Alert-on-Update: A Communication Aid
for Shared Memory Multiprocessors *

Michael F. Spear

Sandhya Dwarkadas

Arrvindh Shriraman

Hemayet Hossain
Michael L. Scott

Computer Science Dept., University of Rochester

{spear,ashriram,hossain,sandhya,scott } @cs.rochester.edu

Categories and Subject Descriptors D.1.3 [Programming Tech-
nigues]: Concurrent Programming—Parallel Programming

General Terms Design, Experimentation, Performance

Keywords transactional memory, communication, coherence,
events

1. Introduction

A traditional advantage of shared-memory multiprocessors is their
ability to support very fast implicit communication: if thread A
modifies location D, thread B will see the change as soon as it tries
to read D; no explicit receive is required. There are times, however,
when B needs to know of A’s action immediately. Event-based
programs and condition synchronization are obvious examples, but
there are many others. Consider a program in which B reads V'
from D, computes a new value V' (a potentially time-consuming
task), and uses compare-and-swap to install V' in D only if no
other thread has completed an intervening update. If some thread
A has completed an update, then all of B’s work subsequent to that
update will be wasted.

More significantly, suppose we generalize the notion of atomic
update to implement software transactional memory (STM) [4].
Now A may not only force B to back out (abort) and retry, it may
also allow B to read mutually inconsistent values from different lo-
cations. If B does not learn of A’s action immediately, these incon-
sistent values (which should not logically be visible together) may
cause B to perform erroneous operations that cannot be undone [5].
STM systems typically avoid such errors by performing incremen-
tal validation prior to every potentially dangerous operation—in
effect, they poll for conflicts. Since validation effort is proportional
to the number of objects read so far, the fotal cost is quadratic in
the number of objects read, and may cripple performance [5].

Interprocessor interrupts are the standard alternative to polling
in shared-memory multiprocessors, but they are typically triggered
by the operating system and have prohibitive latencies. This cost
is truly unfortunate, since most of the infrastructure necessary to

* This work was supported in part by NSF grants CCR-0204344, CNS-
0411127, CNS-0509270, and CNS-0615139; an IBM Faculty Partnership
Award; financial and equipment support from Sun Microsystems Laborato-
ries; and financial support from Intel and Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP 2007, San Jose, CA

Copyright (© 2007 ACM [to be supplied]. .. $5.00.

inform remote threads of a change to location L is already present
in the cache coherence protocol. What is missing is a way to reflect
write notices up to user-level code.

We propose a simple technique to selectively expose cache
events to user programs. Using our technique, threads register an
alert handler and then selectively mark lines of interest as alert-
on-update (AOU). When a cache controller detects a remote write,
a replacement, or (optionally) a local write of a marked line, it
notifies the local processor, effecting a spontaneous subroutine
call to the current thread’s alert handler. AOU can be used to
implement fast mutexes, fast rollback in nonblocking algorithms,
hazard pointers [2], debugger watchpoints, active messages [6], and
various forms of code security. This paper focuses on STM.

2. Implementing AOU

Alert-on-update can be implemented on top of any cache coherence
protocol: coherence requires, by definition, that a controller be
notified when the data cached in a local line is written elsewhere
in the machine. The controller also knows of conflict and capacity
evictions. AOU simply alerts the processor of these events when
they occur on marked lines. The alert includes the address of the
affected line and the nature of the event. Our simulator employs an
invalidation-based MESI snooping protocol.

An application enables AOU by using an instruction to register a
handler. It then indicates its interest in individual lines using aload
(alert-load) instructions. One variety of aload requests alerts on re-
mote writes only; another requests alerts on any write, including lo-
cal ones. Our STM experiments use the first variety only. Both vari-
eties also generate alerts on capacity and conflict misses. Hardware
provides set_handler, aload, clear_handler, and arelease
instructions; special registers to hold the handler address, the PC at
the time an alert is received, and a description of the alert; an inter-
rupt vector table entry for alerts received while in kernel mode; and
two bits per cache line to indicate interest in local and/or remote
writes. For simplicity, we implement the alert bits in a non-shared
level of the memory hierarchy (the L1 cache). If the L1 were shared
we would need separate bits for each local core or thread context.

Perhaps the most obvious way to deliver a notification is with an
interrupt, which the OS can transform into a user-level signal. The
overhead of signal handling, however, makes this option unattrac-
tive. We propose, therefore, that interrupts be used only when the
processor is already running in kernel mode. If the processor is
running in user mode, an alert takes the form of a spontaneous,
hardware-effected subroutine call.

We make no assumptions about the calling conventions of
AOU-based code. Typically, our alert handlers consist of a sub-
routine bracketed by code reminiscent of a signal trampoline. Ad-
ditional alerts are masked until the handler re-enables them. A
status register allows the handler to determine whether masked
alerts led to lost information. Capacity/conflict alerts, likewise, in-

100%-

90% 7

80%-

X 0% M Copying

[Mem Mgt

60% +—
[Metadata Mgt
M Validation

Execution Time (%
(4]
<
B

[useful Work

30%-

20%

10%7

0%

Hash Table RBTree Linked List LFU Cache Random Graph

W RSTM
(1 thread)

m RSTM+AOU @ RSTM
(1 thread) (8 threads)

J RSTM+AOU
(8 threads)

-
N

-
o

—

EN

n

Throughput (normalized to RSTM, 1 thread)
»

o m

Hash Table RBTree Linked List LFU Cache Random Graph

Figure 1. Single-thread overheads in RSTM; Validation and meta-
data management dominate even in the absence of contention.

dicate that the local cache has lost the ability to precisely track
a line. Moreover, exclusive loads and prefetches, failed compare-
and-swaps, silent stores, and false sharing within lines may all lead
to “spurious” alerts. For these reasons user software must treat
alerts conservatively: any change to a marked line will result in an
alert, but not all alerts provide precise information or correspond to
interesting changes. We expect the overhead of spurious alerts to
be significantly less than that of fruitless polling.

We assume that all aloaded lines belong to the active thread.
Thread and process schedulers must execute clear_handler
(which also areleases all aloaded cache lines) on context
switches, and must permit each thread or process to perform a con-
servative polling operation and to re-aload lines at the beginning of
each quantum. It is not necessary to execute clear_handler when
returning from the kernel to the most recently executing user thread,
and thus simple system calls and many common interrupts will not
force conservative polling. If an event occurs on an aloaded line
while the processor is executing in the kernel, the alert will be de-
livered as an interrupt. The interrupt handler simply remembers the
contents of the special registers, and if control eventually returns
to user space without a context switch, the kernel effects a deferred
call to the user-level handler. Moreover kernel routines themselves
can use alert-on-update, so long as the interrupt handler is able to
distinguish between user and kernel lines, and so long as all the
kernel lines are areleased before returning to user space.

3. AOU for STM

Figure 1 shows a single-thread execution-time breakdown for five
benchmarks running under our RSTM system [1]. Incremental val-
idation accounts for an average of 37% (up to 82%) of run time,
with additional time devoted to metadata management (bookkeep-
ing), some of which serves to track the objects for which validation
may be needed. AOU can eliminate much of this overhead.

Our AOU-optimized version of RSTM maintains an estimate,
alimit, of the number of object headers (metadata structures)
that can be kept in the cache in AOU mode. Subject to this limit,
our system aloads headers at open time. Additional headers are
opened in the usual way, and added to a transaction’s read list of
objects that are validated incrementally on future opens. For up to
alimit objects, bookkeeping and validation costs are eliminated.

On any alert or context switch our handler marks the current
transaction as aborted. For capacity/conflict eviction, the handler
reduces alimit for future transactions. (We increase alimit oc-
casionally at the beginning of transactions, to exploit any reduction
in cache pressure.) The handler then returns, allowing an aborted
transaction to continue to the next validation point (this avoids de-
ferring alerts during memory management and other library calls).

Figure 2. Speedup of RSTM using AOU. All results are normal-
ized to RSTM, 1 thread.

On every open and at commit time we check to see if we have been
aborted. We also incrementally validate any objects that are on our
read list because we opened more than alimit of them. As long
as all headers fit in the cache, validation becomes a constant-time
operation, and there is no overhead for read list management.

Though we do not currently do so, it is possible to aload
transaction descriptors, causing a transaction to receive an alert
immediately when it is aborted by a competitor. Such immediate
aborts could avoid significant useless work prior to the next open
or commit. In related work, we have used aload to create an STM
that allows transactions to modify objects in place without losing
nonblocking semantics. Most other nonblocking systems use an
extra level of indirection to replace modified objects.

Figure 2 shows normalized throughput at 1 and 8 threads for
several microbenchmarks, comparing RSTM with and without
AOU. We used the GEMS/Simics simulation infrastructure from
the Multifacet group at the University of Wisconsin-Madison to
simulate a 16-way CMP. All experiments were run with eager ac-
quire and the Polka contention manager [3]. We observe speedup
of as much as 5 x, and see that AOU-enabled RSTM scales as well,
if not better than, unmodified RSTM.!

References

[1] V.J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the Overhead of Software
Transactional Memory. In ACM SIGPLAN Workshop on Transactional
Computing, Ottawa, ON, Canada, June 2006.

[2] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for
Lock-Free Objects. IEEE Trans. on Parallel and Distributed Systems,
15(8), Aug. 2004.

[3] W.N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proc. of the 24th
ACM Symp. on Principles of Distributed Computing, Las Vegas, NV,
July 2005.

[4] N. Shavit and D. Touitou. Software Transactional Memory.
Distributed Computing, 10(2):99-116, Feb. 1997.

[S] M.F. Spear, V.J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
Detection and Validation Strategies for Software Transactional
Memory. In Proc. of the 20th Intl. Symp. on Distributed Computing,
Stockholm, Sweden, Sept. 2006.

[6] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: A Mechanism for Integrated Communication
and Computation. In Proc. of the 19th Intl. Symp. on Computer
Architecture, pages 256-266, Gold Coast, Australia, May 1992.

' RandomGraph livelocks on multiple threads due to our use of eager
acquire. We have not yet evaluated RSTM+AOU with lazy acquire.

