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ABSTRACT 1. INTRODUCTION

InterWeave is a distributed middleware system that supports the As the Internet becomes increasingly central to modern com-
sharing of strongly typed, pointer-rich data structures across a wide puting, more an_d more _appllcatlons are taking advanFage_ of re-
variety of hardware architectures, operating systems, and pregram sources at distributed sites. Example problem domains include

ming languages. As a complement to RPC/RMI, InterWeave fa-
cilitates the rapid development of maintainable code by allowing
processes to access shared data using ordinary reads and writes.
Internally, InterWeave employs a variety of aggressive optimiza-
tions to obtain significant performance improvements with minimal
programmer effort. In this paper, we focus application-specific
optimizations that exploit dynamic high-level information about an

e-commerce, computer-supported collaborative work, multi-player
games, intelligent environments, interactive data mining, and re-
mote visualization and steering of real or simulated systems. Con-
ceptually, most applications in these domains involve some sort of
distributed shared staténformation that has relatively static struc-
ture but mutable content, and that is needed at more than one site.
To allow applications to work efficiently across high-latency, low-

application’s spatial data access patterns and the stringency of itsbandwidth links, programmers typically attempt to increase the lo-
coherence requirements. Using applications drawn from computer cality of shared state through ad-hoc, application-specific caching
vision, datamining, and web proxy caching, we illustrate the spec- Or replication protocols built on top of RPC-based systems such as
ification of coherence requirements based on the (temporal) con-Sun RPC, Java RMI, CORBA, and .NET.

cept of “recent enough” to use, and introduce two (spatial) notions ~ Software distributed shared memory (S-DSM) systems such as
of views, which allow a program to limit coherence management TreadMarks [3] and Cashmere [39] automate the management of
to the portion of a data structure actively in use. Experiments with shared state for local-area clusters, but they do not extend in any
these applications show that InterWeave can reduce their communi-Obvious way to geographic distribution. As a general rule, they
cation traffic by up to one order of magnitude with minimum effort assume that sharing processes are part of a single parallel pyogram
on the part of the application programmer. running on homogeneous hardware, with communication latencies
and bandwidths typical of modern local- or system-area networks,
and with data lifetimes limited to that of the running program.

Our recent InterWeave system [12, 41], by contrast, caters ex-
plicitly to the needs of distributed applications. It provides pro-
grams with a global, persistent store that can be accessed with or-
dinary reads and writes, regardless of the machine architectures or
programming languages used. As a complement to RPC, Inter-
Weave serves to (1) eliminate hand-written code that maintains the
coherence and consistency of cached data; (2) support gentsine re
erence parameters in RPC calls, eliminating the need for overly
conservative deep-copy parameters or, in many cases, fordallba

*This work was supported in part by NSF grants CCR-9988361, invocations; and (3) reduce the number of “trivial” invocations used
by DARPA/ITO under AFRL contract F29601-00-K-0182; by the Unfortunately, the convenience of a global store introduces sig-

Hnﬁelrj gg%gggmng%r;g;g%eon?ﬁ%_Ogg?ggﬁs?ggggirgfg&F;r?('jogy nificant performance challenggs. S-DSM systems work well when
equipment or financial grants from Compag, IBM, Intel, and Sun. ~ the temporal and spatial sharing granularity managed by the run-
time matches the access pattern of the application. Without such
careful matching, significant overhead may be incurred to maintain
data that are not actually shared at present or, worse yet, that are
falselyshared, e.g. as an artifact of co-location in the same page of
virtual memory. This overhead is a serious problem for system-area
S-DSM systems. It would be fatal for wide-area sharing.
Building on prior work in S-DSM, several recent projects have
proposed mechanisms to reduce the cost of coherence. RTL [7] and
InterWeave allow applications to share memory at the granularity

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; D.1.3 Programming Techniqueg: Concurrent Program-
ming—distributed programmingD.4.7 [Operating System$: Or-
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of application-defined regions. Object View [28] allows program- cameral o peomeral Camera 2

mers to give hints to a compiler to specify how threads use objects.
The compiler then constructs caching protocols customized to ap-
plication requirements. TACT [44] and InterWeave allow program-
mers to exploit the typically more relaxed coherence requirements
of Internet applications using tunable coherence models.

A common theme in these systems is the desire for program-
mers to deal with coherence in high-level terms, allowing them to
obtain application-specific performance optimizations without get-

ting bogged down in the details of exactly which data are needed at Y N
particular nodes at particular points in time. We elaborate on this - i i
theme in this paper, considering high-level specifications of both Objo (Bowl) -

the temporal (when must updates occur?) and spatial (which dataj
must be updated?) aspects of coherence. As described in previou

papers [12], we capture the temporal aspect of coherence by allow- %

ing a program to specify a predicate that determines when cached
data is “recent enough” to use. For the spatial aspect of coherencq. .
(not covered in previous papers), we allow a program to specify a Obj1 (Keyboard)
“view” of a shared segment that eliminates coherence managemen
for inactive data. We consider views of both monolithic (array- -
based) and pointer-based data structures. @

We make two key contributions to the high-level specification of ’§;
coherence requirements. First, we show how highly relaxed coher- = L
ence can be provided for a programming model based on ordinary Obj2 (Can)
reads and writes, despite the complications of heterogeneous lan-
guages and machine architectures. Second, we allow programs tq
adjust their spatial and temporal coherence requirements dynami- y/ X
cally, to keep pace with changing needs. Neither language hetero- b,
geneity nor dynamic adaptation appears to be possible in compiler- -
based systems such as Object View.

To illustrate the need for dynamic adaptation of coherence re-
quirements, consider an intelligent environment application, cur- Figure 1: Three cameras monitor the same environment and
rently under development in our department [34, 35]. Cameras cooperatively discover four objects by sharing relevant portios
mounted throughout an office space monitor a common area from of their image cubes.
several vantage points. The cameras work cooperatively to dis-
cover objects by detecting events that are simultaneously observed

by multiple cameras. Figure 1 gives an example of discovering ob- reference parameters for RPC, relaxed coherence models fa spec
jects with three cameras. Each camera is served by a computingfication of “recent enough”), two-way diffing to identify, transmit,
node, and the nodes are connected by a local-area network. Eackyng ypdate only the data that have changed, and transparent sup-

Obj3 (Spoon)

node stores captured images locally asnaage cubgX x Y x t) port for heterogeneous machines and languages. Our experience
and scans them for events of interest. For instance, a color changgyjth dynamic views and relaxed coherence models on a variety
in an image region may indicate a moving object. of InterWeave applications indicates that programmers can provide

When interpreting an event, a given node enhances its under-high-level coherence information with very modest effort, and that
standing of what occurred by scanning images captured by other|nterweave can in turn exploit this information to improve perfor-
nodes. For non-critical tasks such as object tracking.(where is mance by as much as an order of magnitude.
my coffee mug?images from other nodes may be “recentenough”  previous papers have discussed multi-level sharing [12] and het-
to use even when they are seconds out of date. For more demandingrogeneity [41] in InterWeave. In the current work we focus on
tasks (e.g. robotic manipulation), temporal coherence requirsmen  exp|oiting application-level coherence information to optimize per-
may become significantly tighter. Similarly, because events of in- formance. We begin in Section 2 with a review of the InterWeave
terest occur in subregions of images, it suffices to share only the programming model and its implementation. We then describe the
“interesting” image areas at any given time. While an entire im-  gesign and implementation of dynamic views in Section 3. In Sec-
age may logically be shared, thetualsharing varies dynamically  tion 4 we present performance results for three realistic applica-

according to the activity in the environment being observed. tions: Internet proxy caching, intelligent environments, and inter-
The unit of sharing in InterWeave is a self-descriptségment  active datamining. We discuss related work in more detail in Sec-
(a heap) within which programs allocate strongly tyjaicksof tion 5, and conclude in Section 6.

memory. “Recent enough” predicates allow a program to control

the circumstances under which it will (need to) obtain updates to

a segment. Views allow the program to specify plogtionsof the

segment for which it will obtain those updates. Extensions to the 2. |[INTERWEAVE BACKGROUND

InterWeave AP alloyv views to be changed by_applicati_ons dynami- As a prelude to the description of views in Section 3 and to the
cally. Sharers ofaglinglle segment can haye dn‘fgrent views. So long evaluation of both relaxed coherence and views in Section 4, we
as a program specifies its view correctly, it retains a_II of the advan- briefly review the design and implementation of InterWeave. A

tages of InterWeave: a shared memory programming model, true more detailed description can be found in other papers [12, 41].



2.1 Design of InterWeave When a process first locks a shared segment (for either read or write
The InterWeave programming model assumes a distributed col- access), the InterWeave library obtains a copy from the segment’s
lection of servers and clients. Servers maintain persistent copies ofServer. At each subsequent read-lock acquisition, the library sheck
shared data, and coordinate sharing among clients. Clients in turnto See whether the local copy of the segment is “recent enough” to
must be linked with a special InterWeave library, which arranges to Use. If not, it obtains an update from the server. Twin and diff
map a cached copy of needed data into local memory, and to update®Perations [8], extended to accommodate heterogeneous data for-
that copy when appropriate. In keeping with wide-area distribution, Mats, allow the implementation to perform an update (or to deliver
InterWeave allows processes to be written in multiple languages changes to the server at the time of a write lock release) in time
and to run on heterogeneous machine architectures, while sharingProportional to the fraction of the data that have changed.
arbitrary typed data structures as if they resided in local memory.  InterWeave currently supports six different definitions of “recent
In C, operations on shared data, including pointers, take precisely€nough”. Itis also designed in such a way that additional defini-
the same form as operations on non-shared data. tions (coherence models) can easily be added. Among the current
Servers may be replicated to improve availability and reliabil- mModelsFull coherence (the default) always obtains the most recent
ity. Data coherence among replicated servers is based on group’ersion of the segmengtrict coherence obtains the most recent
communication [25]. A detailed discussion of server replication is Versionandexcludes any concurrent writddull coherence always

beyond the scope of this paper. accepts the currently cached version, if any (the process must ex-
plicitly override the model on an individual lock acquire in order
2.1.1 Shared Data Allocation and Access to obtain an updatePelta coherence [37] guarantees that the seg-
The unit of sharing in InterWeave is a self-descriptive dag- ment is no more tham versions out-of-dateTemporalcoherence
ment(a heap) within which programs allocate strongly typéstks guarantees that it is no more thatime units out of date; aniff-

of memory. Every segment is speciﬁed by an Internet URL. The basedcoherence guarantees that no more th#nof the primitive

blocks within a segment are numbered and optionally named. By data elements in the segment are out of date. In all casean be

concatenating the segment URL with a block name or number and specified dynamically by the process. All coherence models other

optional offset (delimited by pound signs), we obtaimachine- than Strict allow a process to hold a read lock on a segment even

independent pointer (MIP}f 0o. or g/ pat h#bl ock#of f set ”. when a writer is in the process of creating a new version.

To accommodate heterogeneous data formats, offsets are measure, .

in primitive data units—characters, integers, floats, etc.—rather thar2-2  IMplementation of InterWeave

in bytes. InterWeave currently consists of approximately 31,000 lines of
Every segment is managed by an InterWeave server at the IPheavily commented C++ code. Both the client library and the server

address corresponding to the segment’s URL. Different segmentshave been ported to a variety of architectures (Alpha, Sparc, x86,

may be managed by different servers. Assuming appropriate ac-MIPS, and Power4), operating systems (Windows NT/2000/XP,

cess rights, the Wopen_segment () library call communicates Linux, Solaris, Tru64 Unix, IRIX, and AlX), and languages (C,

with the appropriate server to open an existing segment or to createC++, Fortran 77/90, and Java).

a new one if the segment does not yet exist. The call returns an Our experiences with InterWeave have shown that it is scalable

opaquehandlethat can be passed as the initial argument in calls to with respect to the number of clients [12] and that its performance

| Wrral | oc(): is comparable to that of RPC parameter passing when transmitting
IWhandle_t h = | Wopen_segment (url); previously uncacr)ed data [41]. Whe_zn updating pre_wously ca_ched
IWw _acquire(h); 7 wite | ock */ data, InterWeave’s use of platform-independent diffs allows it to
ny_type* p = |Wnalloc(h, ny_type desc); significantly outperform the straightforward use of RPC.
o= . . .
IWw _rel ease(h); 2.2.1 Client Library Implementation

InterWeave synchronization takes the form of reader-writer locks. ~ When a process acquires a writer lock on a given segment, the
A process must hold a writer lock on a segment in order to allocate, InterWeave library asks the operating system to disable write access
free, or modify blocks. The lock routines take a segment handle as t© the pages that comprise the local copy of the segment. When a
parameter. write fault occurs, theSI GSEGV signal handler, installed by the

As in multi-language RPC systems, the types of shared data InterWeave library at program startup time, creates a pristine copy,
in InterWeave must be declared in an Interface Description Lan- Of twin [8], of the page in which the write fault occurred. It saves a
guage (IDL—currently Sun XDR). The InterWeave IDL compiler pointer to that twin for future reference, and then asks the operating
translates these declarations into the appropriate programming lan-Systeém to re-enable write access to the page.
guage(s) (C, C++, Java, Fortran). It also creates initializpe When a process releases a writer lock, the library gathers local
descriptorsthat specify the layout of the types on the specified ma- changes and converts them into machine-independent wire format
chine, and that allow the InterWeave library to translate data from in @ process callediff collection It then sends this diff back to the
one form to another when communicating between machines with Server. When a client acquires a reader lock and determines that its
different byte order, word length, alignment, or data representation. local cached copy of the segment is not recent enough to use under

InterWeave automatically translates and swizzles pointers inside the desired coherence model, the client asks the server to build a
shared data segments. When necessary (e.g. to obtain an initiafiff that describes the data that have changed between the current
pointer to a data structure using a MIP contained in a command-line local copy at the client and the master copy at the server. When the
parameter), a process can also translate explicitly between MIPsdiff arrives, the library uses it to update the local copy in a process
and local pointers usingWni p_t o_pt r () orl Wptr to_ni p(). calleddiff application

2.1.2 Coherence 2.2.2 Server Implementation

As clients modify an InterWeave segment, the changes are cap- Each server maintains an up-to-date copy of each of the segments
tured in a series of internally consistergrsionsof the segment. for which it is responsible, and controls access to those segments.



To avoid an extra level of translation, the server stores both data3.1  InterWeave View Design

and type descriptors in wire format. For each segment, the Server Each InterWeave view is explicitly associated with a segment
keeps track of blocks anstibblocks Each subblock comprises a  and may contain an arbitrary numbendéw units Each view unit

small contiguous group of primitive data elements from the same s 4 contiguous portion of a block. The view may be specified by
block. For each modest-sized block and each subblock of a largerg pajr of MIPs that refer to its start and end, respectively, or by

block, the server remembers the version number of the segmentgquivalent local pointers, if the segment is locally cached.

in which the content of the block or subblock was most recently A process can create an empty view given a segment handle:

modified. This convention strikes a compromise between the size

of server-to-client diffs and the size of server-maintained mégada
Upon receiving a diff from a client, an InterWeave server uses  Once a view has been created the process that created it can aug-

the diff to update its master copy. It also updates the version num- ment the view by attaching more view units:

bers associated with blocks and subblocks affected by the diff. At | \wpip t start, end;

the time of a lock acquire, if the client's cached copy is not recent  pool recursi ve:

enough to use, the client sends the server the (out-of-date) version |Wattach_view unit(v, start, end, recursive);

number of the local copy. The server then identifies the blocks and It | dinaly detach vi its usintdet ach

subblocks that have changed since the last update to this client by can aiso correspondingly detach view units u ingdet ach-

comparing their version numbers with the client-presented version vi ewuni t () " - .

number, constructs a wire-format diff, and returns it to the client. Ther ecursi ve parameter indicates whether or not the view

Supporting relaxed coherence modes, i partcular, dela coner-y L5 B E TR RUSe SRR, TR 2 SRR
ence, is relatively easy with the help of the segment version num- y

bers maintained by both the client and the server—it involves a following intra-segment pointers tha}t originat‘e inside the view unit.
simple comparison of version numbers at the server. Temporal co gztg;gf?nhgbfmb\xirlorl]lgmr;%nilﬂglerge)r ég;ncgﬂzi OL;:? ?eeg;i;eg;
herence is almost as easy: clients support it by maintaining a real- 9 : 9 9

time stamp for each locally cached segment and request an updatead.di.tiomlI d_ata becomes an additional (implicitly specified) view
when the difference between current time and the time stamp ex-ung I\:};Cveu\gﬁvt\:lén be part of an arrav or multiole contiquous fields
ceeds the coherence parameter. Diff coherence, by contrast, is a bigf a structure. We rrc))vide an AP %/or conveFr)lient cregation of fre.
more complicated. For any client using Diff coherence, the server ' P

must be able to track the percentage of the segment that has beelg?rzmsly gii‘?] \;It? \L'jvctssrr:gtzge;’ ﬁgghmajtis l:ge\?ie?:/ r:r?iltté-d;rrr:gncs;gnsé
modified since the last version sent to the client. To minimize the yS. P P '

cost of this tracking, the server conservatively assumes that all up_attached to a view as a group. Recursive views are especially con-

dates in each version are to independent portions of the segment.ven'em for pointer-rich dynamic data structures, such as the subtree

Thus, it suffices to keep track of the size of the diff for each ver- rooted at_a give_n node or a linked list startin_g from a _header node.
sion. By adding up the sizes for all versions newer than the last After view units have been attached to a view, the view can be ac-

version seen by the client, the server can determine whether the%?stegéo\r/ilf\i ggfi?wi?iﬁlrllt:)oV\t[k?:tlrlwt\é?\jvié\\lllee:é(rz/é:\lh:thatrr\ansi-\/en
client’s diff coherence parameter has been exceeded and whethe[ime a sinale process can have at most one activé view oﬁg ven
an update is necessary. ’ gep 9

- . . ment. On r Y view, future lock isition
A variety of optimizations improve performance in common cases >€9me t. Once a process activates a view, future lock acquisitions

A client that has the only cached copy of a segment will eexefu- will maintain poherence .only f(.Jr t.he portion O.f thg segment cov-
sive modein which it can acquire and release locks (both read and ered by the view. As pointers inside a recursive view change, the

write) an arbitrary number of times, with no communication with wﬁ\évtxve”rl kl’)gCLLIJF;gS teeld ?:;2?;&?3{ 2){ tn; trlunzsltrtgih,:ng:illfvt\)l:cnc;trz’e
the server. A segment that is usually modified in its entirety will en- effective (i.e., act ;Zu cached) at theriimeyof the nex£ lock acquire
ter no-diff mode, eliminating the need for write faults, twins, and T ually quire.

- : : . A view remains in effect until it is disabled usingNdeact i -
diffs. Depending on the frequency of updates, a client/server pair . . .
will choose dynamically betweguolling mode in which the client vat e.vi ew() . Aview thatis no longer needed can be destroyed

queries the server when it needs to evaluate its “recent enough”USIngl Wdel et e.vi ew().

predicate, andhotification modgein which the server pushes this 3 2 |nterWeave View Implementation

data to the client proactively. The utility of timetification modes The current InterWeave implementation is highly optimized for

also a function of the number of clients, since the server needs to .. . o X
K . ; efficient data sharing in heterogeneous environments [41]. It em-
eep track of per-client coherence requirements. These and other

o ploys sophisticated data structures to manage segment memory on
optimizations are documented elsewhere [12, 41]. both clients and servers, to track versions of segments, blocks, and

subblocks, to swizzle pointers, and to generate wire-format diffs. In
adding views to the system, we have tried to minimize the impact
3. INTERWEAVE VIEWS on performance when views are not being used. Only one minor
Views allow an InterWeave client to specify the portion of a seg- change was required to the wire format itself (see Section 3.2.3).
mentin which it is currently interested, thereby relieving the under-  The view implementation adds 2,500 lines of code to InterWeave.
lying system from the need to maintain coherence for the rest of the This code serves to maintain view descriptions at both client and
segment. A view is constructed dynamically and can evolve over server, and to generate view-specific diffs when a client must be
time. Sharers of a single segment can have different views. Whereupdated. We elaborate on these points in the following subsections.
coherence models (Full, Temporal, Delta, etc.) address the tem- . .
poral dimension of application-level coherence information, views 3-2.1 ~ Client Side View Management
address the spatial dimension. As with relaxed coherence models, Within the client library, a view is represented by a hash table
it is the programmer’s responsibility to define views correctly and indexed by block serial number. Each entry in the table contains
to touch only the data covered by the current view. a list of the view units contained in a given block, together with

IWviewt v = | Wcreate_viewh);



their primitive offset ranges. WhenWat t ach_vi ew_uni t () blocks or subblocks whose version is larger than the client’s ver-
is invoked, the runtime translates teeart andend pointers of sion. When views are in use, the process is similar except that
the view unit into a block serial number and a primitive offset range the server now must consider the blocks or subblocks covered by
within the block, and updates the view’s hash table accordingly.  the views and the version of these blocks or subblocks cached at
To track updates to views, both the view itself and each of its the client. In this case, a single version number for each client no
view entries has a version number. When the process callslonger suffices.
| Wact i vat e.vi e ) and then attempts to lock the segment, Consider a client that activates a view of some segrieattver-
the runtime passes the hash table entries to the server. If viewsionV; and obtains its first update at versibh. At this point the
units are subsequently added to or deleted from the view, the clientdata in the view have been updated to verdianbut the data out-
passes a list of these changes to the server the next time it acquireside the view have not. Now suppose the client advances to a new
the lock. versionVs, and then decides to add a new view unito the view
So long as a client process keeps its promise to touch only the (v might also be added by the runtime automatically as a result of
data covered by its view, the existing modification detection and pointer changes in a recursive view). Since the datev were not
wire format translation routines in InterWeave correctly collect any in the view before, the client-cached copyddfs at version;. If

changes made by the client, and pass them to the server. the server only maintains a single version number for the view, it
] will be unaware thatl missed the updates between versigrand
3.2.2 Server Side View Management V. Simply put, while the server will know that a newly added view

When a server receives a view definition from a client, it creates Unit needs to be brought up to date, it won't know how out-of-date
its own hash table, indexed by block serial number, to store the list that view unit was before. Similar problems exist when dropped
of view units. For each large block in the table it also stores a bit View units are added back into a view.
vector indicating which subblocks are in the view. To address these problems, the server maintains some additional

For recursive view units, the server traverses the segment metainformation for each client that has activated a view: (gre-
data to determine the full extersidop@ of the view. The traversalis ~ View versior—the segment version number when the view was ac-
driven by the type descriptors already maintained for the segment. tivated; (b) aview versior-the segment version number when the
For each view unit encountered, the server searches the type declient was most recently updated; and (cjiew version table-a
scriptor of the block to find the locations of pointers. It then builds hash table that tracks the version of each client-cached view unit,
a new view unit for each (strongly typed) pointed-to datum (not the €ven if the view unit has been detached. .
entire block containing the datum) and adds these view units to the _ T0 collect a diff for a view unit covered by the current active
view. The traversal procedure stops when no more view units can View, the server must know which version of the view unit is cached
be added. by the client. For views whose scope has not changed since the last

When a client informs the server that it has added or deleted view UPdate to the client, the server knows that the client-cached view
units, the server updates its description of the view accordingly. Units have been updatedi@w version This is the common case,
When a block is deleted from a segment (by any client), the server and is han_dled efficiently by InterWeave. For view units added to
automatically removes any view units contained in that block from the view since the last update, there are two cases. In one case,
all known client views. (The server also informs each client of the the corresponding view units are found in triew version table

deleted block as part of the normal update mechanism when it nextSO the server knows exactly which version is cached by the client.
updates the client's cached version of the segment.) In the other case, the server can infer that the client’s copy must be

With recursive view units, the scope of a view can change dy- thepre-view versionOnce the server determines a version for the

namically as pointers are reassigned. Before sending diffs to aclient-cached copy, it computes the difference between the client's
client, any view with recursive view units needs (at least conceptu- Version and the current version, using the normal diff collection
ally) to be re-expanded by recursively following pointers. To avoid Process already implemented in InterWeave. The server sends the
this expensive operation, the server actually updates view scopegdiff to the client and updates theew version tableo reflect the
lazily and conservatively. Assisted by block version numbers, the New version cached at the client. Figure 2 gives an example of the
server searches only subblocks that have changed since the last uparocess described above. . _
date sent to the client. For each pointer in such subblock, the server While data not in the current view are not updated when acquir-
adds the pointed-to view unit into the view if it is not present yet. INg a lock, the server must still inform the client of any changes
To avoid accidentally dropping useful view units, the server conser- {0 ségment metadata, including: (a) added or deleted type descrip-
vatively keeps the old pointed-to view unit in the view. With this tors; (b) the serial number of added or deleted blocks; and (c) the
strategy, a client may receive some view units that should already Serial numbers of type descriptors of added blocks. This informa-
have been dropped. Although this is harmless semantically, it may tion is needed for management of segment memory space, and for
waste bandwidth. As a trade-off, we set a threshold for the number SWizzling pointers in a view that points to data outside the view. In
of changed versions. When the threshold is exceeded, the servethe original InterWeave implementation, the data and metadata of

traverses all views and re-builds the view scopes. a newly created block were sent to the client together. The ability
to send the metadata by itself was the only change to InterWeave’s
3.2.3 Server Side Diff Collection wire format required to accommodate views.

A server keeps the most recent version of the segments for which
itis responsible. For each modest-sized block in each segment, and4_ PERFORMANCE AND APPLICATION
for each subblock of a larger block, the server remembers the ver-
sion number of the segment in which the content of the block or EXPERIENCES
subblock was most recently modified. Without views, the server  In this section, we evaluate the performance of InterWeave views
can compute diffs for a client using the version number of the seg- using microbenchmarks and describe our experiences in specifying
ment cached at the client and the version number associated withand exploiting high-level coherence information in three distributed
the server’s master copy. The server simply updates the client with applications. Unless otherwise specified, in all experiments, the



server’'s master copy
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where bandwidth is limited. However, such benefits come at the
cost of more metadata and maintenance operations on the server.
In this section, we use microbenchmarks to evaluate the potential
benefits of views and the overhead associated with them.

ViewCoverage

. Figure 3: The effect of using non-recursive views. (a) 100Mbps

4.1.1 Non-recursive Views network. (b) 10Mbps network. The z axis shows the increasing

The first experiment compares the time required for an Inter- coverage of the view from 10% to 100%. The left-most bar in
Weave client to receive updates with or without non-recursive views. each graph is the baseline performance when no view is used.
We arrange for two InterWeave client processes to share a segmenfor cases involving views, we vary the scope of the view from a
consisting of 1000 blocks. Each block is a 160-element integer ar- coverage of 10% to 100% of the segment. For each view cover-
ray. One process functions as a writer and updates every integerage, the left bar (“Blk. View") uses a view consisting of x% of
in the segment. The second process functions as a reader and usedll blocks; the right bar (“Subblk. View") includes x% of each
Full coherence to read the segment after each update. We measurblock in the view.
the latency for the reader process to acquire a reader lock. The la-
tency is broken down into the communication time to transmit the
client request and server update, the diff construction time on the  We plot the communication traffic (bytes transferred) for the
server, and the translation time to apply the diff on the client. To “Blk. View” and “Subblk. View” in Figure 4. The bandwidth con-
factor in the network bandwidth, we experiment with two differ-  sumption is directly proportional to the percentage of total data
ent connections between the the reader process and the InterWeavgontained in the current view.
server, i.e. 100Mbps or 10Mbps Ethernet.

The results are shown in Figure 3. As can be seen from the fig- .
ure, the communication time is significantly reduced due to the re- 4.1.2  Recursive Views
duction in traffic by using views. The absolute reduction is more  Our second experiment measures the time required for the server
dramatic with the 10Mbps network (note the different scales on the to maintain views with recursive view units. We arrange for one
two y axes). “Subblk. View” has slightly higher computation and writer and one reader to share a segment that contains 50 doubly
communication overhead than “Blk. View” for both the client and linked lists with header nodes. Besides pointers to the previous and
server. On the server, when an entire block is in a view, the server next items in the list, each item contains 16 integers as a payload.
only needs to collect changes in the block. When only a portion of We start with each list containing 1,000 items. The writer inserts
a block is in the view, the server has to perform extra work to locate 100 items at the end of each list and the reader locks the segment to
the portion of the block that is covered by the view. The resulting get the updates. The reader includes a list into its view by adding
diff is also larger because more blocks, and thus more metadata,the header of the list as a recursive view unit. Thus the items in-
are in the diff. The larger diffs, increased metadata, and scatteredserted into those lists will be automatically added to the view by
changes increase the client’s translation cost correspondingly. InterWeave. We vary the coverage of views from 10% to all of
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Figure 6: The effect of using recursive views. (a) 100Mbps net-

work. (b) 10Mbps network. The left-most bar in each graph is
the baseline performance without views.

Figure 5: Communication traffic with recursive views, normal-
ized to the communication traffic without views.

the 50 lists. Again, we conduct experiments on both 100Mbps and 4.2 V'eV‘.’S 'r.' an Intelllgent Environment
10Mbps Ethernet. Appllcatlon

Figure 5 shows the reduction in communication traffic with re- In Section 1, we described a distributed object discovery appli-
cursive views. As described in Section 3.2.3, the InterWeave servercation in an intelligent environment [34, 35], where multiple nodes
always updates the client with full segment metadata. Becauseshare their “image cubes”. Each image cube is an array of im-
some of this metadata corresponds to data not included in the view,ages captured recently by the node’s camera. As explained earlier,
communication traffic is higher than in Figure 4. different nodes at different times access different portions of the

In Figure 6, we compare the latency of client updates with and cubes. Straightforward sharing of these cubes using InterWeave
without views. The latency breakdown in this figure includes a new segments would be very inefficient, wasting large amounts of com-
item,Server Recur. Vi ew, which is the cost of recursively  munication bandwidth if a node only wants to access a small por-
computing the view scope on the server. tion of the cube. Similarly, splitting up the cube into multiple seg-

Unsurprisingly, there is a higher overhead associated with recur- ments is cumbersome and difficult, especially given that the portion
sive views. This cost grows linearly as the view coverage increases.of the cube accessed by any node changes over time. In the fol-
Combined together, the lower bandwidth reduction (see Figure 5) lowing, we describe how we solve the problem using InterWeave
and the larger overhead of view maintenance actually cause theviews.
the performance of view coverage over 60% to become worse than Since a full fledged intelligent environment is still under devel-
that without views for the fast 100Mbps network. However, with opment, we use an application kernel to evaluate InterWeave. As
a slower 10Mbps network, using views continues to be beneficial shown in Figure 7, each camera node collects an image cube and
until it reaches 100% coverage. We expect Internet applications to stores it in an InterWeave segment shared by other nodes. Each
benefit from views in InterWeave in most cases since the network image is stored as a separate block. An application running on a
conditions (e.g., bandwidth and latency) in the Internet are typi- remote machine samples the images and executes a series of op-
cally worse than that of a congestion-free 10Mbps local-area net- erations to find and analyze events in the cube. It first looks for
work. We are also investigating ways to maintain recursive views events in the cube starting from the first image and coarsely sam-
more efficiently. pling images through time. Once evidence of an event is detected
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Figure 7: Finding and interpreting events in a shared image Figure 9: Including querieson a summary structure. Each node

cube. The application samples images in the shared cube to  represents a meaningful dataming sequence. Each node has

detect interesting events. Later it examines the subcube con-  pointers to all other nodes for which it is a subsequence. Here

taining that event. the result for an including query concerning item B can be ob-
tained by traversing the substructure rooted at nodeB.

0.3
subcube increases for both “Sample 10” and “Sample 5", a closer
© 0251 comparison reveals that the former increases slightly faster than the
5 //:/J/ latter. This is because the smaller sampling interval causes more
E 0.2 images to be accessed and hence cached by the application. When
3 an event is detected, the application needs a smaller amount of up-
_% 0.151 date data to construct the subcube containing the event.
(3]
S o1 k///‘//t/‘/a 4.3 Recursive Views in an Interactive and
£ = Sample5 Incremental Datamining Application
= 0.05 - ~ Samplel0 We demonstrate the benefit of recursive views using an interac-
tive and incremental datamining application. This application per-
0 : : : : : : : forms incremental sequence mining on a remote databasansf

10 20 30 40 50 60 70 80 go  actions(e.g. retail purchases). Each transaction in the database (not
to be confused with transactions the database) comprises a set

SubcubeLength(humberofimages) of items such as goods that were purchased together. Transactions

Figure 8: Bandwidth consumption with views under different are ordered with respect to one another in time. The goal is to find
sampling intervals, normalized to the bandwidth consumption ordered sequences of items that are commonly purchased by indi-
without views. The z axis indicates the number of images in-  Vidual customers over time. o
tersected by the subcube. In our experiments, both the database server and the datamining

client are InterWeave clients. The database server reads from an
active, growing database, and builds a summary data structure (a

in a sample image, the application locates a minimal rectangular lattice of item sequences) that is used to answer mining queries,
region that contains the event. To verify and interpret the event, it as shown in Figure 9. Each node in the lattice represents a poten-
accesses the same region withitime steps before and after the  tially meaningful sequence of transactionand contains pointers
event—the subcube from — dtoto + (d — 1). to other sequences containiag The summary structure is shared

Without using views, whenever a remote image is accessed, thebetween the database server and the mining client in a single Inter-
entire image must be brought in, even though only a small part of Weave segment.
it will ever be examined. Our solution is to use views to specify the ~ The mining client executes amcluding queryover the summary
portion of the image that will be scanned for events. Once an event structure, returning all sequences containing the query items. For
is located within a sample image, we add the surrounding subcubeexample, in the example shown in Figure 9, an including query
to the view to more closely examine the evidence for the event. concerning itemB will return the nodes highlighted in the figure

Figure 8 shows the reduction in communication traffic achieved (i.e., B, AB, B—B and A—AB). Because each sequence node
by using views. In this experiment, the image cube contains 100 contains pointers to every node for which it is a subsequence, we
recently collected images, each of sk x 240 pixels. The cube can process an including query by starting from the nodes that have
is sampled at two different rates, every 5th image (“Sample 5”) or items that are required and then traversing the descendants of those
every 10th image (“Sample 10”). We assume the the discovery of nodes. If a client process is only interested in including queries
an event is in the middle of the sampling process (i.e. at the 50th of on a certain set of items, it can save communication bandwidth by
100 images in the cube). The application then examines the remoteupdating only the substructure rooted at those items.
subcube centered around the event point. The cross section area of Our sample database is generated by tools from IBM research [38].
the subcube i80 x 60 pixels and the length of the subcube varies It includes 100,000 customers and 1000 different items, with an
from 10 to 90 pixels as indicated by the axis in the figure. average of 10 transactions per customer and a total of 5000 item

As we can see from this figure, the communication traffic is sig- sequence patterns of average length 4. The average transaction size
nificantly reduced. While the traffic increases as the length of the is 2.5. The total database size is 20MB.
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4.4 Scalable Sharing of Metadata in ICP

With the rapid growth of Internet traffic, hierarchical and co-
operative proxy caching have proven to be effective in reducing

0.257 bandwidth and improving client side access latency [15]. The In-
/"/—’/’/. ternet Caching Protocol (ICP), designed by the Harvard Harvest
' group [10], is perhaps the most popular sharing protocol, and is
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% 0.15 .//o/’”’” vv_idely d_eployed. In ICP, cooperative proxies are organized_in_to a
z ~+ NodesUpated hierarchical structure. Each proxy can have parents and siblings,
8 01 = UpdateTraffic all of which are referred to as peer proxies in this paper. When a
£ 0.05 — UpdateLatency proxy misses in its own local cache, it probes its peers for possible
B remote hits. If all of its peers miss, the proxy must go to the original
> 0 web server on its own or ask its parent to fetch the object.

Unfortunately, ICP does not scale well as the size of caches or
the number of cooperating proxies increases. On a local miss, the
proxy sends query messages to its peers asking for the missed ob-
ject. The number of these messages is quadratic in the number
of peer proxies. To solve this problem, Summary Cache [15] and
Cache Digest [33] have independently proposed similar solutions,
in which each proxy keeps a compact directory of contents recently

Viewl View2 View3 View4
ViewType

Figure 10: Update latency with views normalized to the cost
without views in the datamining application.

200 cached at every other proxy. Now when a proxy misses in its local

180 1 i cache, it consults its peer directories before sending out ICP query
B ServerRecur.View . R

160 +— ) messages. Queries are sent only to those proxies indicated by the

140 B ServerCollectDiff. directory as having a recent version of the page (URL). Both so-

~ 120 lutions useBloom filters[6] to represent the peer directories. A

g Bloom filter is a succinct randomized data structure that supports

g 100+ efficient membership queries.

-E 80 - There is a basic trade-off in the implementation of directories:
60 4 frequent updates consume communication bandwidth, while out-
404 dated directories may introduce both false hits and false misses.

. False hits occur when the directory falsely indicates a URL exists
20 +— D 5 u in another proxy’s cache. False misses occur when the directory
0 ‘ ‘ ‘ does not list any proxy as containing the URL in its cache, even
NoView Viewl View2 View3 View4 though the URL is actually cached at a peer. Use of a Bloom filter
ViewType also entails a small but controllable false hit rate [6, 15].
Summary Cache [15] proposes a broadcasting update scheme.

Figure 11: Server side overhead for constructing wire-format Each proxy broadcasts to its peers an update of its directory after

diffs for updates in the datamining application. a fixed percentage of changes have occurred (for example,-broad

casting every 1% of its local changes). To reduce the size of a
broadcast message, each time only the difference since the last up-

The summary structure is initially generated using half the data- date is broadcast. Cache Digest [33] uses an on-demand update
base. The server then repeatedly updates the structure using agcheme. Each proxy decides how often it needs an update from
additional 1% of the database at each update. As a result, the num-Other proxies. A proxy can piggy-back update requests on query
ber of nodes in the summary structure slowly and monotonically Messages to its peers. Likewise, a proxy can inform its peers that a
increases over time. For our tests we selected four items for which néw directory update is available by piggy-backing the information
including queries would produce a relatively large number of se- ON ItS responses to query messages.
guences from the lattice. Neither of the above schemes is ideal. Broadcasting requires

Figure 10 compares the average update latency and bandwidththat all peers be updated at a fixed rate. If one proxy requires more
consumption seen at the client side using different view configura- accurate information, each of its peers must also receive more fre-
tions. “View X” meansX of our four selected items are added as duent updates. More importantly, efficient and robust broadcast-
recursive view units to the view. When the client acquires a lock INg support is usually not available in wide-area networks. While
on the segment, only the substructures rooted at those items are uptPdate on demand is more flexible, it consumes more bandwidth
dated. Three different metrics are measured: update latencyteupda than broadcasting because it always transmits the entire directory
traffic, and the number of nodes updated. The figure demonstrates(2 Bloom filter) on each update. Since the Bloom filter is a random-
that recursive views tremendously reduce the update traffic and la-1zed data structure, it is difficult to compress [30].
tency. To evaluate the overhead incurred by updating peer directories

With fewer nodes to update, the server and the client also save©n demand, we conduct an experiment on an ICP simulartmxy-
diff processing time. Figure 11 shows the time spent constructing Cizer from the Crispy Squid Group at Duke University [14]. Since
diffs and maintaining recursive views on the server. Recursive view the original proxycizer implements neither Summary Cache nor
maintenance overhead increases as the number of nodes added fgache Digest, we augmented it with a directory implementation
the view increases. However, this overhead is adequately compenbased on Cache Digest [33]. We use a trace file from the IRCache
sated for by the reduction in diff construction time, not to mention ©Organization [21]. The trace records one day of requests to one of

the reduced communication time due to lower traffic. its proxies at Pittsburgh, Pennsylvania. The trace comprises 1.4
million HTTP requests with an average object size of 11.4KB. We



2.5 0.25

O ICPQueryMessages B IWUpdateTraffic
] D|rect0ryUpda.1teTraff|c O LostRemoteHits -
O LostRemoteHits 0.2 1
S &
2 S 0.151
he] ©
g g
g g 011
2 2
0.05 L
0 - L |
0.1% 02%  0.4% 0.6% 0.8% 1% 2% 1 2 4 6 8 10 20
DirectoryUpdateFrequency DeltaCoherenceParameter

Figure 13: Using InterWeave segments to share peer directo-
ries. The x axis represents the parameter for theDelta coher-
ence model. The directory update traffic is normalized to the
traffic of transmitting remote hit objects. Note that the scale of
the y axis is one order less than that in Figure 12.

Figure 12: Using directories to reduce ICP query messages.
The number of queries is normalized to that of ICP and the
directory update traffic is normalized to the traffic of transmit-
ting remote hit objects.

first run the trace through proxycizer’'s ICP simulator with 4 simu-  \ye again run the previously described experiments, this time on
lated proxies, each with a disk cache of about 1.2GB (this allows he InterWeave-augmented simulator. To control the update fre-
space for approximately 100,000 objects). The trace is fed to the quency of cached segments of peer directories, we usBélta
proxies in a round-robin manner. Table 1 summarizes the results. conerence model with parametersanging from 1 to 20. These
Each proxy caches 3 Bloom filters to summarize the contents ¢5se InterWeave to update the client’s local segment cache when-
cached at each of its peer proxies. Each Bloom filter is 200KB eyer it isz versions older than the server's master version. Since
long. (We use a Bloom filter longer than that specified in [33] in  g5ch proxy updates its own directory segment when 0.1% of the
order to achieve a reasonable remote cache hit rate.) For each ofgche changes (and thus creates a new version at that time), the
its cached Bloom filters, a proxy requires an update once the proxy parameters we used effectively correspond to the previously used
that is modeled by the Bloom filter has changed its content beyond update thresholds of 0.1% to 2%. The results are shown in Fig-
a certain threshold. Figure 12 shows the number of query messages e 13.
and the total communication traffic required to update the direc- Comparing the InterWeave results with those in Figure 12, we
tories as we vary the update threshold from 0.1% to 2%. In this see that Interweave significantly reduces the communication traffic
figure, we also show the percentage of remote hits lost due to therequired to keep the peer directories up to date. Each time a proxy
imprecise information in the directories. o . locks a peer directory segment for update, the segment server com-
The figure shows that using cached directories indeed signifi- pytes and transmits a diff capturing the difference between the di-
cantly reduces the number of ICP query messages. However, therectory's newest version and the proxy’s cached version. Although
proxies voraciously consume bandwidth to update the directories. symmary Cache [15] also broadcasts the differences between con-
At the update threshold of 0.6%, the communication traffic to up-  secutive versions to reduce message size (which has not been com-
date the directories equals almost half the traffic for transmitting nared here), Interweave provides a much more flexible method for
the objects themselves from hits in remote peers. The directory UP-doing so without requiring complex coherence management code
date traffic can be reduced by increasing the update threshold, withyjthin the application. With InterWeave, the application (and in
the trade-off of increasing lost remote hits. . . fact, each proxy) can change the update frequency simply by tun-
We propose using InterWeave to automate the sharing of the di- jng the parameter fobelta coherence. In addition, cooperating
rectories among peer proxies. We can then reduce the traffic to up-peer proxies no longer have to communicate in lock step in order
date directories using InterWeave'’s relaxed coherence models andg coordinate with each other to update their directories.
diffing. To evaluate this idea, we add an InterWeave simulator into | Figure 12, the choice ddelta coherence parameter exhibits
the modifiedproxycizer In the simulator, each proxy storesits own 5 correlation with the rate of lost remote cache hits. Thus, each
directory in a segment shared by other peer proxies. Each proxy Up-proxy can make individual decisions about how often it wants to get

dates its directory segment whenever 0.1% of its local disk cache ypqates for each of its peers’ directories, keeping the lost remote hit
changes. Other proxies access the directory by acquiring a readetate at a satisfactory level.

lock on the segment.

5. RELATED WORK

Number of requests 1295000 InterWeave finds context in an enormous body of related work.
Number of ICP query messages| 2187207 We focus here on some of the most relevant literature; additional
Hits in local cache 28.4% discussion can be found in technical reports [11, 40].
Hits in remote peer cache 9.7% Dozens of object-based systems attempt to provide a uniform
Aggregate size of remote hit objects1860.89MB programming model for distributed applications. Many are lan-

guage specific; many of the more recent of these are based on Java.
Table 1: Simulation results for ICP. Language-independent distributed object systems include PerDiS



[16], Legion [18], Globe [42], Microsoft's DCOM, and various to be modified in parallel and uses a value “amalgamation” process
CORBA-compliant systems. Globe replicates objects for avail- to merge the state of diverged replicas of an object to a single mean-
ability and fault tolerance. PerDiS and a few CORBA systems ingful value. In the POOM model the unit of consistency is still the
(e.g. Fresco [26] and CASCADE [13]) cache objects for local- entire object. InterWeave's relaxed coherence models serve mainly
ity of reference. While we speculate that relaxed coherence andto improve performance for readers of shared data; coherence ca
views might be applicable to such systems, current implementa- be maintained for only part of a segment by using views.
tions tend to rely on the inefficient retransmission of entire ob-  Friedman [17] and Agrawal et al. [1] have shown how to com-
jects, or the transmission and replay of operation logs. Equally bine certain pairs of consistency models in a non-version-based
significant from our point of view, there are important applications system. Alonso et al. [2] present a general system for relaxed,
(e.g., compute-intensive parallel applications) that do not employ user-controlled coherence. Khazana [9] also proposes the use of
an object-oriented programming style. multiple consistency models. The TACT system of Yu et al. [43] al-
At least two early S-DSM systems provided support for het- lows coherence and consistency requirements to vary continuously
erogeneous machine types. Toronto’s Mermaid system [45] al- in three orthogonal dimensions. Several of InterWeave’s built-in
lowed data to be shared across more than one type of machine, butoherence models are similarly continuous, but because our goal is
only among processes created as part of a single run-to-completionto reduce read bandwidth and latency, rather than to increase avail-
parallel program. All data in the same VM page was required ability (concurrency) for writes, we insist on strong semantics for
to have the same type, and only one memory model—sequentialwriter locks.
consistency—was supported. CMU’s Agora system [5] supported
sharing among more loosely-coupled processes, but in a signifi-6_ CONCLUSION

cantly more restricted fashion than in InterWeave. Pointers and o o
recursive types were not supported, all shared data had to be ac- I_nterW_eave allows distributed applications to share strongly typed,
cessed indirectly through a local mapping table, and only a single pointer-rich data structures across heterogeneous hardwarefand so

memory model (similar to processor consistency) was supported, Ware platforms. We descrlbid a nelynamic vulewnechak:nsm for
Precedents for the automatic management of pointers include Her-INt€reave, and discussed how views and relaxed coherence mod-

lihy's thesis work [19], LOOM [24], and the more recent “pickling” els exploit an application’s high-level coherence requirements to
(serialization) of Java [32]. optimize system performance. We demonstrated the convenience

Several “software-only” S-DSM systems have proposed that pro- e_md effect'iveness of Fhese mechanism_s_with applications _in intel-
grammers explicitly identify the data to be modified in a critical ligent enwrgnments, interactive datamining, and coope.ratlve web
section, either directly [20, 23] or by explicit [4, 36] or implicit[22] ~ ProXy caching. We plan to evaluate and adopt techniques used
association with a synchronization object (lock). In contrast to sys- " Peer-to-Peer (P2P) computing systems to improve InterWeave’s
tems that maintain coherence at the level of virtual memory pages, scalability qnd faul; tolerance, and to pr0\_/|de_ a shared state infras-
software-only S-DSM is less vulnerable to false sharing. In a sim- ructure forincreasingly popular P2P applications. We are also con-
ilar vein, views in InterWeave relieve the system of the need to Sidering transactional extensions to the InterWeave programming
inform processes of updates to “uninteresting” portions of a data M0del, to enable processes to more easily modify a collection of

structure. In addition, InterWeave allows each process to customize S€gMents consistently.
its view as well as to change its coverage dynamically as needed.
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