Dynamic Adaptation to Available Resources for Parallel
Computing in an Autonomous Network of Workstations -

Umit Rencuzogullari, Sandhya Dwarkadas

Department of Computer Science
University of Rochester
Rochester, NY 14627-0226
umit,sandhya@cs.rochester.edu

ABSTRACT

Networks of workstations (NOWSs), which are generally com-
posed of autonomous compute elements networked together,
are an attractive parallel computing platform since they of-
fer high performance at low cost. The autonomous nature of
the environment, however, often results in inefficient utiliza-
tion due to load imbalances caused by three primary factors:
1) unequal load (compute or communication) assignment
to equally-powerful compute nodes, 2) unequal resources at
compute nodes, and 3) multiprogramming. These load im-
balances result in idle waiting time on cooperating processes
that need to synchronize or communicate data. Additional
waiting time may result due to local scheduling decisions in a
multiprogrammed environment. In this paper, we present a
combined approach of compile-time analysis, run-time load
distribution, and operating system scheduler cooperation for
improved utilization of available resources in an autonomous
NOW. The techniques we propose allow efficient resource
utilization by taking into consideration all three causes of
load imbalance in addition to locality of access in the pro-
cess of load distribution. The resulting adaptive load dis-
tribution and cooperative scheduling system allows applica-
tions to take advantage of parallel resources when available
by providing better performance than when the loaded re-
sources are not used at all.

1. INTRODUCTION

Networks of workstations (NOWSs), which are generally
composed of autonomous compute elements (whether unipro-
cessors or symmetric multiprocessors (SMPs)) networked to-
gether, are an attractive parallel computing platform since

“This work was supported in part by NSF grants
EIA-9972881, EIA-0080124, CCR-9702466, CCR-9988361,
and CCR-9705594; by an external research grant from
DEC/Compaq; and by DARPA/AFRL contract number
F29601-00-K-0182.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PPOPP’01,June 18-20, 2001, Snowbird, Utah, USA.

Copyright 2001 ACM 1-58113-346-4/01/000655.00.

they offer high performance at low cost. There are sev-
eral factors that interfere with the efficient utilization of au-
tonomous NOWs for parallel computing. The parallelization
strategy used by an application could result in load imbal-
ances due to unequal load assignment or excess communi-
cation among some nodes. In addition, load imbalances can
arise due to hardware inequalities. It is very likely that a
NOW is made up of old and new hardware as machines are
upgraded. Finally, multiprogramming in combination with
independent scheduling decisions on each of the nodes can
result in additional slowdown of a parallel application trying
to take advantage of the distributed autonomous resources.

The default programming paradigm that is supported in
hardware is message passing across the nodes, and shared
memory among processes within a node. Unfortunately, the
message passing paradigm requires explicit communication
management by the programmer or parallelizing compiler.
This communication management can be very complex, es-
pecially for applications with dynamic access patterns, or
for multiprogrammed platforms or platforms with unequal
resources. The most efficient workload and communication
schedule can be impossible to predict statically.

An alternative programming paradigm is software-based
distributed shared memory (SDSM). An SDSM protocol
(e.g., [3, 17, 26]) provides the illusion of shared memory
across a distributed collection of machines, providing a uni-
form and perhaps a more intuitive programming paradigm.
A shared memory paradigm provides ease-of-use and addi-
tionally leverages an SMP workstation’s available hardware
coherence to handle sharing within the SMP. SDSM has
been shown to be an effective target for a parallelizing com-
piler [5]. Since data caching and communication is imple-
mented by the run-time system, compile-time complexity is
reduced. Previous work [7, 19] has integrated compile-time
information within the run-time system in order to improve
performance. Access patterns from the compiler are used
by the run-time system to optimize communication, provid-
ing a significant improvement in performance. Our goal is
to leverage the flexibility afforded by the SDSM system to
effect load balancing in autonomous environments.

Load balancing and/or locality management has been ex-
tensively studied by many researchers especially in the con-
text of loop scheduling [12, 18, 27, 23, 15, 8]. All these
studies deal with the issue of either load balance or locality
or both but not with scheduling issues. Ioannidis et al. [12]
propose a method of assigning loops to each of the pro-

cesses based on the observed relative power and the locality
of data (in order to minimize steady-state communication).
Lowenthal et. al. [18, 11] use a global strategy for optimizing
the execution path through the data distribution graph of a
program, which is executed at runtime and directed by the
number of incurred page faults and computation time of each
parallel region. The other studies mentioned suggest various
heuristics for selecting tasks from a task queue. Task queue
techniques inherently assume a tightly coupled environment
where synchronization is fairly inexpensive compared to the
amount of computation. In addition, none of these studies
address the problem of communication delay introduced by
scheduling in a multiprogrammed environment.

On the other hand, many researchers have considered the
problem of scheduling a parallel application in a parallel
or distributed system. The goal here is essentially to reduce
communication delay by ensuring that cooperating processes
are scheduled at the same time [22, 25, 6, 28]. Ouster-
hout [22] shows that coscheduling is desirable and describes
different algorithms for accomplishing it. Ousterhout’s work
assumes that scheduling decisions are made centrally, by a
single operating system running across all processors. Sobal-
varro et. al. [25] and Dusseau et. al. [6] assume a loosely cou-
pled system and make scheduling decisions based on com-
munication patterns. Tucker et. al. [28] propose keeping the
number of runnable processes of a single application equal
to the number of available processors.

We argue that neither pure load balancing techniques nor
the scheduling mechanisms proposed thus far allow for effi-
cient use of autonomous NOWs. Load balancing and locality
management techniques are effective when the imbalance is
caused by different hardware or disproportionate data distri-
bution, but they tend to be ineffective in multiprogrammed
environments. Wait time of a sender or receiver could be
as high as one scheduling quantum (the time between con-
secutive context switches) for a message and significantly
more for synchronization. Furthermore, as the number of
cooperating processes increases, the wait time may increase
linearly in multiprogrammed situations. Coscheduling tech-
niques, on the other hand, assume equal levels of multipro-
gramming and work on all nodes. In the presence of unequal
levels of multiprogramming, trying to get the same propor-
tion of the processor from an overloaded node would result
in either starvation for other processes on the overloaded
node or wasted processor cycles on an underloaded node.

The solution we propose for effective utilization in the
presence of load imbalance is a combination of compile-time
program analysis, runtime load balancing in combination
with SDSM, and operating system scheduling support to re-
duce communication and synchronization delay. At compile
time, we analyze the program to capture the access patterns
and instrument the code with calls to the runtime library.
Our static instrumentation feeds loop and access informa-
tion to our runtime system. The runtime system uses this
information to partition the available work based on locality
of data access as well as resource availability. The runtime
library is the glue between the application and the operat-
ing system, continuously monitoring ongoing activity and
making decisions as to when to willingly yield the processor
in order to give the scheduler more flexibility. The operat-
ing system responds to application-specific information on
scheduling needs while respecting fairness. The operating
system also provides feedback to the application about the

scheduling status of cooperating processes, allowing the run-
time to make resource management decisions based on this
information.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our approach to the problem, Section 3
presents our experimental setup and an evaluation of our
system, and finally Section 4 concludes and discusses future
work.

2. DESIGN AND IMPLEMENTATION

As mentioned in Section 1, our programming environ-
ment is software distributed shared memory (SDSM). The
use of SDSM reduces the complexity of the compiler (or
hand-coded) parallelization, since communication is man-
aged by the runtime system. Our system uses a combination
of static program analysis, runtime monitoring and load re-
distribution, and operating system scheduling support in or-
der to intelligently maximize available resource utilization.
We elaborate on each of the components in the following
subsections.

2.1 TheBase Software DSM Runtime System

Our run-time system, Cashmere-2L (CSM) [26], is a page-
based software DSM system that has been designed for SMP
clusters connected via a low-latency remote-write network.
The system implements a multiple-writer [4], “moderately”
lazy release consistency protocol [14], and requires applica-
tions to adhere to the data-race-free, or properly-labeled,
programming model [1]. Effectively, the application is re-
quired to use explicit synchronization to ensure that non-
local changes to shared data are visible. The moderately
lazy characteristic of the consistency model is due to its im-
plementation, which lies in between those of TreadMarks [3]
and Munin [4]. Invalidations in CSM are sent during a re-
lease and take effect at the time of the next acquire, regard-
less of whether they are causally related to the acquired
lock.

A unique point of the CSM design is that it targets low-
latency remote-write networks, such as DEC’s Memory Chan-
nel [9]. These networks allow processors in one node to di-
rectly modify the memory of another node safely from user
space, with very low (microsecond) latency. CSM utilizes
the remote-write capabilities to efficiently maintain inter-
nal protocol data structures. As an example, CSM uses the
Memory Channel’s remote-write, broadcast mechanism to
maintain a replicated directory of sharing information for
each page (i.e., each node maintains a complete copy of the
directory). The per-page directory entries indicate who the
current readers and writers of the page are.

Under CSM, every page of shared data has a single, dis-
tinguished home node that collects modifications at each
release, and maintains up-to-date information on the page.
Initially, shared pages are mapped only on their associated
home nodes. Other nodes obtain copies of the pages through
page faults, which trigger requests for an up-to-date copy of
the page from the home node. Page faults due to write ac-
cesses are also used to keep track of data modified by each
node, for later invalidation of other copies at the time of a
release. If the home node is not actively writing the page,
then the home node is migrated to the current writer by sim-
ply modifying the directory to point to the new home node.
If there are readers or writers of a particular page on a node
other than the home node, the home node downgrades its

writing permissions to allow future possible migrations. As
an optimization, however, we also move the page into ez-
clusive mode if there are no other sharers, and avoid any
consistency actions on the page. Writes on non-exclusive
and non-home-node pages result in a twin (or pristine copy
of the page) being created. The twin is later used to deter-
mine local modifications.

As mentioned, CSM was also designed specifically to take
advantage of the features of clusters of SMPs. The protocol
uses the hardware within each SMP to maintain coherence
of data among processes within each node. All processors
in a node share the same physical frame for a shared data
page. The software protocol is only invoked when sharing
spans nodes. The hardware coherence also allows software
protocol operations within a node to be coalesced, resulting
in reduced data communication, as well as reduced consis-
tency overhead.

2.2 Static Program Analysis

We use static program analysis to identify the access pat-
tern of our parallel program as well as to insert the library
hooks that monitor the process activity and cooperate with
the operating system (OS). Once a parallel region is identi-
fied, there are two dimensions along which load distribution
decisions can be made. The first is the amount of work per
subtask (where a subtask is identified as the smallest inde-
pendent unit of work that can be performed in parallel, e.g.,
a single iteration of a parallel loop). The second is the data
accessed by each subtask. For many regular access patterns,
the compiler can identify the data accessed by each parallel
loop. In addition, the compiler can also attempt to predict
whether each parallel loop performs the same or different
amounts of work. Our static analysis [13] provides informa-
tion on the above two dimensions wherever possible.

We illustrate the interface between the compiler and the
runtime, as well as the information extracted by the com-
piler, through an example parallel loop. Figure 1 shows
pseudo-code for the original sequential loop. There are sev-
eral pieces of information that the compiler supplies to the
runtime. For every shared data structure, the compiler ini-
tializes data structures indicating its size and the number
and size of each dimension. In addition, for each parallel re-
gion, the compiler supplies information regarding the shared
data accessed (in the form of a regular section [10]) per loop
(or subtask) in the parallel region. The loop is then trans-
formed as shown in the pseudo-code in Figure 2. In reality,
much of the information passed to the runtime task parti-
tioner is initialized in static data structures, with only those
variables that change on each invocation being updated.

int sh_dat1[N], sh_dat2[N];

for (i = lowerbound; i < upperbound; i += stride)
sh_datl[a*i + b] += sh_dat2[c*i + d];

Figure 1: Initial parallel loop. Shared data is indi-
cated by sh_.

Once the information on the loop bounds and array di-
mensions is available, the amount of computation and the
locality of access can be deduced (heuristically) for several
important classes of applications. For instance, detecting
that the amount of work per parallel loop is a function of

int sh_dat1[N], sh_dat2[N];

Initialize
parallel loop identifier, /% i */
list of shared arrays, /* sh_datl, sh_dat2 */
list of types of accesses, /* read/write */

list of lower bounds, /* lower_bound */
list of upper bounds, /* upper_bound */
list of strides, /* stride */

list of coefficients and
constants for array indices /* a, c, b, d */

taskSet = partition_tasks();

while there are Tasks in the taskSet
lowerbound = new lower bound for that Task;
upperbound = new upper bound for that Task;
stride = new_stride;

for (i = lowerbound; i < upperbound; i += stride)
sh_dati[a*i + b] += sh_dat2[c*i + d];

Figure 2: Parallel loop with added pseudo-code that
serves as an interface with the run-time library. The
run-time system can then change the amount of
work assigned to each parallel task.

the parallel loop index implies that in order to achieve a bal-
anced distribution of load while preserving locality of access,
a cyclic distribution of the parallel loops would be useful®.
Similarly, detecting a non-empty intersection between the
regular sections of adjacent parallel loops implies a stencil-
type computation with nearest-neighbor sharing, while de-
tecting an empty or loop-independent intersection among
loops implies loop-independent sharing.

Two variables in the data structure for each parallel re-
gion encode this information — load and access. load is
currently defined to be one of FIXED or VARIABLE, the
default being FIXED. A VARIABLE load type is currently
used as an indication to use a cyclic load distribution, while
a FIXED load type is used as an indication to use a block
load distribution. access is currently defined to be one of
STENCIL or INDEPENDENT. access is used to influence
the type of load distribution used, and to determine the
type of redistribution used. access can potentially be up-
dated by the runtime based on information about data cur-
rently cached by the process. An access type of STENCIL is
treated as a signal to use a blocked load distribution as well
as a blocked re-assignment of load (i.e., load is re-assigned
by shifting loop boundaries in proportion to the process-
ing power of the individual processors). Using this type of
load re-assignment minimizes steady-state communication
due to nearest-neighbor sharing. However, the redistribu-
tion results in data being communicated among all neigh-
boring processors during each redistribution. An access type
of INDEPENDENT signals the ability to minimize this com-
munication by assigning a loaded processors’ tasks directly

'In the presence of conditional statements, variable load
per parallel loop cannot always be detected at compile-time.
Application-specific knowledge could also be easily encoded
by the user.

to the lightly loaded processors. Since data sharing among
loops is iteration-independent, there is no resulting increase
in steady-state communication.

For source-to-source translation from a sequential pro-
gram to a parallel program that is compatible with our run-
time library, we use the Stanford University Intermediate
Format (SUIF) [2] compiler. The SUIF system is organized
as a set of compiler passes built on top of a kernel that
defines the intermediate format. Each of these passes is im-
plemented as a separate program that reads its input from
a file and writes its output to another file. SUIF files always
use the same format.

We added two passes to the SUIF system for our purposes.
The first pass works before the parallel code generation and
inserts code that provides the runtime library with informa-
tion about each parallel region’s access patterns. The second
pass works on parallelized programs and modifies the loop
structure so that a task queue is used.

The standard SUIF distribution can generate a single-
program, multiple-data (SPMD) program from sequential
code for many simple loops but lacks the more complex
transformations essential to extract parallelism from less
easily analyzable loops. While our SUIF passes provide
an easy translation mechanism for many programs, it is
straightforward to insert the required data structures by
hand into an already parallelized program.

2.3 Relative Processing Power

As described in [13], in order to partition the load accord-
ing to available resources, we need to be able to estimate the
available computational resources and communication over-
heads. Intuitively, elapsed time is a good measure of the
available resources, since it captures a processor’s perceived
load, whether due to processor speed, multiprogramming,
or contention for memory and/or the network. Each process
queries the operating system to obtain the elapsed time for
the execution of each parallel region. The RelativePower
of a processor is inversely proportional to this time, i.e.,
the faster the processor, the larger its power relative to the
other processors. We track time over several parallel regions
prior to updating the relative powers in order to smooth out
transient spikes in performance. The high-level algorithm
for computing relative processing power is shown in Fig-
ure 3. TaskTime is a shared array that is updated prior to
computing the relative powers. RelativePower is initial-
ized according to the task distribution strategy used and is
always normalized.

24 Task Distribution Strategy

On the first execution of any parallel region, the initial
load assignment made by the runtime is guided by the in-
formation provided by the static analysis, the currently per-
ceived relative power of each processor, and the size of data
elements as well as the size of the coherence unit. The infor-
mation provided by the static analysis includes loop bound-
aries, size of data elements, and predicted access patterns.
The runtime library keeps statistics about the perceived
compute power of each processor (which could change over
time based on the level of multiprogramming) and makes
initial assignments proportional to the perceived compute
power.

Task assignment and execution takes the topology of the
processors into account. For a network of SMPs, work is

float RelativePower [NumOfProcessors];

// Initialized at program start

// to 1/NumOfProcessors
float TaskTime [NumOfProcessors];

// Execution time of parallel region
float SumOfPowers=0;

// Calculate new RelativePower

for all Processors i
RelativePower[i] /= TaskTimel[il];
SumOfPowers += RelativePower[i];

endfor

// Normalize based on sum of the RelativePowers
// to ensure the sum of powers is 1.0
for all Processors i
RelativePower[i] /= SumOfPowers;
endfor

Figure 3: Algorithm to determine relative process-
ing power.

partitioned in a hierarchical manmner in order to account
for the fact that intra-node communication is cheaper than
inter-node communication. Task redistribution is performed
across SMPs. Task stealing is allowed within each SMP.
Locality has been shown to be more important than load
balancing [20]. Given the continuously increasing speed gap
between processors and memory and the use of deeper mem-
ory hierarchies, locality management is an even bigger issue
in today’s processors. In order to preserve locality within
an SMP, each processor maintains task affinity — it must
finish its own task assignment prior to stealing a task from
another processor (similar to [16], except using fixed-size
tasks). This is done by using a per-processor task queue,
and having a processor retrieve tasks from the head of its
queue but steal from the tail of another processor’s queue.
Once a task is stolen from another processor’s task queue,
it is moved and owned by the stealing processor. Using a
per-processor task queue (rather than a shared one for all
processes on a multiprocessor node) helps not only by main-
taining locality but also by reducing contention for the lock
to access the shared task queue.

The runtime library partitions the parallel region into
tasks based on the access pattern, the load per parallel loop,
and the size of the coherence unit. The size of the data el-
ements along with the size of the coherence unit are used
to determine the partitioning in an attempt to reduce false
sharing. Work is partitioned so that accesses by each in-
dividual process are in multiples of the coherence unit in
order to avoid false sharing across processors. Consecutive
loop iterations are blocked together until the data accessed
is the least common multiple of the coherence unit and the
data accessed per loop. This defines the minimum task size.
Once the minimum task size has been determined, a fixed
number of tasks per parallel region are created and assigned
to processors using either a block or cyclic distribution based
on whether the load is defined to be FIXED or VARIABLE,
respectively, or whether the access pattern is STENCIL. The
size of each task is an integral multiple of the minimum task
size and enough tasks are created to allow later redistribu-
tion when relative processing powers change.

The goal of the runtime library is to dynamically deter-
mine and partition work in a locality-preserving manner
based on the computation to communication ratio. Parti-
tioning work to be performed on a single coherence unit will
result in excessive communication due to false sharing, un-
less the amount of computation per data unit is high relative
to the communication cost. If all the data to be processed
by the loop resides on a single node and the parallel region’s
execution time is shorter than the time to communicate the
data, work is performed on the node that caches the data.
Within the node, the work is distributed among the pro-
cesses since intra-node communication is fairly inexpensive.

Similarly, the task distribution strategy attempts to pre-
serve locality across parallel regions. If the same array is
accessed across multiple parallel regions, a data structure is
maintained for the array to indicate the current partition-
ing that has been used. If a parallel region accesses the same
shared array and approximately the same data range within
that array (determined by the task size chosen for the region
since the runtime creates a fixed number of tasks per parallel
region), the same partitioning is used. If the access patterns
in the two regions vary considerably, communication is as-
sumed to be large due to the necessary redistribution, and a
partitioning is chosen appropriately. At the same time, the
current partitioning is updated. This strategy is localized,
requiring less computation than the more global strategy
proposed in [11].

Reassignment of tasks occurs when a significant change in
the RelativePower is detected®. Task redistribution is per-
formed on the basis of locality. For a STENCIL access pat-
tern, tasks are redistributed among neighboring processors
in order to minimize steady-state communication. For an
INDEPENDENT access pattern, tasks are redistributed by
reallocating tasks from the slowest processors to the faster
processors. For INDEPENDENT access patterns, this type
of reallocation will result in the minimum overall communi-
cation.

2.5 Cooperative Scheduling Support

Multiprogramming adds an additional dimension to the
problem of imbalanced load. Communication among coop-
erating processes can result in significant additional over-
head because of waiting time caused by one of the processes
being descheduled and unable to respond. Coscheduling [22,
25, 6, 28, 21] approaches have been used in the past, where
cooperating processes are scheduled to execute simultane-
ously on all processors. This approach is useful when the
load on all processors is equal. However, in the presence
of autonomous nodes with unequal levels of multiprogram-
ming at each processor, a more distributed and cooperative
approach is required in order to improve efficiency while re-
taining autonomy.

Our goal is to improve the response times seen by parallel
applications in the presence of multiprogramming through
the use of a cooperative scheduler. We modified a priority-
based scheduler to achieve this goal while retaining the fair-
ness and autonomy of the individual schedulers on each
node. The cooperative interface has several components.
Our implementation is on Compaq’s Tru64 (formerly known
as DEC Unix) version 4.0F.

The difference between the smallest and largest
RelativePower must differ by more than a hysteresis
factor from its previous value (10% in our case).

2.5.1 Scheduler Modifications

In order to improve response times, the scheduler must
be willing to schedule an application’s process on demand.
However, this cannot be accomplished in traditional sched-
ulers without compromising fairness. To provide the sched-
uler with the flexibility to handle these conflicting require-
ments, each process, upon declaration of its interest in co-
operating with remote processes, is charged a scheduling
quantum of time. This time is held in a “piggy-bank” for fu-
ture use by the process. The “piggy-bank” is replenished any
time the process voluntarily yields the processor prior to the
expiration of its scheduling quantum (by adding an amount
less than or equal to the remainder of the quantum), but is
guaranteed not to grow larger than one scheduling quantum
of time. This guarantee prevents a process from taking over
the processor for long periods of time by yielding often. The
process is pre-charged for the amount of time put into the
piggy-bank rather than being charged when the piggy-bank
is used. The scheduler can then use the time in the piggy-
bank to schedule the process on request. Such a request is
honored only if the process has some balance in its piggy-
bank. The time used by the process from the piggy-bank is
subtracted and the balance is saved for future use.

2.5.2 0OS-Runtime Interface

For a parallel application to request the cooperation of
the scheduler, information about the process’s scheduling
state is required. One way of providing this information is
through a variable shared between the operating system and
the application. In addition, once the scheduling status of a
process is determined, remote processes need a mechanism
to wake up the process if it is not currently running.

We provide a system call that allows each process to regis-
ter a memory location and a signal. The registered memory
location has two words. The first (“scheduling status”) is
written by the operating system and provides feedback to
cooperating processes regarding the scheduling status of the
registering process. It is set by the operating system when
the process is descheduled. The second (“signaled”) can be
written by cooperating processes and is used to avoid exces-
sive signaling overhead. It is set by a cooperating process
when a signal has been sent to this particular process for
the purposes of being woken up.

The registered signal is used by a cooperating process as
a wakeup signal. Upon receiving the signal, rather than de-
livering it, if the operating system can schedule the process
while continuing to guarantee fairness using the piggy-bank
(i-e., if resource utilization is within limits), it does so. When
the process is scheduled, both words of the registered mem-
ory are reset, indicating that the process is scheduled and
no signal is pending.

Ideally, the values written to the registered memory loca-
tions must be available to all cooperating processes. Hence,
these memory locations are placed in shared memory and
broadcast to all sharers. Since our network is a memory-
mapped, low latency remote write network, these memory
locations are mapped into the network address space and
the scheduler accesses them using ordinary reads and writes.
We believe the additional communication overhead resulting
from this sharing is minimal in comparison to the rest of the
protocol and data communication overhead for the applica-
tion. This is especially true for the medium-scale clusters
used for such parallel applications.

2.5.3 Application Cooperation

In order to give the scheduler the flexibility to respond to
on-demand scheduling requests, an application must volun-
tarily yield the processor in order to build up its piggy-bank.
A yield system call® is used to free up resources preemptively
in order to build up this future “equity”.

The yield system call takes one argument to indicate the
lowest priority that the caller is willing to yield to. The
argument specifies a priority relative to the priority of the
caller. If no other process within the given priority is avail-
able, the call returns immediately with no effect. Other-
wise, a runnable process with the highest priority is picked
and scheduled. A complication in implementing this system
call is accounting for resource usage. In many operating
systems, processes are charged at the granularity of a clock-
tick, which is about 1 msec on Tru64 Unix (our experimental
platform). If a process yields frequently enough, it is fairly
easy for that process either not to be charged at all for its
use or to be over-charged depending on the relative timing
of a clock tick and the scheduling event. In order to fix
this problem, hardware counters are used as the basis for
accounting.

The yield call is made by a process whenever the process
would otherwise spin waiting for an external event such as
communication or synchronization with a remote process. A
spin-block strategy [21] is used in order to avoid unnecessary
yields. The spin time is set to be at least twice the round-
trip communication time and is doubled each time the yield
is unsuccessful.

It is important to keep in mind that, unless the newly
added features are used by the applications, the overhead of
the new scheduling is negligible. Even when these features
are exploited extensively, the overhead is still minimal. The
only overhead incurred is to set/clear the registered mem-
ory locations at each context-switch and keep some extra
accounting information about resource usage.

3. EVALUATION
3.1 Experimental Platform

Our experimental environment is a cluster of Compaq
AlphaServer 4100 servers. Each AlphaServer is equipped
with four 21164A processors operating at 600 MHz, 2 GB of
shared memory, and a Memory Channel network interface.
The Memory Channel [9] is a PCI-based crossbar network,
with a peak point-to-point bandwidth of approximately 83
MBytes/sec. The network is capable of remotely writing to
memory mapped areas, but does not have remote read capa-
bility. One-way latency for a 64-bit remote-write operation
is 3.3 psecs.

The 21164A has two levels of cache on chip. The first level
consists of a split direct-mapped 8 KB instruction and data
cache, with a line size of 32 bytes. The first-level data cache
is write through. The second-level cache is a 96 KB 3-way
set associative unified cache, with a line size of 64 bytes. Our
platform has an 8 MB direct-mapped board level cache, with
a line size of 64 bytes. Each AlphaServer runs Digital Unix
4.0F, with TruCluster v. 1.6 extensions. All the programs,
the runtime library, and Cashmere were compiled with gcc
version 2.8.1 using the -O2 optimization flag.

#While some operating systems already provide this ability,
we had to add this system call to Tru64.

On our platform, a scheduling quantum is approximately
10ms and a process runs until the quantum expires unless
there is a higher priority process. A null system call takes
approximately 0.5 ps and a context switch takes approxi-
mately 6 us.

In Cashmere, a page fetch operation takes approximately
220 ps on an unloaded system, twin operations require 68
us, and a diff operation ranges from 100-245 us, depending
on the size.

3.2 Experimental Results

In order to evaluate our system, we used a set of six kernels
as our benchmarks. These benchmarks exhibit a range of
sharing patterns and types of parallel regions. We briefly
describe each application below.

e Matrix Multiply: A simple matrix multiplication
algorithm parallelized by forming tasks with groups
of rows and distributing these tasks among processes.
The dataset consists of three 512x512 matrices of long
integers (8 bytes each) — one each for the multiplier,
multiplicand, and result.

e Jacobi: An iterative method for solving partial dif-
ferential equations with nearest neighbor averaging as
the main computation. We used a matrix of 2048x2048
single precision floating point numbers (4 bytes each).

e SOR: Successive-over-relaxation is a nearest neighbor
algorithm from the TreadMarks [3] distribution, which
is also used to solve partial differential equations. A
matrix of 4096x1024 of double precision floating point
numbers (8 bytes each) is used in our experiments.

e Shallow: The shallow water benchmark from the Na-
tional Center for Atmospheric Research. This code is
used in weather prediction and solves difference equa-
tions on a two dimensional grid. 13 Matrices of size
2048x2048 are needed where each element is a double
precision floating point number, totaling 436MB.

e Water: A molecular dynamics simulation from the
SPLASH-1 [24] benchmark suite. The bulk of the
interprocessor communication occurs during a phase
that updates intermolecular forces using locks, result-
ing in a migratory sharing pattern. Between each up-
date phase, a barrier operation is performed. We use
an input set of 9261 molecules, with the size of each
molecule’s data structure being 672 bytes.

e Gauss: A parallel gaussian elimination algorithm. The
solution is computed by using partial pivoting and
back substitution, and the row elimination is paral-
lelized. The dataset size in our experiments is a matrix
of 2048x2048 double precision floating point numbers
(8 bytes each).

All our runs were conducted on 4 nodes with 4 processors
on each node, for a total of 16 processors. For the purposes
of loading a processor, we use a program that executes in
a tight loop incrementing a variable (a pure computational
load). At periodic increments, the elapsed time is recorded
in order to provide a measure of the progress of the back-
ground load and to ensure scheduling fairness. With two
processes running simultaneously, the elapsed time between

Matrix Multiply Jacobi

160 - 14
140
120
100 1 [@Plain [@Plain
0 4 ESCH ESCH
=B =B
60 1 ELB+SCH ELB+SCH
40 -
20 -
0 4
No Load 1P 2P 4P 8P No Load 1P 2P 4P 8P
SOR Shallow
180 - 300 -
160
140 A
120
f@Plain f@Plain
100 BSCH BSCH
80 | =B =B
B LB+SCH HLB+SCH
60 -
40 A
20 A
0 4
No Load 1P 2P 4P 8P No Load 1P 2P 4P 8P
Water Gaussian Elimination

70

EPlain
BSCH
ELB
ELB+SCH

EPlain
BSCH
ELB
ELB+SCH

No Load 1P 2P 4P 8P No Load 1P 2P 4P 8P

Figure 4: Execution times with and without load balancing and cooperative scheduling support as the number
of loaded processors (each with 50% load, 1P = 1 loaded processor on 1 node, 2P = 2 loaded processors on
1 node, 4P = 2 loaded processors on 1 node and 1 loaded processor on each of 2 nodes, and 8P = 2 loaded
processors on each node) is increased. The X-axis shows the number of multiprogrammed processors. “Plain”
indicates no scheduling or load balancing support. “LB” indicates load balancing support, “SCH” indicates
cooperative scheduling support, and “LB+SCH” indicates the use of both load balancing and cooperative
scheduling supports.

Program | Seq. Time | Load Type Access Type Global Sync. Rate

(secs) (barriers/sec at 16p.)
Matrix 578.76 FIXED | INDEPENDENT 3.17
Jacobi 151.5 FIXED STENCIL 68.02
SOR 2389.2 FIXED STENCIL 70.01
Shallow 1510.8 FIXED STENCIL 10.03
Water 795 FIXED | INDEPENDENT 2.46
Gauss 366.3 | VARIABLE | INDEPENDENT 258.19

Table 1: Relevant Program Characteristics

two consecutive intervals should be approximately twice that
when running on a dedicated processor.

We conducted 5 sets of experiments for each of the appli-
cations with varying numbers of multiprogrammed proces-
sors, where each multiprogrammed processor had a single
additional computational load as described above. Figure 4
presents the results. Each set of experiments includes four
bars representing the execution time of the program with
various features turned on or off. “Plain” implies an exe-
cution with no scheduling or load balancing support. “LB”
represents an execution with runtime load balancing sup-
port turned on. “SCH” represents an execution without
load balancing but with the use of a cooperative scheduler
in the kernel. Finally, “LB4+SCH” represents an execution
where both the load balancing support and the cooperative
scheduler are turned on. The “No Load” case demonstrates
the generally minimal overhead from adding support for dy-
namic load balancing and cooperative scheduling. In fact,
as is demonstrated by the graph for Shallow (and explained
below), execution time can actually be improved.

Table 1 presents the sequential execution times, global
synchronization rates at 16 processors in the absence of load,
and dominant load and access type for each of the parallel
applications. We discuss each application below.

Matrix Multiply: As seen is Table 1, this application
has one of the lowest rates of global synchronization rela-
tive to the applications in our benchmark suite. The to-
tal number of global synchronizations is 204. Hence, the
time between two synchronization points (315 ms) is much
longer than a single scheduling quantum (10 ms). Further,
the amount of communication is very low. This makes the
application indifferent to cooperative scheduling, and allows
the load balancing to be effective even in the absence of co-
operative scheduling. Overall reduction in execution time
varies between 26 and 33%, in comparison to no support at
all. Since the type of sharing in this application is labeled as
INDEPENDENT, i.e., it is independent of the region being
parallelized, the load balancer uses a blocked task distribu-
tion and is able to minimize the communication while re-
distributing tasks by moving tasks directly from the heavily
loaded to the lightly loaded processors.

Jacobi and SOR: Both of these applications exhibit
nearest neighbor sharing as indicated by the access type
of “STENCIL”. Hence, the load balancer uses a blocked
task distribution, and redistribution is performed by mov-
ing tasks between neighboring processors in order to mini-
mize sharing-based communication (If redistribution is per-
formed assuming that the loops are independent, the result-
ing steady-state communication (page transfers) is doubled,
and the execution time increased by a factor of 1.5). As
demonstrated by the “no-load” case in Figure 4, the over-

head of using our features even in the absence of load is
negligible for both applications. Ideally, in the absence of
load balancing, a 50% load on any process should result in
a doubling of the execution time. As we increase the num-
ber of loaded processors, however, the execution time for
the base case (“plain”) continues to increase and is more
than double the no-load case when 8 of the processors are
loaded. This is due to the independent scheduling decisions
made by the underlying operating system. Examining the
“SCH” bars in the figures shows that cooperative schedul-
ing is highly effective in eliminating waiting time due to
descheduled processes — the execution time as the load is
increased stays constant, as one would expect in the ab-
sence of load balancing. As the number of loaded processors
increases, the effectiveness of load balancing alone (“LB”)
decreases substantially, because the computation between
two rendezvous points in both applications is relatively low.
Combining load balancing and scheduling support results in
an improvement in the execution time of at least 24% for all
cases.

Shallow: Shallow is an application that demonstrates
the effectiveness of the locality optimizations that take co-
herence unit size into account. Shallow performs several
boundary condition initializations on its matrices. Since
this computation is performed on a single row of the matrix,
and a single row fits in one coherence unit, parallelization
across nodes would result in excessive communication due
to false sharing. The runtime library is able to eliminate
this communication by performing the computation on the
node that caches the data. The benefits of this optimiza-
tion are demonstrated by the reduction in execution time
(3%) with the load balancer turned on even in the absence
of load. Load balancing results in up to a 28% reduction in
the execution time in the presence of load.

Water: A unique characteristic of this application is the
fact that it acquires a per-molecule lock to update each of the
molecules, since a molecule could be updated by each of the
processes to show the interaction between all the molecules.
While the number of global synchronizations is low (76 over
the course of execution), a lock acquisition attempt could
also incur delays when a process holding the lock is pre-
empted. The likelihood of having a process descheduled
while holding a lock increases with the number of multi-
programmed processors. As can be seen in Figure 4, pure
load balancing reduces the execution time by only 4% when
the number of loaded processors is 8. However, for all loaded
cases the reduction in execution time is between 22% and
29% when both load balancing and cooperative scheduling
are used.

Gauss: For Gauss, the amount of work in a parallel re-
gion decreases as the computation progresses. Hence, this is

an example where distributing iterations cyclically is neces-
sary in order to preserve locality while balancing load (the
compiler algorithm is able to detect this behavior using the
loop indices). For this application, because of the potential
variance in load among processors, accurate estimates of the
relative power as well as appropriate yield times are difficult
to predict. Hence, there is a slight performance degradation
in the absence of load when using load balancing and/or the
cooperative scheduler. As can be seen, load balancing sup-
port without a cooperative scheduler fails to improve per-
formance significantly (improves performance by only 5%)
when there are many loaded processors. The combination
of the load balancer and the cooperative scheduler is able
to reduce execution time by up to 23% in the presence of 8
loaded processors. For this program, there are 4101 global
synchronization operations and 392K messages exchanged
in roughly 16 seconds of execution time. In other words, a
global synchronization is executed every 4 msecs, i.e., at a
granularity much smaller than the scheduling quantum of
10 msecs. Even if a request for scheduling is sent to the
remote node, it takes up to 833us (one hardclock tick) for
that request to be honored (the signal is delivered by Tru64
only at the end of the clock tick). Hence, it is likely that
as the load is increased, the parallel application is forced to
wait at the global synchronization for descheduled processes
despite the cooperative scheduler.

Finally, Figure 5 compares the execution times of a 16
processor execution with 8 loaded processors (a load of 50%)
with that of running the application on 8 and 12 processors
without load. The 12 processor execution time in the ab-
sence of load represents the (in practice unattainable due to
communication overheads) ideal execution time we would
like to achieve with 16 processors, given the load we have
imposed. The 8 processor execution time represents a space
sharing approach, where the application only uses the un-
loaded processors. Our expectation is that the execution
time on 16 processors with 8 loaded processors is close to
the 12 processor execution time. As the figure shows, this
expectation is realized for Matrix Multiply and Water. Both
these applications have access patterns where the sharing is
independent of the parallelization strategy used for the par-
allel region. Hence, the use of 16 processors (as opposed to
12 or 8) does not result in additional steady-state commu-
nication. However, for Shallow, SOR, and Jacobi, the three
applications with a STENCIL access pattern, steady-state
communication at 16 processors is higher than at 12 pro-
cessors. Hence, while performance is improved with load
balancing, it is not close to the 12 processor case. As the
results in Figure 5 show, Gauss is one application for which
although performance is improved relative to “plain” (Fig-
ure 4), once more than four processors are loaded, the ap-
plication would actually be better served by abandoning the
loaded processors and executing all of the computation on
the unloaded processors (a space sharing approach). We are
currently also exploring this avenue of adaptation.

4. CONCLUSIONS

We have presented a system that combines compile-time
analysis, runtime load balancing and locality considerations,
and cooperative scheduling support for improved perfor-
mance of parallel programs on autonomous distributed hard-
ware. Our results show that while load balancing alone is
effective in improving resource utilization when the number

78 Dedicated Procs B 16 Procs, 8 Loaded, with LB+SCH 12 Dedicated Procs

120

Matrix Jacobi SOR Shallow Water Gauss

Figure 5: Comparison of execution times (normal-
ized to the execution time on 8 dedicated processors
) on 8 dedicated processors, 16 processors with 8
loaded processors, and 12 dedicated processors.

of loaded processors is low, combining load balancing with
cooperative scheduling is essential to improving performance
when the number of loaded processors is high. The coopera-
tive interface to the kernel is minimally intrusive, and takes
advantage of shared data between the kernel and cooper-
ating processes. Our cooperative scheduling mechanism en-
sures fairness of resource allocation for all running processes.
Our runtime load balancing techniques are able to take ad-
vantage of locality and communication cost information to
minimize overall execution time by balancing locality and
load counsiderations. Further, our task scheduling approach
takes the variance in communication latency among proces-
sors into account. The result is a system that is able to
adapt to dynamically changing resource availability without
changes to the application.

Future work includes an evaluation of the scalability of
the system, both in terms of being able to handle multiple
simultaneously executing parallel applications and in terms
of being able to scale to a larger number of processors. In ad-
dition, further experimentation on the frequency of allowed
redistribution as well as the sensitivity to variance in load
is needed.

5. REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. I[EEE Computer,
pages 66—76, December 1996.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. W. Tseng. The SUIF compiler for scalable parallel
machines. In Proceedings of the 7th STAM Conference
on Parallel Processing for Scientific Computing,
February 1995.

[3] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, and W. Zwaenepoel. TreadMarks:
Shared memory computing on networks of
workstations. IEEE Computer, 29(2):18-28, February
1996.

[4] J.B. Carter, J.K. Bennett, and W. Zwaenepoel.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Implementation and performance of Munin. In
Proceedings of the 13th ACM Symposium on Operating
Systems Principles, pages 152-164, October 1991.

A L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel.
Evaluating the performance of software distributed
shared memory as a target for parallelizing compilers.
In Proceedings of the 11th International Parallel
Processing Symposium, pages 474-482, April 1997.

A. D. Dusseau, R. H. Arpaci, and D. H. Culler.
Effective distributed scheduling of parallel workloads.
In Proceedings of SIGMETRICS 1996, pages 25-36,
PA, USA, May 1996. ACM.

S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. An
integrated compile-time/run-time software distributed
shared memory system. In Proceedings of the 7th
Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 186-197,
October 1996.

D. L. Eager and J. Zahorjan. Adaptive guided
self-scheduling. Technical Report 92-01-01,
Department of Computer Science, University of
Washington, January 1992.

R. Gillett. Memory channel: An optimized cluster
interconnect. IEEE Micro, 16(2):12-18, February
1996.

P. Havlak and K. Kennedy. An implementation of
interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed
Systems, 2(3):350-360, July 1991.

D. G. Morris IIT and D. K. Lowenthal. Accurate data
redistribution cost estimation in software distributed
shared memory systems. In Proceedings of the 8th
Symposium on the Principles and Practice of Parallel
Programming, June 2001.

S. Ioannidis and S. Dwarkadas. Compiler and run-time
support for adaptive load balancing in software
distributed shared memory systems. In Fourth
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, pages 107-122, May
1998.

S. Ioannidis, U. Rencuzogullari, R. Stets, and

S. Dwarkadas. CRAUL: Compiler and run-time
integration for adaptation under load. Journal of
Scientific Programming, pages 261-273, August 1999.
P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture,
pages 13-21, May 1992.

C. Kruskal and A. Weiss. Allocating independent
subtasks on parallel processors. IEEE Transactions on
Software Engineering, October 1985.

H. Li, S. Tandri, M. Stumm, and K. C. Sevcik.
Locality and loop scheduling on NUMA
multiprocessors. In 1993 International Conference on
Parallel Processing, pages 140-147, August 1993.

K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321-359, November 1989.

D. K. Lowenthal and G. R. Andrews. An adaptive
approach to data placement. In 10th International
Parallel Processing Symposium, April 1996.

[19]

[20]

[21]

[22]

23]

[24]

[25]

[27]

[28]

H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and software distributed
shared memory support for irregular applications. In
Proceedings of the 6th Symposium on the Principles
and Practice of Parallel Programming, pages 48-56,
June 1997.

E. P. Markatos and T. J. LeBlanc. Load balancing
versus locality management in shared-memory
multiprocessors. 1992 International Conference on
Parallel Processing, pages 258-267, August 1992.

S. Nagar, A. Banerjee, A. Sivasubramaniam, and

C. R. Das. A closer look at coscheduling approaches
for a network of workstations. In Proceedings of 11th
ACM Symposium on Parallel Algorithms and
Architectures, pages 96-105, June 1999.

J. K. Ousterhout. Scheduling techniques for
concurrent systems. In Proceedings of the 3rd
International Conference on Distributed Computing
Systems, pages 22-30. IEEE, October 1982.

C. D. Polychronopoulos and D. J. Kuck. Guided
self-scheduling: a practical scheduling scheme for
parallel supercomputers. In IEEE Transactions on
Computers, December 1987.

J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared-memory.
Computer Architecture News, 20(1):2-12, March 1992.
P. G. Sobalvarro. Demand-based Coscheduling of
Parallel Jobs on Multiprogrammed Machines. PhD
thesis, M.I.T., January 1997.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt,

L. Kontothanassis, S. Parthasarathy, and M.L. Scott.
Cashmere-2L: Software coherent shared memory on a
clustered remote-write network. In Proceedings of the
16th ACM Symposium on Operating Systemns
Principles, pages 170-183, October 1997.

P. Tang and P. C. Yew. Processor self-scheduling for
multiple nested parallel loops. In 1986 International
Conference on Parallel Processing, August 1986.

A. Tucker and A. Gupta. Process control and
scheduling issues for multiprogrammed
shared-memory multiprocessors. In Proceedings of the
12th ACM SIGOPS Symposium on Operating Systems
Principles, pages 159-166. ACM, December 1989.

