
Dynamic Adaptation to Available Resources for Parallel
Computing in an Autonomous Network of Workstations �

Umit Rencuzogullari, Sandhya Dwarkadas

Department of Computer Science
University of Rochester

Rochester, NY 14627–0226
umit,sandhya@cs.rochester.edu

ABSTRACT
Networks of workstations (NOWs), whi
h are generally
om-

posed of autonomous
ompute elements networked together,

are an attra
tive parallel
omputing platform sin
e they of-

fer high performan
e at low
ost. The autonomous nature of

the environment, however, often results in ineÆ
ient utiliza-

tion due to load imbalan
es
aused by three primary fa
tors:

1) unequal load (
ompute or
ommuni
ation) assignment

to equally-powerful
ompute nodes, 2) unequal resour
es at

ompute nodes, and 3) multiprogramming. These load im-

balan
es result in idle waiting time on
ooperating pro
esses

that need to syn
hronize or
ommuni
ate data. Additional

waiting time may result due to lo
al s
heduling de
isions in a

multiprogrammed environment. In this paper, we present a

ombined approa
h of
ompile-time analysis, run-time load

distribution, and operating system s
heduler
ooperation for

improved utilization of available resour
es in an autonomous

NOW. The te
hniques we propose allow eÆ
ient resour
e

utilization by taking into
onsideration all three
auses of

load imbalan
e in addition to lo
ality of a

ess in the pro-

ess of load distribution. The resulting adaptive load dis-

tribution and
ooperative s
heduling system allows appli
a-

tions to take advantage of parallel resour
es when available

by providing better performan
e than when the loaded re-

sour
es are not used at all.

1. INTRODUCTION
Networks of workstations (NOWs), whi
h are generally

omposed of autonomous
ompute elements (whether unipro-

essors or symmetri
 multipro
essors (SMPs)) networked to-

gether, are an attra
tive parallel
omputing platform sin
e

�

This work was supported in part by NSF grants

EIA-9972881, EIA-0080124, CCR{9702466, CCR-9988361,

and CCR{9705594; by an external resear
h grant from

DEC/Compaq; and by DARPA/AFRL
ontra
t number

F29601-00-K-0182.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPOPP’01,June 18-20, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-346-4/01/0006 ...$5.00.

they o�er high performan
e at low
ost. There are sev-

eral fa
tors that interfere with the eÆ
ient utilization of au-

tonomous NOWs for parallel
omputing. The parallelization

strategy used by an appli
ation
ould result in load imbal-

an
es due to unequal load assignment or ex
ess
ommuni-

ation among some nodes. In addition, load imbalan
es
an

arise due to hardware inequalities. It is very likely that a

NOW is made up of old and new hardware as ma
hines are

upgraded. Finally, multiprogramming in
ombination with

independent s
heduling de
isions on ea
h of the nodes
an

result in additional slowdown of a parallel appli
ation trying

to take advantage of the distributed autonomous resour
es.

The default programming paradigm that is supported in

hardware is message passing a
ross the nodes, and shared

memory among pro
esses within a node. Unfortunately, the

message passing paradigm requires expli
it
ommuni
ation

management by the programmer or parallelizing
ompiler.

This
ommuni
ation management
an be very
omplex, es-

pe
ially for appli
ations with dynami
 a

ess patterns, or

for multiprogrammed platforms or platforms with unequal

resour
es. The most eÆ
ient workload and
ommuni
ation

s
hedule
an be impossible to predi
t stati
ally.

An alternative programming paradigm is software-based

distributed shared memory (SDSM). An SDSM proto
ol

(e.g., [3, 17, 26℄) provides the illusion of shared memory

a
ross a distributed
olle
tion of ma
hines, providing a uni-

form and perhaps a more intuitive programming paradigm.

A shared memory paradigm provides ease-of-use and addi-

tionally leverages an SMP workstation's available hardware

oheren
e to handle sharing within the SMP. SDSM has

been shown to be an e�e
tive target for a parallelizing
om-

piler [5℄. Sin
e data
a
hing and
ommuni
ation is imple-

mented by the run-time system,
ompile-time
omplexity is

redu
ed. Previous work [7, 19℄ has integrated
ompile-time

information within the run-time system in order to improve

performan
e. A

ess patterns from the
ompiler are used

by the run-time system to optimize
ommuni
ation, provid-

ing a signi�
ant improvement in performan
e. Our goal is

to leverage the
exibility a�orded by the SDSM system to

e�e
t load balan
ing in autonomous environments.

Load balan
ing and/or lo
ality management has been ex-

tensively studied by many resear
hers espe
ially in the
on-

text of loop s
heduling [12, 18, 27, 23, 15, 8℄. All these

studies deal with the issue of either load balan
e or lo
ality

or both but not with s
heduling issues. Ioannidis et al. [12℄

propose a method of assigning loops to ea
h of the pro-

esses based on the observed relative power and the lo
ality

of data (in order to minimize steady-state
ommuni
ation).

Lowenthal et. al. [18, 11℄ use a global strategy for optimizing

the exe
ution path through the data distribution graph of a

program, whi
h is exe
uted at runtime and dire
ted by the

number of in
urred page faults and
omputation time of ea
h

parallel region. The other studies mentioned suggest various

heuristi
s for sele
ting tasks from a task queue. Task queue

te
hniques inherently assume a tightly
oupled environment

where syn
hronization is fairly inexpensive
ompared to the

amount of
omputation. In addition, none of these studies

address the problem of
ommuni
ation delay introdu
ed by

s
heduling in a multiprogrammed environment.

On the other hand, many resear
hers have
onsidered the

problem of s
heduling a parallel appli
ation in a parallel

or distributed system. The goal here is essentially to redu
e

ommuni
ation delay by ensuring that
ooperating pro
esses

are s
heduled at the same time [22, 25, 6, 28℄. Ouster-

hout [22℄ shows that
os
heduling is desirable and des
ribes

di�erent algorithms for a

omplishing it. Ousterhout's work

assumes that s
heduling de
isions are made
entrally, by a

single operating system running a
ross all pro
essors. Sobal-

varro et. al. [25℄ and Dusseau et. al. [6℄ assume a loosely
ou-

pled system and make s
heduling de
isions based on
om-

muni
ation patterns. Tu
ker et. al. [28℄ propose keeping the

number of runnable pro
esses of a single appli
ation equal

to the number of available pro
essors.

We argue that neither pure load balan
ing te
hniques nor

the s
heduling me
hanisms proposed thus far allow for eÆ-

ient use of autonomous NOWs. Load balan
ing and lo
ality

management te
hniques are e�e
tive when the imbalan
e is

aused by di�erent hardware or disproportionate data distri-

bution, but they tend to be ine�e
tive in multiprogrammed

environments. Wait time of a sender or re
eiver
ould be

as high as one s
heduling quantum (the time between
on-

se
utive
ontext swit
hes) for a message and signi�
antly

more for syn
hronization. Furthermore, as the number of

ooperating pro
esses in
reases, the wait time may in
rease

linearly in multiprogrammed situations. Cos
heduling te
h-

niques, on the other hand, assume equal levels of multipro-

gramming and work on all nodes. In the presen
e of unequal

levels of multiprogramming, trying to get the same propor-

tion of the pro
essor from an overloaded node would result

in either starvation for other pro
esses on the overloaded

node or wasted pro
essor
y
les on an underloaded node.

The solution we propose for e�e
tive utilization in the

presen
e of load imbalan
e is a
ombination of
ompile-time

program analysis, runtime load balan
ing in
ombination

with SDSM, and operating system s
heduling support to re-

du
e
ommuni
ation and syn
hronization delay. At
ompile

time, we analyze the program to
apture the a

ess patterns

and instrument the
ode with
alls to the runtime library.

Our stati
 instrumentation feeds loop and a

ess informa-

tion to our runtime system. The runtime system uses this

information to partition the available work based on lo
ality

of data a

ess as well as resour
e availability. The runtime

library is the glue between the appli
ation and the operat-

ing system,
ontinuously monitoring ongoing a
tivity and

making de
isions as to when to willingly yield the pro
essor

in order to give the s
heduler more
exibility. The operat-

ing system responds to appli
ation-spe
i�
 information on

s
heduling needs while respe
ting fairness. The operating

system also provides feedba
k to the appli
ation about the

s
heduling status of
ooperating pro
esses, allowing the run-

time to make resour
e management de
isions based on this

information.

The remainder of the paper is organized as follows. Se
-

tion 2 des
ribes our approa
h to the problem, Se
tion 3

presents our experimental setup and an evaluation of our

system, and �nally Se
tion 4
on
ludes and dis
usses future

work.

2. DESIGN AND IMPLEMENTATION
As mentioned in Se
tion 1, our programming environ-

ment is software distributed shared memory (SDSM). The

use of SDSM redu
es the
omplexity of the
ompiler (or

hand-
oded) parallelization, sin
e
ommuni
ation is man-

aged by the runtime system. Our system uses a
ombination

of stati
 program analysis, runtime monitoring and load re-

distribution, and operating system s
heduling support in or-

der to intelligently maximize available resour
e utilization.

We elaborate on ea
h of the
omponents in the following

subse
tions.

2.1 The Base Software DSM Runtime System
Our run-time system, Cashmere-2L (CSM) [26℄, is a page-

based software DSM system that has been designed for SMP

lusters
onne
ted via a low-laten
y remote-write network.

The system implements a multiple-writer [4℄, \moderately"

lazy release
onsisten
y proto
ol [14℄, and requires appli
a-

tions to adhere to the data-ra
e-free, or properly-labeled,

programming model [1℄. E�e
tively, the appli
ation is re-

quired to use expli
it syn
hronization to ensure that non-

lo
al
hanges to shared data are visible. The moderately

lazy
hara
teristi
 of the
onsisten
y model is due to its im-

plementation, whi
h lies in between those of TreadMarks [3℄

and Munin [4℄. Invalidations in CSM are sent during a re-

lease and take e�e
t at the time of the next a
quire, regard-

less of whether they are
ausally related to the a
quired

lo
k.

A unique point of the CSM design is that it targets low-

laten
y remote-write networks, su
h as DEC's Memory Chan-

nel [9℄. These networks allow pro
essors in one node to di-

re
tly modify the memory of another node safely from user

spa
e, with very low (mi
rose
ond) laten
y. CSM utilizes

the remote-write
apabilities to eÆ
iently maintain inter-

nal proto
ol data stru
tures. As an example, CSM uses the

Memory Channel's remote-write, broad
ast me
hanism to

maintain a repli
ated dire
tory of sharing information for

ea
h page (i.e., ea
h node maintains a
omplete
opy of the

dire
tory). The per-page dire
tory entries indi
ate who the

urrent readers and writers of the page are.

Under CSM, every page of shared data has a single, dis-

tinguished home node that
olle
ts modi�
ations at ea
h

release, and maintains up-to-date information on the page.

Initially, shared pages are mapped only on their asso
iated

home nodes. Other nodes obtain
opies of the pages through

page faults, whi
h trigger requests for an up-to-date
opy of

the page from the home node. Page faults due to write a
-

esses are also used to keep tra
k of data modi�ed by ea
h

node, for later invalidation of other
opies at the time of a

release. If the home node is not a
tively writing the page,

then the home node is migrated to the
urrent writer by sim-

ply modifying the dire
tory to point to the new home node.

If there are readers or writers of a parti
ular page on a node

other than the home node, the home node downgrades its

writing permissions to allow future possible migrations. As

an optimization, however, we also move the page into ex-

lusive mode if there are no other sharers, and avoid any

onsisten
y a
tions on the page. Writes on non-ex
lusive

and non-home-node pages result in a twin (or pristine
opy

of the page) being
reated. The twin is later used to deter-

mine lo
al modi�
ations.

As mentioned, CSM was also designed spe
i�
ally to take

advantage of the features of
lusters of SMPs. The proto
ol

uses the hardware within ea
h SMP to maintain
oheren
e

of data among pro
esses within ea
h node. All pro
essors

in a node share the same physi
al frame for a shared data

page. The software proto
ol is only invoked when sharing

spans nodes. The hardware
oheren
e also allows software

proto
ol operations within a node to be
oales
ed, resulting

in redu
ed data
ommuni
ation, as well as redu
ed
onsis-

ten
y overhead.

2.2 Static Program Analysis
We use stati
 program analysis to identify the a

ess pat-

tern of our parallel program as well as to insert the library

hooks that monitor the pro
ess a
tivity and
ooperate with

the operating system (OS). On
e a parallel region is identi-

�ed, there are two dimensions along whi
h load distribution

de
isions
an be made. The �rst is the amount of work per

subtask (where a subtask is identi�ed as the smallest inde-

pendent unit of work that
an be performed in parallel, e.g.,

a single iteration of a parallel loop). The se
ond is the data

a

essed by ea
h subtask. For many regular a

ess patterns,

the
ompiler
an identify the data a

essed by ea
h parallel

loop. In addition, the
ompiler
an also attempt to predi
t

whether ea
h parallel loop performs the same or di�erent

amounts of work. Our stati
 analysis [13℄ provides informa-

tion on the above two dimensions wherever possible.

We illustrate the interfa
e between the
ompiler and the

runtime, as well as the information extra
ted by the
om-

piler, through an example parallel loop. Figure 1 shows

pseudo-
ode for the original sequential loop. There are sev-

eral pie
es of information that the
ompiler supplies to the

runtime. For every shared data stru
ture, the
ompiler ini-

tializes data stru
tures indi
ating its size and the number

and size of ea
h dimension. In addition, for ea
h parallel re-

gion, the
ompiler supplies information regarding the shared

data a

essed (in the form of a regular se
tion [10℄) per loop

(or subtask) in the parallel region. The loop is then trans-

formed as shown in the pseudo-
ode in Figure 2. In reality,

mu
h of the information passed to the runtime task parti-

tioner is initialized in stati
 data stru
tures, with only those

variables that
hange on ea
h invo
ation being updated.

int sh_dat1[N℄, sh_dat2[N℄;

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b℄ += sh_dat2[
*i + d℄;

Figure 1: Initial parallel loop. Shared data is indi-

ated by sh .

On
e the information on the loop bounds and array di-

mensions is available, the amount of
omputation and the

lo
ality of a

ess
an be dedu
ed (heuristi
ally) for several

important
lasses of appli
ations. For instan
e, dete
ting

that the amount of work per parallel loop is a fun
tion of

int sh_dat1[N℄, sh_dat2[N℄;

Initialize

parallel loop identifier, /* i */

list of shared arrays, /* sh_dat1, sh_dat2 */

list of types of a

esses, /* read/write */

list of lower bounds, /* lower_bound */

list of upper bounds, /* upper_bound */

list of strides, /* stride */

list of
oeffi
ients and

onstants for array indi
es /* a,
, b, d */

taskSet = partition_tasks();

while there are Tasks in the taskSet

lowerbound = new lower bound for that Task;

upperbound = new upper bound for that Task;

stride = new_stride;

for (i = lowerbound; i < upperbound; i += stride)

sh_dat1[a*i + b℄ += sh_dat2[
*i + d℄;

Figure 2: Parallel loop with added pseudo-
ode that

serves as an interfa
e with the run-time library. The

run-time system
an then
hange the amount of

work assigned to ea
h parallel task.

the parallel loop index implies that in order to a
hieve a bal-

an
ed distribution of load while preserving lo
ality of a

ess,

a
y
li
 distribution of the parallel loops would be useful

1

.

Similarly, dete
ting a non-empty interse
tion between the

regular se
tions of adja
ent parallel loops implies a sten
il-

type
omputation with nearest-neighbor sharing, while de-

te
ting an empty or loop-independent interse
tion among

loops implies loop-independent sharing.

Two variables in the data stru
ture for ea
h parallel re-

gion en
ode this information | load and a

ess. load is

urrently de�ned to be one of FIXED or VARIABLE, the

default being FIXED. A VARIABLE load type is
urrently

used as an indi
ation to use a
y
li
 load distribution, while

a FIXED load type is used as an indi
ation to use a blo
k

load distribution. a

ess is
urrently de�ned to be one of

STENCIL or INDEPENDENT. a

ess is used to in
uen
e

the type of load distribution used, and to determine the

type of redistribution used. a

ess
an potentially be up-

dated by the runtime based on information about data
ur-

rently
a
hed by the pro
ess. An a

ess type of STENCIL is

treated as a signal to use a blo
ked load distribution as well

as a blo
ked re-assignment of load (i.e., load is re-assigned

by shifting loop boundaries in proportion to the pro
ess-

ing power of the individual pro
essors). Using this type of

load re-assignment minimizes steady-state
ommuni
ation

due to nearest-neighbor sharing. However, the redistribu-

tion results in data being
ommuni
ated among all neigh-

boring pro
essors during ea
h redistribution. An a

ess type

of INDEPENDENT signals the ability to minimize this
om-

muni
ation by assigning a loaded pro
essors' tasks dire
tly

1

In the presen
e of
onditional statements, variable load

per parallel loop
annot always be dete
ted at
ompile-time.

Appli
ation-spe
i�
 knowledge
ould also be easily en
oded

by the user.

to the lightly loaded pro
essors. Sin
e data sharing among

loops is iteration-independent, there is no resulting in
rease

in steady-state
ommuni
ation.

For sour
e-to-sour
e translation from a sequential pro-

gram to a parallel program that is
ompatible with our run-

time library, we use the Stanford University Intermediate

Format (SUIF) [2℄
ompiler. The SUIF system is organized

as a set of
ompiler passes built on top of a kernel that

de�nes the intermediate format. Ea
h of these passes is im-

plemented as a separate program that reads its input from

a �le and writes its output to another �le. SUIF �les always

use the same format.

We added two passes to the SUIF system for our purposes.

The �rst pass works before the parallel
ode generation and

inserts
ode that provides the runtime library with informa-

tion about ea
h parallel region's a

ess patterns. The se
ond

pass works on parallelized programs and modi�es the loop

stru
ture so that a task queue is used.

The standard SUIF distribution
an generate a single-

program, multiple-data (SPMD) program from sequential

ode for many simple loops but la
ks the more
omplex

transformations essential to extra
t parallelism from less

easily analyzable loops. While our SUIF passes provide

an easy translation me
hanism for many programs, it is

straightforward to insert the required data stru
tures by

hand into an already parallelized program.

2.3 Relative Processing Power
As des
ribed in [13℄, in order to partition the load a

ord-

ing to available resour
es, we need to be able to estimate the

available
omputational resour
es and
ommuni
ation over-

heads. Intuitively, elapsed time is a good measure of the

available resour
es, sin
e it
aptures a pro
essor's per
eived

load, whether due to pro
essor speed, multiprogramming,

or
ontention for memory and/or the network. Ea
h pro
ess

queries the operating system to obtain the elapsed time for

the exe
ution of ea
h parallel region. The RelativePower

of a pro
essor is inversely proportional to this time, i.e.,

the faster the pro
essor, the larger its power relative to the

other pro
essors. We tra
k time over several parallel regions

prior to updating the relative powers in order to smooth out

transient spikes in performan
e. The high-level algorithm

for
omputing relative pro
essing power is shown in Fig-

ure 3. TaskTime is a shared array that is updated prior to

omputing the relative powers. RelativePower is initial-

ized a

ording to the task distribution strategy used and is

always normalized.

2.4 Task Distribution Strategy
On the �rst exe
ution of any parallel region, the initial

load assignment made by the runtime is guided by the in-

formation provided by the stati
 analysis, the
urrently per-

eived relative power of ea
h pro
essor, and the size of data

elements as well as the size of the
oheren
e unit. The infor-

mation provided by the stati
 analysis in
ludes loop bound-

aries, size of data elements, and predi
ted a

ess patterns.

The runtime library keeps statisti
s about the per
eived

ompute power of ea
h pro
essor (whi
h
ould
hange over

time based on the level of multiprogramming) and makes

initial assignments proportional to the per
eived
ompute

power.

Task assignment and exe
ution takes the topology of the

pro
essors into a

ount. For a network of SMPs, work is

float RelativePower[NumOfPro
essors℄;

// Initialized at program start

// to 1/NumOfPro
essors

float TaskTime[NumOfPro
essors℄;

// Exe
ution time of parallel region

float SumOfPowers=0;

// Cal
ulate new RelativePower

for all Pro
essors i

RelativePower[i℄ /= TaskTime[i℄;

SumOfPowers += RelativePower[i℄;

endfor

// Normalize based on sum of the RelativePowers

// to ensure the sum of powers is 1.0

for all Pro
essors i

RelativePower[i℄ /= SumOfPowers;

endfor

Figure 3: Algorithm to determine relative pro
ess-

ing power.

partitioned in a hierar
hi
al manner in order to a

ount

for the fa
t that intra-node
ommuni
ation is
heaper than

inter-node
ommuni
ation. Task redistribution is performed

a
ross SMPs. Task stealing is allowed within ea
h SMP.

Lo
ality has been shown to be more important than load

balan
ing [20℄. Given the
ontinuously in
reasing speed gap

between pro
essors and memory and the use of deeper mem-

ory hierar
hies, lo
ality management is an even bigger issue

in today's pro
essors. In order to preserve lo
ality within

an SMP, ea
h pro
essor maintains task aÆnity | it must

�nish its own task assignment prior to stealing a task from

another pro
essor (similar to [16℄, ex
ept using �xed-size

tasks). This is done by using a per-pro
essor task queue,

and having a pro
essor retrieve tasks from the head of its

queue but steal from the tail of another pro
essor's queue.

On
e a task is stolen from another pro
essor's task queue,

it is moved and owned by the stealing pro
essor. Using a

per-pro
essor task queue (rather than a shared one for all

pro
esses on a multipro
essor node) helps not only by main-

taining lo
ality but also by redu
ing
ontention for the lo
k

to a

ess the shared task queue.

The runtime library partitions the parallel region into

tasks based on the a

ess pattern, the load per parallel loop,

and the size of the
oheren
e unit. The size of the data el-

ements along with the size of the
oheren
e unit are used

to determine the partitioning in an attempt to redu
e false

sharing. Work is partitioned so that a

esses by ea
h in-

dividual pro
ess are in multiples of the
oheren
e unit in

order to avoid false sharing a
ross pro
essors. Conse
utive

loop iterations are blo
ked together until the data a

essed

is the least
ommon multiple of the
oheren
e unit and the

data a

essed per loop. This de�nes the minimum task size.

On
e the minimum task size has been determined, a �xed

number of tasks per parallel region are
reated and assigned

to pro
essors using either a blo
k or
y
li
 distribution based

on whether the load is de�ned to be FIXED or VARIABLE,

respe
tively, or whether the a

ess pattern is STENCIL. The

size of ea
h task is an integral multiple of the minimum task

size and enough tasks are
reated to allow later redistribu-

tion when relative pro
essing powers
hange.

The goal of the runtime library is to dynami
ally deter-

mine and partition work in a lo
ality-preserving manner

based on the
omputation to
ommuni
ation ratio. Parti-

tioning work to be performed on a single
oheren
e unit will

result in ex
essive
ommuni
ation due to false sharing, un-

less the amount of
omputation per data unit is high relative

to the
ommuni
ation
ost. If all the data to be pro
essed

by the loop resides on a single node and the parallel region's

exe
ution time is shorter than the time to
ommuni
ate the

data, work is performed on the node that
a
hes the data.

Within the node, the work is distributed among the pro-

esses sin
e intra-node
ommuni
ation is fairly inexpensive.

Similarly, the task distribution strategy attempts to pre-

serve lo
ality a
ross parallel regions. If the same array is

a

essed a
ross multiple parallel regions, a data stru
ture is

maintained for the array to indi
ate the
urrent partition-

ing that has been used. If a parallel region a

esses the same

shared array and approximately the same data range within

that array (determined by the task size
hosen for the region

sin
e the runtime
reates a �xed number of tasks per parallel

region), the same partitioning is used. If the a

ess patterns

in the two regions vary
onsiderably,
ommuni
ation is as-

sumed to be large due to the ne
essary redistribution, and a

partitioning is
hosen appropriately. At the same time, the

urrent partitioning is updated. This strategy is lo
alized,

requiring less
omputation than the more global strategy

proposed in [11℄.

Reassignment of tasks o

urs when a signi�
ant
hange in

the RelativePower is dete
ted

2

. Task redistribution is per-

formed on the basis of lo
ality. For a STENCIL a

ess pat-

tern, tasks are redistributed among neighboring pro
essors

in order to minimize steady-state
ommuni
ation. For an

INDEPENDENT a

ess pattern, tasks are redistributed by

reallo
ating tasks from the slowest pro
essors to the faster

pro
essors. For INDEPENDENT a

ess patterns, this type

of reallo
ation will result in the minimum overall
ommuni-

ation.

2.5 Cooperative Scheduling Support
Multiprogramming adds an additional dimension to the

problem of imbalan
ed load. Communi
ation among
oop-

erating pro
esses
an result in signi�
ant additional over-

head be
ause of waiting time
aused by one of the pro
esses

being des
heduled and unable to respond. Cos
heduling [22,

25, 6, 28, 21℄ approa
hes have been used in the past, where

ooperating pro
esses are s
heduled to exe
ute simultane-

ously on all pro
essors. This approa
h is useful when the

load on all pro
essors is equal. However, in the presen
e

of autonomous nodes with unequal levels of multiprogram-

ming at ea
h pro
essor, a more distributed and
ooperative

approa
h is required in order to improve eÆ
ien
y while re-

taining autonomy.

Our goal is to improve the response times seen by parallel

appli
ations in the presen
e of multiprogramming through

the use of a
ooperative s
heduler. We modi�ed a priority-

based s
heduler to a
hieve this goal while retaining the fair-

ness and autonomy of the individual s
hedulers on ea
h

node. The
ooperative interfa
e has several
omponents.

Our implementation is on Compaq's Tru64 (formerly known

as DEC Unix) version 4.0F.

2

The di�eren
e between the smallest and largest

RelativePower must di�er by more than a hysteresis

fa
tor from its previous value (10% in our
ase).

2.5.1 Scheduler Modifications
In order to improve response times, the s
heduler must

be willing to s
hedule an appli
ation's pro
ess on demand.

However, this
annot be a

omplished in traditional s
hed-

ulers without
ompromising fairness. To provide the s
hed-

uler with the
exibility to handle these
on
i
ting require-

ments, ea
h pro
ess, upon de
laration of its interest in
o-

operating with remote pro
esses, is
harged a s
heduling

quantum of time. This time is held in a \piggy-bank" for fu-

ture use by the pro
ess. The \piggy-bank" is replenished any

time the pro
ess voluntarily yields the pro
essor prior to the

expiration of its s
heduling quantum (by adding an amount

less than or equal to the remainder of the quantum), but is

guaranteed not to grow larger than one s
heduling quantum

of time. This guarantee prevents a pro
ess from taking over

the pro
essor for long periods of time by yielding often. The

pro
ess is pre-
harged for the amount of time put into the

piggy-bank rather than being
harged when the piggy-bank

is used. The s
heduler
an then use the time in the piggy-

bank to s
hedule the pro
ess on request. Su
h a request is

honored only if the pro
ess has some balan
e in its piggy-

bank. The time used by the pro
ess from the piggy-bank is

subtra
ted and the balan
e is saved for future use.

2.5.2 OS-Runtime Interface
For a parallel appli
ation to request the
ooperation of

the s
heduler, information about the pro
ess's s
heduling

state is required. One way of providing this information is

through a variable shared between the operating system and

the appli
ation. In addition, on
e the s
heduling status of a

pro
ess is determined, remote pro
esses need a me
hanism

to wake up the pro
ess if it is not
urrently running.

We provide a system
all that allows ea
h pro
ess to regis-

ter a memory lo
ation and a signal. The registered memory

lo
ation has two words. The �rst (\s
heduling status") is

written by the operating system and provides feedba
k to

ooperating pro
esses regarding the s
heduling status of the

registering pro
ess. It is set by the operating system when

the pro
ess is des
heduled. The se
ond (\signaled")
an be

written by
ooperating pro
esses and is used to avoid ex
es-

sive signaling overhead. It is set by a
ooperating pro
ess

when a signal has been sent to this parti
ular pro
ess for

the purposes of being woken up.

The registered signal is used by a
ooperating pro
ess as

a wakeup signal. Upon re
eiving the signal, rather than de-

livering it, if the operating system
an s
hedule the pro
ess

while
ontinuing to guarantee fairness using the piggy-bank

(i.e., if resour
e utilization is within limits), it does so. When

the pro
ess is s
heduled, both words of the registered mem-

ory are reset, indi
ating that the pro
ess is s
heduled and

no signal is pending.

Ideally, the values written to the registered memory lo
a-

tions must be available to all
ooperating pro
esses. Hen
e,

these memory lo
ations are pla
ed in shared memory and

broad
ast to all sharers. Sin
e our network is a memory-

mapped, low laten
y remote write network, these memory

lo
ations are mapped into the network address spa
e and

the s
heduler a

esses them using ordinary reads and writes.

We believe the additional
ommuni
ation overhead resulting

from this sharing is minimal in
omparison to the rest of the

proto
ol and data
ommuni
ation overhead for the appli
a-

tion. This is espe
ially true for the medium-s
ale
lusters

used for su
h parallel appli
ations.

2.5.3 Application Cooperation
In order to give the s
heduler the
exibility to respond to

on-demand s
heduling requests, an appli
ation must volun-

tarily yield the pro
essor in order to build up its piggy-bank.

A yield system
all

3

is used to free up resour
es preemptively

in order to build up this future \equity".

The yield system
all takes one argument to indi
ate the

lowest priority that the
aller is willing to yield to. The

argument spe
i�es a priority relative to the priority of the

aller. If no other pro
ess within the given priority is avail-

able, the
all returns immediately with no e�e
t. Other-

wise, a runnable pro
ess with the highest priority is pi
ked

and s
heduled. A
ompli
ation in implementing this system

all is a

ounting for resour
e usage. In many operating

systems, pro
esses are
harged at the granularity of a
lo
k-

ti
k, whi
h is about 1 mse
 on Tru64 Unix (our experimental

platform). If a pro
ess yields frequently enough, it is fairly

easy for that pro
ess either not to be
harged at all for its

use or to be over-
harged depending on the relative timing

of a
lo
k ti
k and the s
heduling event. In order to �x

this problem, hardware
ounters are used as the basis for

a

ounting.

The yield
all is made by a pro
ess whenever the pro
ess

would otherwise spin waiting for an external event su
h as

ommuni
ation or syn
hronization with a remote pro
ess. A

spin-blo
k strategy [21℄ is used in order to avoid unne
essary

yields. The spin time is set to be at least twi
e the round-

trip
ommuni
ation time and is doubled ea
h time the yield

is unsu

essful.

It is important to keep in mind that, unless the newly

added features are used by the appli
ations, the overhead of

the new s
heduling is negligible. Even when these features

are exploited extensively, the overhead is still minimal. The

only overhead in
urred is to set/
lear the registered mem-

ory lo
ations at ea
h
ontext-swit
h and keep some extra

a

ounting information about resour
e usage.

3. EVALUATION

3.1 Experimental Platform
Our experimental environment is a
luster of Compaq

AlphaServer 4100 servers. Ea
h AlphaServer is equipped

with four 21164A pro
essors operating at 600 MHz, 2 GB of

shared memory, and a Memory Channel network interfa
e.

The Memory Channel [9℄ is a PCI-based
rossbar network,

with a peak point-to-point bandwidth of approximately 83

MBytes/se
. The network is
apable of remotely writing to

memory mapped areas, but does not have remote read
apa-

bility. One-way laten
y for a 64-bit remote-write operation

is 3.3 �se
s.

The 21164A has two levels of
a
he on
hip. The �rst level

onsists of a split dire
t-mapped 8 KB instru
tion and data

a
he, with a line size of 32 bytes. The �rst-level data
a
he

is write through. The se
ond-level
a
he is a 96 KB 3-way

set asso
iative uni�ed
a
he, with a line size of 64 bytes. Our

platform has an 8 MB dire
t-mapped board level
a
he, with

a line size of 64 bytes. Ea
h AlphaServer runs Digital Unix

4.0F, with TruCluster v. 1.6 extensions. All the programs,

the runtime library, and Cashmere were
ompiled with g

version 2.8.1 using the -O2 optimization
ag.

3

While some operating systems already provide this ability,

we had to add this system
all to Tru64.

On our platform, a s
heduling quantum is approximately

10ms and a pro
ess runs until the quantum expires unless

there is a higher priority pro
ess. A null system
all takes

approximately 0.5 �s and a
ontext swit
h takes approxi-

mately 6 �s.

In Cashmere, a page fet
h operation takes approximately

220 �s on an unloaded system, twin operations require 68

�s, and a di� operation ranges from 100{245 �s, depending

on the size.

3.2 Experimental Results
In order to evaluate our system, we used a set of six kernels

as our ben
hmarks. These ben
hmarks exhibit a range of

sharing patterns and types of parallel regions. We brie
y

des
ribe ea
h appli
ation below.

� Matrix Multiply: A simple matrix multipli
ation

algorithm parallelized by forming tasks with groups

of rows and distributing these tasks among pro
esses.

The dataset
onsists of three 512x512 matri
es of long

integers (8 bytes ea
h) | one ea
h for the multiplier,

multipli
and, and result.

� Ja
obi: An iterative method for solving partial dif-

ferential equations with nearest neighbor averaging as

the main
omputation. We used a matrix of 2048x2048

single pre
ision
oating point numbers (4 bytes ea
h).

� SOR: Su

essive-over-relaxation is a nearest neighbor

algorithm from the TreadMarks [3℄ distribution, whi
h

is also used to solve partial di�erential equations. A

matrix of 4096x1024 of double pre
ision
oating point

numbers (8 bytes ea
h) is used in our experiments.

� Shallow: The shallow water ben
hmark from the Na-

tional Center for Atmospheri
 Resear
h. This
ode is

used in weather predi
tion and solves di�eren
e equa-

tions on a two dimensional grid. 13 Matri
es of size

2048x2048 are needed where ea
h element is a double

pre
ision
oating point number, totaling 436MB.

� Water: A mole
ular dynami
s simulation from the

SPLASH-1 [24℄ ben
hmark suite. The bulk of the

interpro
essor
ommuni
ation o

urs during a phase

that updates intermole
ular for
es using lo
ks, result-

ing in a migratory sharing pattern. Between ea
h up-

date phase, a barrier operation is performed. We use

an input set of 9261 mole
ules, with the size of ea
h

mole
ule's data stru
ture being 672 bytes.

� Gauss: A parallel gaussian elimination algorithm. The

solution is
omputed by using partial pivoting and

ba
k substitution, and the row elimination is paral-

lelized. The dataset size in our experiments is a matrix

of 2048x2048 double pre
ision
oating point numbers

(8 bytes ea
h).

All our runs were
ondu
ted on 4 nodes with 4 pro
essors

on ea
h node, for a total of 16 pro
essors. For the purposes

of loading a pro
essor, we use a program that exe
utes in

a tight loop in
rementing a variable (a pure
omputational

load). At periodi
 in
rements, the elapsed time is re
orded

in order to provide a measure of the progress of the ba
k-

ground load and to ensure s
heduling fairness. With two

pro
esses running simultaneously, the elapsed time between

0

20

40

60

80

100

120

140

160

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Jacobi

0

2

4

6

8

10

12

14

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

SOR

0

20

40

60

80

100

120

140

160

180

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Shallow

0

50

100

150

200

250

300

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Water

0

10

20

30

40

50

60

70

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

0

5

10

15

20

25

30

35

40

1P 2P 4P 8P

Plain
SCH
LB
LB+SCH

Figure 4: Exe
ution times with and without load balan
ing and
ooperative s
heduling support as the number

of loaded pro
essors (ea
h with 50% load, 1P = 1 loaded pro
essor on 1 node, 2P = 2 loaded pro
essors on

1 node, 4P = 2 loaded pro
essors on 1 node and 1 loaded pro
essor on ea
h of 2 nodes, and 8P = 2 loaded

pro
essors on ea
h node) is in
reased. The X-axis shows the number of multiprogrammed pro
essors. \Plain"

indi
ates no s
heduling or load balan
ing support. \LB" indi
ates load balan
ing support, \SCH" indi
ates

ooperative s
heduling support, and \LB+SCH" indi
ates the use of both load balan
ing and
ooperative

s
heduling supports.

Program Seq. Time Load Type A

ess Type Global Syn
. Rate

(se
s) (barriers/se
 at 16p.)

Matrix 578.76 FIXED INDEPENDENT 3.17

Ja
obi 151.5 FIXED STENCIL 68.02

SOR 2389.2 FIXED STENCIL 70.01

Shallow 1510.8 FIXED STENCIL 10.03

Water 795 FIXED INDEPENDENT 2.46

Gauss 366.3 VARIABLE INDEPENDENT 258.19

Table 1: Relevant Program Chara
teristi
s

two
onse
utive intervals should be approximately twi
e that

when running on a dedi
ated pro
essor.

We
ondu
ted 5 sets of experiments for ea
h of the appli-

ations with varying numbers of multiprogrammed pro
es-

sors, where ea
h multiprogrammed pro
essor had a single

additional
omputational load as des
ribed above. Figure 4

presents the results. Ea
h set of experiments in
ludes four

bars representing the exe
ution time of the program with

various features turned on or o�. \Plain" implies an exe-

ution with no s
heduling or load balan
ing support. \LB"

represents an exe
ution with runtime load balan
ing sup-

port turned on. \SCH" represents an exe
ution without

load balan
ing but with the use of a
ooperative s
heduler

in the kernel. Finally, \LB+SCH" represents an exe
ution

where both the load balan
ing support and the
ooperative

s
heduler are turned on. The \No Load"
ase demonstrates

the generally minimal overhead from adding support for dy-

nami
 load balan
ing and
ooperative s
heduling. In fa
t,

as is demonstrated by the graph for Shallow (and explained

below), exe
ution time
an a
tually be improved.

Table 1 presents the sequential exe
ution times, global

syn
hronization rates at 16 pro
essors in the absen
e of load,

and dominant load and a

ess type for ea
h of the parallel

appli
ations. We dis
uss ea
h appli
ation below.

Matrix Multiply: As seen is Table 1, this appli
ation

has one of the lowest rates of global syn
hronization rela-

tive to the appli
ations in our ben
hmark suite. The to-

tal number of global syn
hronizations is 204. Hen
e, the

time between two syn
hronization points (315 ms) is mu
h

longer than a single s
heduling quantum (10 ms). Further,

the amount of
ommuni
ation is very low. This makes the

appli
ation indi�erent to
ooperative s
heduling, and allows

the load balan
ing to be e�e
tive even in the absen
e of
o-

operative s
heduling. Overall redu
tion in exe
ution time

varies between 26 and 33%, in
omparison to no support at

all. Sin
e the type of sharing in this appli
ation is labeled as

INDEPENDENT, i.e., it is independent of the region being

parallelized, the load balan
er uses a blo
ked task distribu-

tion and is able to minimize the
ommuni
ation while re-

distributing tasks by moving tasks dire
tly from the heavily

loaded to the lightly loaded pro
essors.

Ja
obi and SOR: Both of these appli
ations exhibit

nearest neighbor sharing as indi
ated by the a

ess type

of \STENCIL". Hen
e, the load balan
er uses a blo
ked

task distribution, and redistribution is performed by mov-

ing tasks between neighboring pro
essors in order to mini-

mize sharing-based
ommuni
ation (If redistribution is per-

formed assuming that the loops are independent, the result-

ing steady-state
ommuni
ation (page transfers) is doubled,

and the exe
ution time in
reased by a fa
tor of 1.5). As

demonstrated by the \no-load"
ase in Figure 4, the over-

head of using our features even in the absen
e of load is

negligible for both appli
ations. Ideally, in the absen
e of

load balan
ing, a 50% load on any pro
ess should result in

a doubling of the exe
ution time. As we in
rease the num-

ber of loaded pro
essors, however, the exe
ution time for

the base
ase (\plain")
ontinues to in
rease and is more

than double the no-load
ase when 8 of the pro
essors are

loaded. This is due to the independent s
heduling de
isions

made by the underlying operating system. Examining the

\SCH" bars in the �gures shows that
ooperative s
hedul-

ing is highly e�e
tive in eliminating waiting time due to

des
heduled pro
esses | the exe
ution time as the load is

in
reased stays
onstant, as one would expe
t in the ab-

sen
e of load balan
ing. As the number of loaded pro
essors

in
reases, the e�e
tiveness of load balan
ing alone (\LB")

de
reases substantially, be
ause the
omputation between

two rendezvous points in both appli
ations is relatively low.

Combining load balan
ing and s
heduling support results in

an improvement in the exe
ution time of at least 24% for all

ases.

Shallow: Shallow is an appli
ation that demonstrates

the e�e
tiveness of the lo
ality optimizations that take
o-

heren
e unit size into a

ount. Shallow performs several

boundary
ondition initializations on its matri
es. Sin
e

this
omputation is performed on a single row of the matrix,

and a single row �ts in one
oheren
e unit, parallelization

a
ross nodes would result in ex
essive
ommuni
ation due

to false sharing. The runtime library is able to eliminate

this
ommuni
ation by performing the
omputation on the

node that
a
hes the data. The bene�ts of this optimiza-

tion are demonstrated by the redu
tion in exe
ution time

(3%) with the load balan
er turned on even in the absen
e

of load. Load balan
ing results in up to a 28% redu
tion in

the exe
ution time in the presen
e of load.

Water: A unique
hara
teristi
 of this appli
ation is the

fa
t that it a
quires a per-mole
ule lo
k to update ea
h of the

mole
ules, sin
e a mole
ule
ould be updated by ea
h of the

pro
esses to show the intera
tion between all the mole
ules.

While the number of global syn
hronizations is low (76 over

the
ourse of exe
ution), a lo
k a
quisition attempt
ould

also in
ur delays when a pro
ess holding the lo
k is pre-

empted. The likelihood of having a pro
ess des
heduled

while holding a lo
k in
reases with the number of multi-

programmed pro
essors. As
an be seen in Figure 4, pure

load balan
ing redu
es the exe
ution time by only 4% when

the number of loaded pro
essors is 8. However, for all loaded

ases the redu
tion in exe
ution time is between 22% and

29% when both load balan
ing and
ooperative s
heduling

are used.

Gauss: For Gauss, the amount of work in a parallel re-

gion de
reases as the
omputation progresses. Hen
e, this is

an example where distributing iterations
y
li
ally is ne
es-

sary in order to preserve lo
ality while balan
ing load (the

ompiler algorithm is able to dete
t this behavior using the

loop indi
es). For this appli
ation, be
ause of the potential

varian
e in load among pro
essors, a

urate estimates of the

relative power as well as appropriate yield times are diÆ
ult

to predi
t. Hen
e, there is a slight performan
e degradation

in the absen
e of load when using load balan
ing and/or the

ooperative s
heduler. As
an be seen, load balan
ing sup-

port without a
ooperative s
heduler fails to improve per-

forman
e signi�
antly (improves performan
e by only 5%)

when there are many loaded pro
essors. The
ombination

of the load balan
er and the
ooperative s
heduler is able

to redu
e exe
ution time by up to 23% in the presen
e of 8

loaded pro
essors. For this program, there are 4101 global

syn
hronization operations and 392K messages ex
hanged

in roughly 16 se
onds of exe
ution time. In other words, a

global syn
hronization is exe
uted every 4 mse
s, i.e., at a

granularity mu
h smaller than the s
heduling quantum of

10 mse
s. Even if a request for s
heduling is sent to the

remote node, it takes up to 833�s (one hard
lo
k ti
k) for

that request to be honored (the signal is delivered by Tru64

only at the end of the
lo
k ti
k). Hen
e, it is likely that

as the load is in
reased, the parallel appli
ation is for
ed to

wait at the global syn
hronization for des
heduled pro
esses

despite the
ooperative s
heduler.

Finally, Figure 5
ompares the exe
ution times of a 16

pro
essor exe
ution with 8 loaded pro
essors (a load of 50%)

with that of running the appli
ation on 8 and 12 pro
essors

without load. The 12 pro
essor exe
ution time in the ab-

sen
e of load represents the (in pra
ti
e unattainable due to

ommuni
ation overheads) ideal exe
ution time we would

like to a
hieve with 16 pro
essors, given the load we have

imposed. The 8 pro
essor exe
ution time represents a spa
e

sharing approa
h, where the appli
ation only uses the un-

loaded pro
essors. Our expe
tation is that the exe
ution

time on 16 pro
essors with 8 loaded pro
essors is
lose to

the 12 pro
essor exe
ution time. As the �gure shows, this

expe
tation is realized for Matrix Multiply and Water. Both

these appli
ations have a

ess patterns where the sharing is

independent of the parallelization strategy used for the par-

allel region. Hen
e, the use of 16 pro
essors (as opposed to

12 or 8) does not result in additional steady-state
ommu-

ni
ation. However, for Shallow, SOR, and Ja
obi, the three

appli
ations with a STENCIL a

ess pattern, steady-state

ommuni
ation at 16 pro
essors is higher than at 12 pro-

essors. Hen
e, while performan
e is improved with load

balan
ing, it is not
lose to the 12 pro
essor
ase. As the

results in Figure 5 show, Gauss is one appli
ation for whi
h

although performan
e is improved relative to \plain" (Fig-

ure 4), on
e more than four pro
essors are loaded, the ap-

pli
ation would a
tually be better served by abandoning the

loaded pro
essors and exe
uting all of the
omputation on

the unloaded pro
essors (a spa
e sharing approa
h). We are

urrently also exploring this avenue of adaptation.

4. CONCLUSIONS
We have presented a system that
ombines
ompile-time

analysis, runtime load balan
ing and lo
ality
onsiderations,

and
ooperative s
heduling support for improved perfor-

man
e of parallel programs on autonomous distributed hard-

ware. Our results show that while load balan
ing alone is

e�e
tive in improving resour
e utilization when the number

0

20

40

60

80

100

120

Matrix Jacobi SOR Shallow Water Gauss

Figure 5: Comparison of exe
ution times (normal-

ized to the exe
ution time on 8 dedi
ated pro
essors

) on 8 dedi
ated pro
essors, 16 pro
essors with 8

loaded pro
essors, and 12 dedi
ated pro
essors.

of loaded pro
essors is low,
ombining load balan
ing with

ooperative s
heduling is essential to improving performan
e

when the number of loaded pro
essors is high. The
oopera-

tive interfa
e to the kernel is minimally intrusive, and takes

advantage of shared data between the kernel and
ooper-

ating pro
esses. Our
ooperative s
heduling me
hanism en-

sures fairness of resour
e allo
ation for all running pro
esses.

Our runtime load balan
ing te
hniques are able to take ad-

vantage of lo
ality and
ommuni
ation
ost information to

minimize overall exe
ution time by balan
ing lo
ality and

load
onsiderations. Further, our task s
heduling approa
h

takes the varian
e in
ommuni
ation laten
y among pro
es-

sors into a

ount. The result is a system that is able to

adapt to dynami
ally
hanging resour
e availability without

hanges to the appli
ation.

Future work in
ludes an evaluation of the s
alability of

the system, both in terms of being able to handle multiple

simultaneously exe
uting parallel appli
ations and in terms

of being able to s
ale to a larger number of pro
essors. In ad-

dition, further experimentation on the frequen
y of allowed

redistribution as well as the sensitivity to varian
e in load

is needed.

5. REFERENCES

[1℄ S. V. Adve and K. Ghara
horloo. Shared memory

onsisten
y models: A tutorial. IEEE Computer,

pages 66{76, De
ember 1996.

[2℄ S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and

C. W. Tseng. The SUIF
ompiler for s
alable parallel

ma
hines. In Pro
eedings of the 7th SIAM Conferen
e

on Parallel Pro
essing for S
ienti�
 Computing,

February 1995.

[3℄ C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, and W. Zwaenepoel. TreadMarks:

Shared memory
omputing on networks of

workstations. IEEE Computer, 29(2):18{28, February

1996.

[4℄ J.B. Carter, J.K. Bennett, and W. Zwaenepoel.

Implementation and performan
e of Munin. In

Pro
eedings of the 13th ACM Symposium on Operating

Systems Prin
iples, pages 152{164, O
tober 1991.

[5℄ A.L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel.

Evaluating the performan
e of software distributed

shared memory as a target for parallelizing
ompilers.

In Pro
eedings of the 11th International Parallel

Pro
essing Symposium, pages 474{482, April 1997.

[6℄ A. D. Dusseau, R. H. Arpa
i, and D. H. Culler.

E�e
tive distributed s
heduling of parallel workloads.

In Pro
eedings of SIGMETRICS 1996, pages 25{36,

PA, USA, May 1996. ACM.

[7℄ S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. An

integrated
ompile-time/run-time software distributed

shared memory system. In Pro
eedings of the 7th

Symposium on Ar
hite
tural Support for Programming

Languages and Operating Systems, pages 186{197,

O
tober 1996.

[8℄ D. L. Eager and J. Zahorjan. Adaptive guided

self-s
heduling. Te
hni
al Report 92-01-01,

Department of Computer S
ien
e, University of

Washington, January 1992.

[9℄ R. Gillett. Memory
hannel: An optimized
luster

inter
onne
t. IEEE Mi
ro, 16(2):12{18, February

1996.

[10℄ P. Havlak and K. Kennedy. An implementation of

interpro
edural bounded regular se
tion analysis.

IEEE Transa
tions on Parallel and Distributed

Systems, 2(3):350{360, July 1991.

[11℄ D. G. Morris III and D. K. Lowenthal. A

urate data

redistribution
ost estimation in software distributed

shared memory systems. In Pro
eedings of the 8th

Symposium on the Prin
iples and Pra
ti
e of Parallel

Programming, June 2001.

[12℄ S. Ioannidis and S. Dwarkadas. Compiler and run-time

support for adaptive load balan
ing in software

distributed shared memory systems. In Fourth

Workshop on Languages, Compilers, and Run-time

Systems for S
alable Computers, pages 107{122, May

1998.

[13℄ S. Ioannidis, U. Ren
uzogullari, R. Stets, and

S. Dwarkadas. CRAUL: Compiler and run-time

integration for adaptation under load. Journal of

S
ienti�
 Programming, pages 261{273, August 1999.

[14℄ P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy

release
onsisten
y for software distributed shared

memory. In Pro
eedings of the 19th Annual

International Symposium on Computer Ar
hite
ture,

pages 13{21, May 1992.

[15℄ C. Kruskal and A. Weiss. Allo
ating independent

subtasks on parallel pro
essors. IEEE Transa
tions on

Software Engineering, O
tober 1985.

[16℄ H. Li, S. Tandri, M. Stumm, and K. C. Sev
ik.

Lo
ality and loop s
heduling on NUMA

multipro
essors. In 1993 International Conferen
e on

Parallel Pro
essing, pages 140{147, August 1993.

[17℄ K. Li and P. Hudak. Memory
oheren
e in shared

virtual memory systems. ACM Transa
tions on

Computer Systems, 7(4):321{359, November 1989.

[18℄ D. K. Lowenthal and G. R. Andrews. An adaptive

approa
h to data pla
ement. In 10th International

Parallel Pro
essing Symposium, April 1996.

[19℄ H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony, and

W. Zwaenepoel. Compiler and software distributed

shared memory support for irregular appli
ations. In

Pro
eedings of the 6th Symposium on the Prin
iples

and Pra
ti
e of Parallel Programming, pages 48{56,

June 1997.

[20℄ E. P. Markatos and T. J. LeBlan
. Load balan
ing

versus lo
ality management in shared-memory

multipro
essors. 1992 International Conferen
e on

Parallel Pro
essing, pages 258{267, August 1992.

[21℄ S. Nagar, A. Banerjee, A. Sivasubramaniam, and

C. R. Das. A
loser look at
os
heduling approa
hes

for a network of workstations. In Pro
eedings of 11th

ACM Symposium on Parallel Algorithms and

Ar
hite
tures, pages 96{105, June 1999.

[22℄ J. K. Ousterhout. S
heduling te
hniques for

on
urrent systems. In Pro
eedings of the 3rd

International Conferen
e on Distributed Computing

Systems, pages 22{30. IEEE, O
tober 1982.

[23℄ C. D. Poly
hronopoulos and D. J. Ku
k. Guided

self-s
heduling: a pra
ti
al s
heduling s
heme for

parallel super
omputers. In IEEE Transa
tions on

Computers, De
ember 1987.

[24℄ J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH:

Stanford parallel appli
ations for shared-memory.

Computer Ar
hite
ture News, 20(1):2{12, Mar
h 1992.

[25℄ P. G. Sobalvarro. Demand-based Cos
heduling of

Parallel Jobs on Multiprogrammed Ma
hines. PhD

thesis, M.I.T., January 1997.

[26℄ R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt,

L. Kontothanassis, S. Parthasarathy, and M.L. S
ott.

Cashmere-2L: Software
oherent shared memory on a

lustered remote-write network. In Pro
eedings of the

16th ACM Symposium on Operating Systems

Prin
iples, pages 170{183, O
tober 1997.

[27℄ P. Tang and P. C. Yew. Pro
essor self-s
heduling for

multiple nested parallel loops. In 1986 International

Conferen
e on Parallel Pro
essing, August 1986.

[28℄ A. Tu
ker and A. Gupta. Pro
ess
ontrol and

s
heduling issues for multiprogrammed

shared-memory multipro
essors. In Pro
eedings of the

12th ACM SIGOPS Symposium on Operating Systems

Prin
iples, pages 159{166. ACM, De
ember 1989.

