional grid. 13 Matries of size

2048x2048 are needed where eah element is a double

preision oating point number, totaling 436MB.

� Water: A moleular dynamis simulation from the

SPLASH-1 [24℄ benhmark suite. The bulk of the

interproessor ommuniation ours during a phase

that updates intermoleular fores using loks, result-

ing in a migratory sharing pattern. Between eah up-

date phase, a barrier operation is performed. We use

an input set of 9261 moleules, with the size of eah

moleule's data struture being 672 bytes.

� Gauss: A parallel gaussian elimination algorithm. The

solution is omputed by using partial pivoting and

bak substitution, and the row elimination is paral-

lelized. The dataset size in our experiments is a matrix

of 2048x2048 double preision oating point numbers

(8 bytes eah).

All our runs were onduted on 4 nodes with 4 proessors

on eah node, for a total of 16 proessors. For the purposes

of loading a proessor, we use a program that exeutes in

a tight loop inrementing a variable (a pure omputational

load). At periodi inrements, the elapsed time is reorded

in order to provide a measure of the progress of the bak-

ground load and to ensure sheduling fairness. With two

proesses running simultaneously, the elapsed time between



0

20

40

60

80

100

120

140

160

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Jacobi

0

2

4

6

8

10

12

14

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

SOR

0

20

40

60

80

100

120

140

160

180

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Shallow

0

50

100

150

200

250

300

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Water

0

10

20

30

40

50

60

70

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

0

5

10

15

20

25

30

35

40

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Figure 4: Exeution times with and without load balaning and ooperative sheduling support as the number

of loaded proessors (eah with 50% load, 1P = 1 loaded proessor on 1 node, 2P = 2 loaded proessors on

1 node, 4P = 2 loaded proessors on 1 node and 1 loaded proessor on eah of 2 nodes, and 8P = 2 loaded

proessors on eah node) is inreased. The X-axis shows the number of multiprogrammed proessors. \Plain"

indiates no sheduling or load balaning support. \LB" indiates load balaning support, \SCH" indiates

ooperative sheduling support, and \LB+SCH" indiates the use of both load balaning and ooperative

sheduling supports.



Program Seq. Time Load Type Aess Type Global Syn. Rate

(ses) (barriers/se at 16p.)

Matrix 578.76 FIXED INDEPENDENT 3.17

Jaobi 151.5 FIXED STENCIL 68.02

SOR 2389.2 FIXED STENCIL 70.01

Shallow 1510.8 FIXED STENCIL 10.03

Water 795 FIXED INDEPENDENT 2.46

Gauss 366.3 VARIABLE INDEPENDENT 258.19

Table 1: Relevant Program Charateristis

two onseutive intervals should be approximately twie that

when running on a dediated proessor.

We onduted 5 sets of experiments for eah of the appli-

ations with varying numbers of multiprogrammed proes-

sors, where eah multiprogrammed proessor had a single

additional omputational load as desribed above. Figure 4

presents the results. Eah set of experiments inludes four

bars representing the exeution time of the program with

various features turned on or o�. \Plain" implies an exe-

ution with no sheduling or load balaning support. \LB"

represents an exeution with runtime load balaning sup-

port turned on. \SCH" represents an exeution without

load balaning but with the use of a ooperative sheduler

in the kernel. Finally, \LB+SCH" represents an exeution

where both the load balaning support and the ooperative

sheduler are turned on. The \No Load" ase demonstrates

the generally minimal overhead from adding support for dy-

nami load balaning and ooperative sheduling. In fat,

as is demonstrated by the graph for Shallow (and explained

below), exeution time an atually be improved.

Table 1 presents the sequential exeution times, global

synhronization rates at 16 proessors in the absene of load,

and dominant load and aess type for eah of the parallel

appliations. We disuss eah appliation below.

Matrix Multiply: As seen is Table 1, this appliation

has one of the lowest rates of global synhronization rela-

tive to the appliations in our benhmark suite. The to-

tal number of global synhronizations is 204. Hene, the

time between two synhronization points (315 ms) is muh

longer than a single sheduling quantum (10 ms). Further,

the amount of ommuniation is very low. This makes the

appliation indi�erent to ooperative sheduling, and allows

the load balaning to be e�etive even in the absene of o-

operative sheduling. Overall redution in exeution time

varies between 26 and 33%, in omparison to no support at

all. Sine the type of sharing in this appliation is labeled as

INDEPENDENT, i.e., it is independent of the region being

parallelized, the load balaner uses a bloked task distribu-

tion and is able to minimize the ommuniation while re-

distributing tasks by moving tasks diretly from the heavily

loaded to the lightly loaded proessors.

Jaobi and SOR: Both of these appliations exhibit

nearest neighbor sharing as indiated by the aess type

of \STENCIL". Hene, the load balaner uses a bloked

task distribution, and redistribution is performed by mov-

ing tasks between neighboring proessors in order to mini-

mize sharing-based ommuniation (If redistribution is per-

formed assuming that the loops are independent, the result-

ing steady-state ommuniation (page transfers) is doubled,

and the exeution time inreased by a fator of 1.5). As

demonstrated by the \no-load" ase in Figure 4, the over-

head of using our features even in the absene of load is

negligible for both appliations. Ideally, in the absene of

load balaning, a 50% load on any proess should result in

a doubling of the exeution time. As we inrease the num-

ber of loaded proessors, however, the exeution time for

the base ase (\plain") ontinues to inrease and is more

than double the no-load ase when 8 of the proessors are

loaded. This is due to the independent sheduling deisions

made by the underlying operating system. Examining the

\SCH" bars in the �gures shows that ooperative shedul-

ing is highly e�etive in eliminating waiting time due to

desheduled proesses | the exeution time as the load is

inreased stays onstant, as one would expet in the ab-

sene of load balaning. As the number of loaded proessors

inreases, the e�etiveness of load balaning alone (\LB")

dereases substantially, beause the omputation between

two rendezvous points in both appliations is relatively low.

Combining load balaning and sheduling support results in

an improvement in the exeution time of at least 24% for all

ases.

Shallow: Shallow is an appliation that demonstrates

the e�etiveness of the loality optimizations that take o-

herene unit size into aount. Shallow performs several

boundary ondition initializations on its matries. Sine

this omputation is performed on a single row of the matrix,

and a single row �ts in one oherene unit, parallelization

aross nodes would result in exessive ommuniation due

to false sharing. The runtime library is able to eliminate

this ommuniation by performing the omputation on the

node that ahes the data. The bene�ts of this optimiza-

tion are demonstrated by the redution in exeution time

(3%) with the load balaner turned on even in the absene

of load. Load balaning results in up to a 28% redution in

the exeution time in the presene of load.

Water: A unique harateristi of this appliation is the

fat that it aquires a per-moleule lok to update eah of the

moleules, sine a moleule ould be updated by eah of the

proesses to show the interation between all the moleules.

While the number of global synhronizations is low (76 over

the ourse of exeution), a lok aquisition attempt ould

also inur delays when a proess holding the lok is pre-

empted. The likelihood of having a proess desheduled

while holding a lok inreases with the number of multi-

programmed proessors. As an be seen in Figure 4, pure

load balaning redues the exeution time by only 4% when

the number of loaded proessors is 8. However, for all loaded

ases the redution in exeution time is between 22% and

29% when both load balaning and ooperative sheduling

are used.

Gauss: For Gauss, the amount of work in a parallel re-

gion dereases as the omputation progresses. Hene, this is



an example where distributing iterations ylially is nees-

sary in order to preserve loality while balaning load (the

ompiler algorithm is able to detet this behavior using the

loop indies). For this appliation, beause of the potential

variane in load among proessors, aurate estimates of the

relative power as well as appropriate yield times are diÆult

to predit. Hene, there is a slight performane degradation

in the absene of load when using load balaning and/or the

ooperative sheduler. As an be seen, load balaning sup-

port without a ooperative sheduler fails to improve per-

formane signi�antly (improves performane by only 5%)

when there are many loaded proessors. The ombination

of the load balaner and the ooperative sheduler is able

to redue exeution time by up to 23% in the presene of 8

loaded proessors. For this program, there are 4101 global

synhronization operations and 392K messages exhanged

in roughly 16 seonds of exeution time. In other words, a

global synhronization is exeuted every 4 mses, i.e., at a

granularity muh smaller than the sheduling quantum of

10 mses. Even if a request for sheduling is sent to the

remote node, it takes up to 833�s (one hardlok tik) for

that request to be honored (the signal is delivered by Tru64

only at the end of the lok tik). Hene, it is likely that

as the load is inreased, the parallel appliation is fored to

wait at the global synhronization for desheduled proesses

despite the ooperative sheduler.

Finally, Figure 5 ompares the exeution times of a 16

proessor exeution with 8 loaded proessors (a load of 50%)

with that of running the appliation on 8 and 12 proessors

without load. The 12 proessor exeution time in the ab-

sene of load represents the (in pratie unattainable due to

ommuniation overheads) ideal exeution time we would

like to ahieve with 16 proessors, given the load we have

imposed. The 8 proessor exeution time represents a spae

sharing approah, where the appliation only uses the un-

loaded proessors. Our expetation is that the exeution

time on 16 proessors with 8 loaded proessors is lose to

the 12 proessor exeution time. As the �gure shows, this

expetation is realized for Matrix Multiply and Water. Both

these appliations have aess patterns where the sharing is

independent of the parallelization strategy used for the par-

allel region. Hene, the use of 16 proessors (as opposed to

12 or 8) does not result in additional steady-state ommu-

niation. However, for Shallow, SOR, and Jaobi, the three

appliations with a STENCIL aess pattern, steady-state

ommuniation at 16 proessors is higher than at 12 pro-

essors. Hene, while performane is improved with load

balaning, it is not lose to the 12 proessor ase. As the

results in Figure 5 show, Gauss is one appliation for whih

although performane is improved relative to \plain" (Fig-

ure 4), one more than four proessors are loaded, the ap-

pliation would atually be better served by abandoning the

loaded proessors and exeuting all of the omputation on

the unloaded proessors (a spae sharing approah). We are

urrently also exploring this avenue of adaptation.

4. CONCLUSIONS
We have presented a system that ombines ompile-time

analysis, runtime load balaning and loality onsiderations,

and ooperative sheduling support for improved perfor-

mane of parallel programs on autonomous distributed hard-

ware. Our results show that while load balaning alone is

e�etive in improving resoure utilization when the number
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Figure 5: Comparison of exeution times (normal-

ized to the exeution time on 8 dediated proessors

) on 8 dediated proessors, 16 proessors with 8

loaded proessors, and 12 dediated proessors.

of loaded proessors is low, ombining load balaning with

ooperative sheduling is essential to improving performane

when the number of loaded proessors is high. The oopera-

tive interfae to the kernel is minimally intrusive, and takes

advantage of shared data between the kernel and ooper-

ating proesses. Our ooperative sheduling mehanism en-

sures fairness of resoure alloation for all running proesses.

Our runtime load balaning tehniques are able to take ad-

vantage of loality and ommuniation ost information to

minimize overall exeution time by balaning loality and

load onsiderations. Further, our task sheduling approah

takes the variane in ommuniation lateny among proes-

sors into aount. The result is a system that is able to

adapt to dynamially hanging resoure availability without

hanges to the appliation.

Future work inludes an evaluation of the salability of

the system, both in terms of being able to handle multiple

simultaneously exeuting parallel appliations and in terms

of being able to sale to a larger number of proessors. In ad-

dition, further experimentation on the frequeny of allowed

redistribution as well as the sensitivity to variane in load

is needed.
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