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Abstract

The efficiency of modern multiprogrammed multicore
machines is heavily impacted by traffic due to data shar-
ing and contention due to competition for shared re-
sources. In this paper, we demonstrate the importance
of identifying latency tolerance coupled with instruction-
level parallelism on the benefits of colocating threads
on the same socket or physical core for parallel effi-
ciency. By adding hardware counted CPU stall cycles
due to cache misses to the measured statistics, we show
that it is possible to infer latency tolerance at low cost.
We develop and evaluate SAM-MPH, a multicore CPU
scheduler that combines information on sources of traf-
fic with tolerance for latency and need for computational
resources. We also show the benefits of using a history of
past intervals to introduce hysteresis when making map-
ping decisions, thereby avoiding oscillatory mappings
and transient migrations that would impact performance.
Experiments with a broad range of multiprogrammed
parallel, graph processing, and data management work-
loads on 40-CPU and 80-CPU machines show that SAM-
MPH obtains ideal performance for standalone applica-
tions and improves performance by up to 61% over the
default Linux scheduler for mixed workloads.

1 Introduction

Modern multi-socket multicore machines present a
complex challenge in terms of performance portability
and isolation, especially for parallel applications in mul-
tiprogrammed workloads. Performance is heavily im-
pacted by traffic due to data sharing and contention due
to competition for shared resources, including physical
cores, caches, memory, and the interconnect.

Significant effort has been devoted to mitigating the
impact on performance of competition for shared re-
sources [7, 15, 17, 18, 23, 26] for applications that do not
share data. Our own past work, Sharing-Aware Map-
per (SAM) [22], has shown that inter-socket coherence
activity among threads can be used as a criterion for
same-socket thread colocation for improved system ef-
ficiency and parallel application performance. Using ex-

isting x86 performance counters, SAM is able to sepa-
rate inter-socket traffic due to coherence from that due to
memory access, favoring colocation for threads experi-
encing high coherence traffic, and distribution for threads
with high cache and/or memory bandwidth demand. Al-
though SAM is able to infer inter-socket coherence traf-
fic, it cannot determine the impact of the coherence ac-
tivity on application performance. This inability to relate
traffic to performance limits its effectiveness to prioritize
tasks in multiprogrammed workloads.

In this paper, we develop and evaluate a multicore
CPU scheduler that combines information on sources of
traffic with tolerance for latency and need for computa-
tional resources. First, we demonstrate the importance of
identifying latency tolerance in determining the benefits
of colocating threads on the same socket or physical core
on parallel efficiency in multiprogrammed workloads.
High inter-socket coherence activity does not translate
to proportional benefit from thread colocation for differ-
ent applications or threads within an application. The
higher the latency hiding ability of the thread, the lower
the impact of inter-socket coherence activity on perfor-
mance. We infer the benefits of colocation using com-
monly available hardware performance counters, in par-
ticular, CPU stall cycles on cache misses. A low value
for CPU stall cycles is an indication of latency tolerance,
making stall cycles an appropriate metric for prioritizing
threads for colocation.

Second, we focus on the computational needs of in-
dividual threads. Hyperthreading [13], where hardware
computational contexts share a physical core, present
complex tradeoffs for applications that share data. Colo-
cating threads on the same physical core allows direct
access to a shared cache thereby resulting in low latency
data communication when fine-grain sharing (sharing of
cache-resident data) is exhibited across threads. At the
same time, competition for functional units can reduce
the instructions per cycle (IPC) for the individual threads
relative to running on independent physical cores. The
benefits of colocation are therefore a function of granu-
larity of sharing (whether the reads and writes by differ-
ent threads occur while the data is still cache resident) as
well as the instruction-level parallelism available within
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each thread. We find that a combination of IPC and co-
herence activity thresholds are sufficient to inform this
tradeoff.

Finally, we show that utilizing interval history in phase
classification can avoid the oscillatory and transient task
migrations that may result from merely reacting to im-
mediate past behavior [8]. In particular, we keep track
of the level of coherence activity that was incurred by a
thread in prior intervals, as well as its tolerance for la-
tency, and use this information to introduce hysteresis
when identifying a phase transition.

The combination of these three optimizations enable
us to obtain ideal performance for standalone applica-
tions and improve performance by up to 61% over linux
for multiprogrammed workloads. Performance of multi-
programmed workloads improve on average by 27% and
43% over standard Linux on 40- and 80-CPU machines
respectively. When compared with SAM [22], our ap-
proach yields an average improvement of 9% and 21%
on the two machines with a peak improvement of 24%
and 27%. We also reduce performance disparity across
the applications in each workload. These performance
benefits are achieved with very little increase in monitor-
ing overhead.

2 Background: Separating Traffic due to
Sharing and Memory Access

This work builds on our prior effort of SAM [22], a
Sharing-Aware-Mapper that monitors individual task 1

behavior using hardware performance counters. SAM
identifies and combines information from commonly
available hardware performance counter events to sep-
arate traffic due to data sharing from that due to memory
access. Further, the non-uniformity in traffic is captured
by separately characterizing intra- and inter-socket co-
herence activity, and local versus remote memory access.

Following an iterative, interval-based approach, SAM
uses the information about individual task traffic patterns
to retain colocation for tasks with high intra-socket co-
herence activity, and consolidate tasks with high inter-
socket coherence activity. At the same time, SAM dis-
tributes tasks with high memory bandwidth needs, colo-
cating them with the memory they access. These de-
cisions reduce communication and contention for re-
sources by localizing communication whenever possible.

While SAM is able to separate and identify coherence
traffic from memory bandwidth needs, it does not cur-
rently determine the impact of the traffic on performance;
in other words, its ability to tolerate the latency of com-
munication, which would allow task prioritization for

1In this paper, a task refers to an operating system-level schedulable
entity such as a process or a thread.

constrained resources. Additionally, SAM currently does
not differentiate between logical hardware contexts and
physical cores. Furthermore, while SAM’s successive it-
erations are able to capture changes in application behav-
ior and workload mixes to effect task placement changes,
it merely reacts to the current state of task placement to
effect a more efficient task placement. Thus, it misses
opportunities to learn from past placement decisions as
well as to adapt to periodicity in application behavior.
Our goal in this paper is to address these shortcomings in
SAM and realize multiprogrammed performance much
closer to standalone static best placement.

3 Identifying Latency Tolerance and Com-
putational Needs

In this section, we demonstrate the importance of
identifying latency tolerance and computational needs in
multicore task placement, and show how this informa-
tion may be inferred from widely available performance
counter events.

3.1 Tolerance for Coherence Activity Latency

Data sharing across tasks can result in varying com-
munication latencies primarily dictated by task place-
ment. The closer the tasks sharing the data, the lower
the latency. For example, when tasks that share data are
placed across sockets, the need to move data across sock-
ets results in substantially increased latency. Hence, the
natural choice would be to prioritize tasks with high co-
herence activity for colocation on the same socket.

However, the performance impact of coherence activ-
ities depends in reality on the latency tolerance of the
application. We focus here on identifying this latency
tolerance in addition to being able to measure and iden-
tify data sharing.

We introduce two additional metrics to augment inter-
socket coherence activity as a measure of sharing be-
havior: IPC (Instructions per Cycle) and SPC (Stalls per
inter-socket Coherence event). The Intel platforms pro-
vide access to a counter that tracks cycles stalled on all
last-level cache misses. While these stalls include those
due to coherence activity, they also include stalls on other
forms of misses. When coherence activity is high, stalls
are dominated by coherence activity, and thus stalls on
cache misses can be used as an approximation of stalls
due to coherence misses. SPC is thus approximated to be
stalls on all last-level cache misses divided by the num-
ber of coherence events in the specific time interval.

For low to moderate coherence activity levels, the
above approximation for SPC can no longer be justi-
fied. In such cases, we use IPC as an indicator of latency
tolerance. Higher IPC is generally achieved with high
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Figure 1: SPC (stalls per coherence event), IPC (instructions per cycle), and speedup (relative to running on separate
sockets) when consolidating threads onto the same socket on different physical cores (blue curve) and same physical
core (red dashed curve), as a function of inter-socket coherence activity controlled by a microbenchmark with a (left)
higher instruction-level parallelism (ILP) and (right) lower ILP computational loop.

instruction-level parallelism, which provides the ability
to hide access latency.

In general, higher SPC implies lower latency hiding
potential; higher IPC implies more instruction-level par-
allelism that can be used to hide latency. We use a com-
bination of IPC and SPC in order to be able to predict
a task’s latency hiding potential. In order to demon-
strate the importance of SPC and IPC in making place-
ment decisions, we designed a microbenchmark that is
parameterized to control coherence activity. Coherence
activity is generated by a coherence activity loop that
alternates increments by two threads to a set of shared
counters that are guaranteed to fit in the level of cache
closest to the processor. The frequency of coherence ac-
tivity is controlled by adding to the coherence activity
loop a computational loop consisting of (a) additions on
registers or (b) additions/multiplications on independent
registers thereby increasing instruction-level parallelism,
and varying the number of iterations of this loop. Fig-
ure 1 presents SPC, IPC, and speedup obtained by con-
solidating threads on the same socket (or physical core)
relative to running on different sockets as the ratio of
computation to coherence activity in each outer loop is
varied using the two different computational loops. As

coherence activity (inter-socket coherence events per cy-
cle) increases, speedup from consolidation mirrors SPC,
but the performance gains and inflection points depend
on the application. For example, at roughly the same co-
herence activity of 1.2 × 10−3 coherence events/cycle,
consolidation on different physical cores in the same
socket results in a speedup of 1.5 for the microbench-
mark on the left and 2.4 for the one on the right. The cor-
responding SPC is 436 and 677, respectively, allowing
clear prioritization of the microbenchmark on the right
for consolidation.

3.2 Placement on Hyperthreads

Modern processors are often equipped with hyper-
threads or other equivalent logical hardware contexts that
share the processor pipeline and private caches. Hy-
perthreads improve processor occupancy and efficiency
by providing multiple instruction streams/hardware con-
texts to keep functional units busy. At the same time,
since the hardware contexts share pipeline resources and
private caches, contention for these resources can slow
the performance of the individual contexts, presenting
performance isolation challenges.

Placing tasks that share data on hyperthreads that share
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a physical core allows shared data to be accessed directly
from the private caches (without traffic on the intra- and
inter-socket interconnects), with the potential for a sig-
nificant performance boost. This advantage is condi-
tional on the data being retained in the cache until the
time of access by the sharing task, requiring temporal
proximity of the accesses to the shared data.

Parameter Thresholds: Figure 1 shows the impact
on performance for different task placement strategies.
When coherence activity is moderate (< 0.78 × 10−3)
and IPC is sufficiently high (> 0.9), colocating tasks on
different physical cores in the same socket results in the
best performance. The resource contention introduced
by hyperthreading results in slowdowns that are not over-
come by the potential for direct access to shared data
(the shared counter) from the private cache shared by the
tasks. Hence, if placement on the same socket requires
sharing physical cores, distributing tasks across sock-
ets works better than colocating them on hyperthreads.
However, when coherence activity increases further and
IPC is less than 0.9, the benefits of colocating tasks that
share data exceed the cost of contention. At very high
levels of data sharing, indicated by high coherence activ-
ity (> 0.78 × 10−3) and SPC values in excess of 550,
the benefits of hyperthreading greatly exceed that of us-
ing different physical cores on the same socket. In such
cases, consolidation on hyperthreads in the same physi-
cal core can provide both performance and energy sav-
ings using Intel’s powerstepping (the latter has not been
explored in this paper).

To summarize, when coherence activity is high (>
0.78 × 10−3), (higher) SPC is used to prioritize appli-
cations for consolidation and (lower) IPC is used to de-
termine whether hyperthreading is beneficial. When co-
herence activity is moderate or low (< 0.78 × 10−3),
(higher) IPC is used to prioritize distribution over con-
solidation.

3.3 Setting up Performance Counters

We use two machines to evaluate our performance: a
dual-socket IvyBridge and a quad-socket Haswell. Each
processor from the two microarchitectures contain 10
physical cores with 2 hardware contexts/hyperthreads
each. Each physical core has a private L1 and L2 cache
and share a last level L3 cache with other cores in the
processor. We use SAM’s infrastructure [22] to access
the hardware performance counters provided by Intel’s
PMU (Performance Monitoring Unit). Each hardware
context has only four programmable counters in addition
to the fixed counters: instructions, cycles, and unhalted
cycles. We use time multiplexing across two time peri-
ods to sample eight performance counters.

We use the same counters as SAM to monitor

intra-socket coherence activity, inter-socket coherence
activity, remote DRAM accesses, and overall band-
width consumption. Additionally, we also monitor the
CYCLE ACTIVITY: STALL CYCLES L2 PENDING
event to count the stalls on cache accesses. The counts
are normalized using unhalted cycles for the interval of
their collection and accumulated in a data structure main-
tained in the task control block.

4 Latency Tolerance- and Sharing-Aware
Mapping

4.1 Implementation Mechanisms

Our mapper is implemented as a kernel module that
is executed by a daemon process with root privilege.
Hardware performance counters are read at every sys-
tem timer interrupt (tick) and the information gathered
is stored in the task control block of the currently run-
ning task. Our mapper is invoked every 100ms, at which
time data from the currently executing tasks is consoli-
dated into per-application and per-socket data structures.
The daemon maintains a per application data structure
for currently active (executing) applications in order to
allow grouping of tasks belonging to the same applica-
tion (based on address space). This data structure keeps
track of application history, including current application
classification. The per-socket data structure used for de-
termining memory bandwidth requirements and remote
memory accesses is identical to that used in SAM [22].

Once the mapper decides on task to core mapping, task
migration is effected by updating processor affinity. We
use the sched setaffinity kernel call to update the
processor affinity of a task. Note that task migration
takes place at the next Linux scheduling operation and
is required only if tasks are not already colocated. Our
decision making logic thereby co-exists with other load
balancing operations in Linux.

4.2 Data Consolidation

The hardware performance counter values collected
and stored in task control blocks are used to infer inter-
and intra-socket coherence activity, memory bandwidth
utilization, remote memory accesses, and latency toler-
ance. The inferred values are then used to categorize
tasks as having: 1) low, medium, or high coherence ac-
tivity; 2) low or high memory bandwidth demand; and
3) low or high IPC, based on thresholds as discussed in
Section 3.

The per-task information is aggregated to obtain per-
socket information on memory bandwidth and inter-
socket coherence activity. The per-task information is
also used to categorize the parent application as incur-
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ring 1) low, medium, or high coherence activity; and 2)
low or high IPC, based on the task with the most coher-
ence activity.

4.3 Mode-based Phase Identification

SAM’s original adaptation strategy is reactive in that
changes in application behavior (phase identification) in
one interval trigger a potential re-mapping in the next in-
terval. Reactive adaptation works well when application
behavior is relatively stable with few transitions. How-
ever, frequent phase transitions can potentially lead to
oscillating placement decisions with a resulting reduc-
tion rather than improvement in performance.

In this paper, we explore the use of history over mul-
tiple past intervals [8]. For each application, a history of
interval classification — whether the interval was classi-
fied as incurring medium or high coherence activity and
high compute intensity (IPC) levels — is maintained for
the last n intervals. This history is maintained in three
64 bit integers using shift operations (to shift in a 1 when
a particular interval exhibits the behavior). Bit masking
and counting are used to determine the occurrence count
of each of the bottlenecks. If the occurrence count for a
bottleneck exceeds a threshold, we identify the applica-
tion as suffering from the bottleneck in the next interval.
The recent inclusion of the popcnt instruction in the In-
tel ISA results in very fast bit counting operations, allow-
ing low overhead examination. The occurrence threshold
builds hysteresis into this feedback control loop, thereby
preventing oscillatory behavior. In our implementation,
we set n to 10 and the occurrence threshold to 6. We
analyze the sensitivity of this threshold and its impact on
performance in Section 5.4.

If the number of intervals with high coherence activity
exceeds the predefined threshold, the current interval is
classified as incurring high coherence activity even if the
performance counters for the current interval reflect low
coherence activity. This strategy for classification helps
avoid task migrations due to transient application behav-
ior as well as avoids oscillatory mappings due to frequent
phase transitions.

A cumulative count of the stalls due to inter-socket
coherence activity, instructions executed, and cycles
elapsed since the last phase transition is maintained in
order to calculate SPC and IPC. In an interval with low
inter-socket coherence activity and high intra-socket co-
herence activity, accumulation is suppressed in order to
retain SPC and IPC information from the interval where
the phase transition was detected. The goal is to re-
tain SPC and IPC information gathered during an inter-
socket placement (prior to colocation) for the purposes of
prioritization. Based on thresholds, if the classification
changes, the cumulative counters are reset to the values

for the current interval.

4.4 Hyperthread and Latency Tolerance-
Aware Mapping Policy

Presuming that all hardware contexts are busy, the
mapping task consists of placing m tasks on m hardware
contexts so that there is a 1 : 1 correspondence between
tasks and hardware contexts. Applications in the high-
est coherence activity phase are prioritized and mapped
first. These applications are sorted by their SPC values
and scheduled in order. Applications whose SPC val-
ues are not known are placed at the end of the list, but
are still scheduled ahead of applications with low data
sharing. For each application, tasks that share data with
each other are selected for colocation by updating their
core affinities. If tasks do need colocation, we look for a
socket that has not been assigned any task during the cur-
rent round of mapping. If a sufficient number of cores in
a single socket cannot be found, we colocate the threads
on the least number of sockets possible.

We then look at applications with moderate levels of
activity. They are sorted in order of IPC and applica-
tions with the smallest IPC are prioritized for colocation.
When we encounter threads with IPC values greater than
the IPC threshold (0.9), we alter the mapping to prohibit
the threads from sharing the same physical core. If such a
situation is unavoidable inside the same socket, we look
to other sockets to determine if performance loss can be
avoided. Alternately, if the SPC value of high data shar-
ing applications is more than 550, tasks of that applica-
tion are preferentially placed on hyperthreads to derive
benefits from very high data sharing.

5 Evaluation

Our evaluation was conducted on two machines. The
first is our development platform and is a dual-socket
machine, equipped with 2.2 GHz Intel Xeon E5-2660
v2 processors from the Ivy Bridge architecture. Each
socket can accommodate up to 20 hardware contexts on
10 physical cores, sharing a last-level cache of 25MB.
Each socket is directly connected to 8GB local DRAM
memory, resulting in non-uniform access to a total of
16GB DRAM memory. This machine is labeled 40-CPU
IvyBridge.

The second machine contains four sockets, equipped
with 1.9 GHz Intel Xeon E7-4820 v3 processors from
the Haswell architecture. Each processor accommodates
up to 20 hardware contexts and has up to 64 GB of lo-
cal DRAM per socket for a total of 256GB DRAM. This
machine is labeled 80-CPU Haswell.

The operating system we use is Fedora 19 and the ker-
nel was compiled using GCC 4.8.2. Linux kernel (ver-
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sion 3.14.8) was modified to accommodate the changes
needed for our techniques.

We compare the performance of our sharing-aware
mapper, SAM-MPH, with that of SAM [22] and de-
fault Linux. In order to attribute the performance im-
provements in SAM-MPH, we also show incremental
performance gained due to identifying and prioritizing
task placement based on latency tolerance (SAM-M), hy-
perthreading aware mapping (SAM-H), and using his-
tory across multiple intervals to indentify phase changes
(SAM-P).

5.1 Benchmarks

We use a combination of microbenchmarks, SPEC-
CPU [1], PARSEC [3], and several parallel and graph-
based benchmarks in order to evaluate SAM-MPH.

Similar to SAM, we use microbenchmarks to stress the
coherence protocol and memory bandwidth. HuBench
and LuBench contain pairs of threads sharing data with
each other to generate coherence traffic. HuBench gen-
erate high coherence activity and is very sensitive to
data sharing latencies while LuBench has enough thread-
private computation to hide its data sharing latency.
MemBench is a memory intensive microbenchmark that
uses multiple threads to access thread-private memory
in a streaming fashion. These threads saturate memory
bandwidth on one socket, therefore benefiting from dis-
tribution across sockets to maximize resource utilization.

GraphLab [16] and GraphChi [14] are recent applica-
tion development tools specially suited for graph-based
parallel applications. Unlike the SPECCPU and most
PARSEC applications, graph-based processing involves
considerable data sharing across several workers. These
application are also much more dynamic, with tasks
actively being created and deleted, and going through
phases of computation that are vastly different in char-
acteristics, depending on the type of problem and the ac-
tive parallelism available in the input data. The unpre-
dictable and dynamic nature of these applications make
them good candidates for evaluating the effectiveness of
our mapper.

We use a variety of machine learning, data mining, and
data filtering applications for our evaluation—TunkRank
(Twitter influence ranking), Alternating Least Squares
(ALS) [28], Stochastic gradient descent (SGD) [12], Sin-
gular Value Decomposition (SVD) [11], Restricted Bolz-
man Machines (RBM) [10], Probabilistic Matrix Fac-
torization (PMF) [21], Biased SGD [11], and Lossy
SDG [11].

In addition to the above workloads, we also evaluate
our implementation on MongoDB, a very widely used
data management server. The load for MongoDB is gen-
erated by YCSB (Yahoo! Cloud Serving Benchmark).

5.2 Standalone Application Evaluation

Figure 2 shows that for most cases, standalone appli-
cation performance on SAM-MPH is as good and some-
times better than a static optimum schedule. SAM-MPH
and the other variants significantly outperform Linux in
almost all cases. Linux generally distributes load across
sockets and cores while SAM can detect and respond to
data sharing and resource contention but not at the hy-
perthread level. For these standalone applications, SAM
is already able to identify and isolate data sharing to
achieve close to the best static schedule. SAM-M and
SAM-MP thus add little extra benefit. SAM-MPH is able
to identify all the bottlenecks exposed by SAM and out-
performs it in 5 cases, demonstrating the importance of
considering resource contention at the hyperthread level
and of eliminating migrations due to transient application
behavior.

With LuBench, PMF, RBM, SVD, and ALS, SAM-
MPH performs better than SAM. SAM underperforms
Linux in the case of LuBench. LuBench with 20 threads
incurs non-trivial data sharing, which prompts SAM
to colocate the threads if possible. However, when
LuBench executes on two hardware contexts on the same
physical core, single thread performance is significantly
affected due to contention for pipeline resources. Since
Linux by default spreads load out across sockets, it
avoids the resource contention on hardware contexts.
SAM-MPH identifies both data sharing and pipeline re-
source contention in LuBench and prioritizes pipeline re-
source contention as the bigger bottleneck in this case.

For applications PMF, SVD, RBM, and ALS, both
Linux and SAM perform very close to the static opti-
mum schedule with SAM being slightly faster. However,
SAM-MPH outperforms the best static schedule by a sig-
nificant margin for PMF and a slight margin for the rest.
The best static schedule, as the name suggests, does not
adapt to dynamic phases in the application. These four
applications exhibit phases that share data and phases
that contend for pipeline resources when colocated on
hyperthreads. Since SAM-MPH is able to identify these
different phases of computation and adapt accordingly to
the bigger bottleneck, it is able to perform better than the
best static schedule.

Figure 3 shows the intra- and inter-socket coher-
ence activity for the standalone applications on the 40-
CPU IvyBridge. In general, SAM is able to suppress
inter-socket coherence activity slightly better than SAM-
MPH. This slight reduction is attributed to SAM’s deci-
sion making based on a single interval at a time. SAM-
MPH relies on past history (consisting of several inter-
vals) to detect application characteristics, resulting in
higher hysteresis. The hysteresis has negligible impact
on performance. For the five applications discussed
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Figure 3: Intra- and Inter-socket traffic for standalone applications. Fig. (A): per-thread inter-socket coherence activity;
Fig. (B): per-thread intra-socket coherence activity; All values are normalized to unhalted CPU cycles.

above, SAM-MPH has less intra-socket coherence ac-
tivity than SAM, since it sometimes avoids colocating
threads onto hyperthreads to reduce resource contention
on the hyperthreads.

Table 1 outlines information about each application,
with major and minor factors that influence its perfor-
mance. It also shows the Stalls incurred per inter-socket
coherence event (SPC). The SPC value reported here is
averaged across all high communication phases of the
application. We can see for SGD, LSGD, SVD, and
BSGD, higher SPC translates to higher performance im-

provement on colocation.
RBM also exhibits high SPC values but its perfor-

mance improvement doesn’t directly correlate to SPC.
This is attributed to the fact that RBM also has compute
heavy phases which do not get significant speedup on
colocation. Additionally, it would have to be placed on
separate physical cores rather than on hyperthreads. Due
to these factors, the overall speedup gained during the
high coherence phase does not fully translate to very high
performance gain.

PMF and ALS have moderate levels of coherence ac-
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Application SPC Major Minor
Bottleneck Bottleneck

HuBench (20t) 745 DS None
LuBench (10t) 367 IPC DS
LuBench (20t) 367 IPC DS
MemBench (10t) - Memory None
MemBench (20t) - Memory None
SGD (20t) 398 DS None
BSGD (20t) 421 DS None
LSGD (20t) 455 DS None
RBM (20t) 403 DS IPC
SVD (20t) 442 DS IPC
PMF (10t) - None IPC and DS
PMF (20t) - None IPC and DS
ALS (10t) - None IPC and DS
ALS (20t) - None IPC and DS

Table 1: Application characteristics and SPC values. DS:
Data Sharing: high coherence activity; IPC: Instructions
Per Cycle: instruction-level parallelism with high CPU
demand; Memory: Memory bound: high memory band-
width demand.

tivity during which IPC is used for colocation decisions
rather than SPC, since SPC cannot be obtained reliably
at these levels as explained in Section 3. Hence the
SPC value is not reported. When IPC is > 0.9, which
is frequently the case for these applications, threads are
preferentially placed on separate physical cores in the
same socket, with placement across sockets preferred
over placement on hyperthreads.

In addition to parallel data sharing workloads, we
evaluate SAM-MPH on MongoDB, generating load with
YCSB threads, both running on the same machine. For
this workload, SAM-MPH and SAM perform very sim-
ilarly. We observe an improvement of about 3.67% and
6.6% on the larger and smaller evaluation platforms re-
spectively. The marginal improvement is a result of a
small amount of data being shared by the threads of the
application.

Our experiments with the PARSEC and SPECCPU
benchmarks show very similar results to SAM and thus
we do not discuss them further in this paper.

Figure 4 shows the results of SAM-MPH, SAM, and
the default Linux scheduler on the 80-CPU Haswell.
Overall, these results are very similar to results on the 40-
CPU IvyBridge: SAM-MPH is able to match and some-
times exceed the performance of the best static schedule.
The 80-CPU Haswell, with twice the number of sock-
ets and cores as the 40-CPU IvyBridge, shows the per-
formance gap between SAM-MPH and Linux widening
further. SAM-MPH halves the execution time of applica-
tions compared to the default Linux scheduler. On aver-
age, for standalone workloads, SAM-MPH is 57% faster
than Linux. It also matches or exceeds the performance
of the best static schedule.
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Figure 4: Performance of standalone applications us-
ing SAM-MPH, SAM, and default Linux on the 80-CPU
Haswell. The performance metric is the execution time
speedup (the higher the better) compared to that of the
best static task→CPU mapping determined through of-
fline testing.

5.3 Multiprogrammed Workload Evaluation

Applications in multiprogrammed workloads interfere
with each other in different ways, depending on the char-
acteristics of applications in the mix and the phase of
their execution. This interference may result in slow-
down of some or all of the applications.

Table 2 shows various application mixes that are used
in the evaluation of SAM-MPH. The workload mixes
cover a wide range of application characteristics. In-
dividual applications can be affected due to contention
for the processor pipeline, cache space contention, con-
tention for memory bandwidth, communication due to
data sharing, and non-uniform communication latencies.
We expect SAM-MPH to be able to identify each of these
bottlenecks and perform task to core mapping in such a
way that would minimize the negative impact on perfor-
mance due to resource contention and non-uniformity in
communication.

Figure 5 shows the performance of SAM-MPH for the
multiprogrammed workloads on the 40-CPU IvyBridge.
Our performance metric for application mixes is the geo-
metric mean of the individual application speedups, cal-
culated for each application in a workload mix by com-
paring its runtime to that of its best standalone static run-
time.

On average, SAM-MPH is about 27% faster than stock
Linux and 9% faster than SAM. More importantly, appli-
cations managed by SAM-MPH show very little degra-
dation in performance when compared with the best stan-
dalone static schedule. It must be noted that for many
workload mixes, it is not possible to get numbers match-
ing the standalone static schedule due to resource con-
tention. The average speedup for SAM-MPH is 0.976,
proving that applications seldom show signs of slow-
down. The minimum speedup with SAM-MPH is 0.93.

SAM-MPH is able to improve SAM’s performance
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Figure 5: Performance of multiprogrammed workloads using SAM-MPH, SAM-MP, SAM-M, SAM, and default
Linux on the 40-CPU IvyBridge. The performance metric is the geometric mean of the individual application speedup
(higher is better) compared to execution time obtained for a standalone run using the best static task→CPU mapping
determined through offline testing.

primarily due to 2 factors. First, SAM-MPH can pri-
oritize applications that are more sensitive to bottlenecks
base on latency tolerance, while SAM cannot distinguish
tasks that are more sensitive to communication from oth-
ers that are capable of absorbing the latency. Using ap-
plication phase detection and accurate metrics that are
deduced in these phases, SAM-MPH is able to under-
stand the performance impact of communication due to
data sharing.

Second, SAM-MPH identifies potential slowdown
when putting two tasks on logical threads on the same
physical core. Using this knowledge, it attempts to pair
up applications such that they benefit from being placed
on logical threads. If that is not possible, it attempts to
schedule tasks so that they do not contend highly for the
processor pipeline.

SAM-MPH’s ability to identify data sharing and its
impact on performance is the primary reason for the ob-
served speedups in workloads 1–11. In each of these
workloads, all applications exhibit data sharing. It is not
possible to schedule all tasks such that tasks of an appli-
cation remain inside the socket. SAM-MPH is able to
prioritize applications that are more sensitive to the la-
tency of communication due to data sharing.

In these workloads, ALS and PMF are the applica-
tions that are given the least priority and hence spread
out across sockets. As discussed previously, these appli-
cations exhibit high ILP that is able to absorb the data
communication latency. In addition to leveraging the
tasks’ ability to hide latency, SAM-MPH also identifies
that ALS and PMF contend for the processor pipeline

and avoids pairing their tasks together on the same phys-
ical core. Instead, SAM-MPH pairs each of their tasks
with a task from the other applications to minimize re-
source contention. It is the combination of the these op-
timizations that yield consistent increase in performance
of over 26% for these workloads.

SAM-M, being able to prioritize applications, can per-
form better than SAM. For workloads 1–11, SAM-M im-
proves performance over Linux and SAM by 21% and
5% respectively. However, SAM-MP is faster than Linux
and SAM by 25% and 8% respectively, demonstrating
that SAM-MP’s robustness adds value. SAM-MPH ad-
ditionally mitigates contention on hyperthreads (due to
ALS, RBM, and PMF), and is able to improve over
SAM-MP to achieve performance closest to the stan-
dalone static schedule. SAM-MPH outperforms Linux
and SAM by 30% and 13%.

For workloads 12–18, SAM-MPH identifies two ap-
plications with data sharing. The ideal decision for these
workloads is to pin one application on each socket to lo-
calize all communication within a socket, which SAM-
MPH and its variants correctly arrive at. SAM performs
significantly slower since it does not have the notion of
task groups and therefore is not able to separate the tasks.
SAM relies on iteratively moving tasks onto the same
socket since successful migrations will not cause addi-
tional inter-socket communication. Though this method
works well in comparison with Linux, it does not achieve
runtimes close to the optimal static runtime.

Workloads 19–21 contain applications with data shar-
ing running simultaneously with other memory and CPU
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Multiprog.
workload # Application mixes
1 12 ALS, 14 SGD, 14 LSGD
2 12 ALS, 14 SGD, 14 BSGD
3 12 ALS, 14 BSGD, 14 LSGD
4 12 ALS, 14 SVD, 14 BSGD
5 12 ALS, 14 SVD, 14 LSGD
6 12 ALS, 14 SVD, 14 SGD
7 12 ALS, 14 SVD, 14 RBM
8 12 ALS, 14 SGD, 14 RBM
9 12 PMF, 14 SGD, 14 RBM
10 12 PMF, 14 SGD, 14 BSGD
11 12 PMF, 14 SGD, 14 LSGD
12 20 SGD, 20 BSGD
13 20 SGD, 20 LSGD
14 20 SGD, 20 SVD
15 20 BSGD, 20 LSGD
16 20 LSGD, 20 ALS
17 20 LSGD, 20 SVD
18 20 BSGD, 20 SVD
19 6 SGD, 6 BSGD, 4 Mem, 4 CPU
20 6 BSGD, 6 LSGD, 4 Mem, 4 CPU
21 6 SGD, 6 LSGD, 4 Mem, 4 CPU
22 10 SGD, 10 BSGD
23 10 SGD, 10 LSGD
24 10 LSGD, 10 BSGD
25 10 LSGD, 10 ALS
26 10 SVD, 10 SGD
27 10 SVD, 10 BSGD
28 10 SVD, 10 LSGD
29 8 SVD, 8 LSGD
30 6 SVD, 6 LSGD

Table 2: Multiprogrammed application mixes. For each
mix, the number preceding the application’s name indi-
cates the number of tasks it spawns. We use several com-
binations of applications to evaluate scenarios with vary-
ing data sharing and memory utilization.

bound tasks. These cases demonstrate the capability to
balance load and resource utilization alongside reducing
latency due to communication. In these cases, SAM-
MPH and its variants achieve close to the standalone per-
formance. SAM underperforms due to its inability to
form groups between the two data sharing applications.
It does, however, balance load and resource utilization.
Workloads 23–30 also exhibit data sharing characteris-
tics but use only 20 out of the 40 hardware contexts that
are available. In these cases, SAM attempts to colo-
cate all threads onto the same socket. This eliminates
all inter-socket coherence traffic but increases pressure
and contention for the last-level cache. Since SAM-MPH
and its variants identify task grouping, they separate the
two groups on the two available sockets, further reducing
contention and eliminating communication due to data
sharing.
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Figure 6: Performance of multiprogrammed workloads
using SAM-MPH, SAM, and default Linux on the 80-
CPU Haswell. The performance metric is the geomet-
ric mean of the individual application speedup (higher is
better) compared to execution time obtained for a stan-
dalone run using the best static task→CPU mapping de-
termined through offline testing. Whiskers represent the
max-min speedup range for the individual applications
within each workload.

Figure 6 shows the results obtained for the work-
load mixes listed in Table 3 on the four-socket 80-CPU
Haswell. The workload mixes test SAM-MPH’s ability
to identify phases in applications that are most sensitive
to data sharing. It also examines how SAM-MPH scales
to a bigger machine with twice the number of proces-
sors and cores. We can see that SAM-MPH is able to
achieve significantly better performance for all the work-
load mixes.

On average, we observe a 21% improvement over
SAM and 43% improvement over stock Linux. While
a reduction in performance compared to standalone exe-
cution is inevitable due to resource contention in multi-
programmed workloads, SAM-MPH is able to reduce the
penalty. Performance improvement over Linux can be as
high as 61% for our multiprogrammed workloads, while
the minimum improvement was at 29% for workload 10.

Equally important, as the whisker plots in Figure 6
showing the minimum and maximum speedups for the
individual applications in each workload show for the 4-
socket 80-CPU Haswell machine, SAM-MPH reduces
performance disparity (a measure of fairness) across
applications in a workload in comparison to default
Linux. The geometric mean of the minimum applica-
tion speedup across all workload mixes is 0.889, 0.734,
and 0.571 for SAM-MPH, SAM, and default Linux re-
spectively. The corresponding values for the maximum
speedup are 0.989, 0.822, and 0.795. On the 2-socket
40-CPU IvyBridge machine, the geometric mean of the
minimum speedup is 0.953, 0.860, and 0.710, and that of
the maximum is 1.0003, 0.932, and 0.839 respectively.
Both SAM and SAM-MPH show a compressed spread.

5.4 Sensitivity Analysis

SAM-MPH relies on parameter thresholds to identify
bottlenecks. In addition to the thresholds used in SAM,
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Multiprog. Tasks Application
workload # per app mixes
1 20 SGD, BSGD, SVD
2 20 SGD, BSGD, SVD, ALS
3 20 SGD, BSGD, SVD, LSGD
4 20 SGD, BSGD, RBM, LSGD
5 20 SGD, BSGD, RBM, SVD
6 20 SGD, BSGD, RBM, ALS
7 16 SGD, SVD, ALS, LSGD, BSGD
8 16 SGD, SVD, PMF, BGSD, LSGD
9 16 RBM, LSGD, SVD, PMF, BSGD
10 16 RBM, LSGD, SVD, PMF, ALS
11 16 SVD, SGD, RBM, BSGD, LSGD

Table 3: Multiprogrammed application mixes for exper-
iments on the 80-CPU Haswell.

we use SPC and IPC values to prioritize task colocation
based on latency tolerance and contention for pipeline
resources. In this section, we look at sensitivity of SAM-
MPH’s behavior to these parameter thresholds. We in-
crease/decrease the thresholds in steps of 5% to analyze
the sensitivity of performance to these thresholds.

IPC is used to decide if tasks can be colocated on the
same physical core. If the IPC threshold is too high, it is
possible to map two compute intensive tasks on the same
physical core, thereby slowing both down. A threshold
increase of 20% (new IPC threshold of 1.08) can result
in a performance reduction of about 7% on PMF. If the
IPC threshold is too low, the mapper can miss a potential
window to improve performance by colocating tasks that
share data on the same physical core, thereby improving
their performance and reducing contention by eliminat-
ing traffic on intra- and inter-socket interconnects. In our
experiments, lowering the IPC threshold by 30% (new
IPC threshold of 0.63) results in a loss in performance of
18% for the SGD application with 20 threads. The re-
duction in threshold created a false need to spread tasks
across sockets in order to avoid colocating them on the
same physical core, resulting in the slowdown.

SPC is used to prioritize applications when they are
observed to have high coherence activity. Since SPC is
approximated by attributing stalls due to all cache misses
to coherence activity, SPC is reliable only at higher co-
herence activity levels. The coherence activity threshold
used to identify when SPC is reliable is important to per-
formance. We find a performance reduction of over 15%
for mixed workload 8 when the threshold was increased
by 30% (from 0.78×10−3 to 1.01×10−3) due to missed
opportunities. When the threshold is reduced by 50%
(from 0.78 × 10−3 to 0.39 × 10−3), we lose over 30%
performance for workload 1 due to improper prioritiza-
tion of applications.

Overall, we observe that while the value of the param-

eters is important to performance, SAM-MPH shows sta-
ble behavior over a reasonably broad range of values for
these important parameters. In fact, we used the same
thresholds, scaled for frequency, on the two platforms.

5.5 Overhead Assessment

SAM-MPH functionality can be divided into three dis-
tinct parts. The implementation complexity of each of
these dictate the overall overhead of SAM-MPH. First,
performance counters are read every 1 mSec. Second,
every 100 mSecs, performance counter data is consoli-
dated: application and socket-level bottlenecks are iden-
tified to be used to map tasks to cores. Finally, task
mapping decisions are taken in order to improve perfor-
mance. In order to measure the overhead of SAM-MPH,
we perform a piecewise estimation since the implemen-
tation overhead is well within measurement error.

Reading performance counters are done at intervals of
1 mSec and consume 8.89µSecs per call. This overhead
is constant and does not vary with the number of proces-
sors/active tasks. Data consolidation, performed every
100 mSecs can consume a varying amount of time, pri-
marily depending on the number of active applications.
Worst case time consumption per SAM-MPH mapping
call, including decision making and thread migration is
230 uSecs. Worst case behavior can be observed when
each active task is its own application. The same over-
head for when all cores are utilized but by only one ap-
plication is about 14 uSecs. The additional overhead of
over 200 uSecs is added by code that groups tasks into
applications using address space information. The more
distinct applications, the more the time spent on attribut-
ing tasks to applications. In most practical situations
however, the number of applications will be significantly
fewer than the number of cores. Overall, SAM-MPH
adds a worst case overhead of just over 1%, which is far
outweighed by its benefits.

SAM-MPH’s data consolidation and decision making
is implemented in a centralized fashion using a daemon
process. On our machines, with 40 and 80 hardware
threads, this implementation methodology works well.
In the future, if SAM-MPH’s overheads become a lim-
itation, a distributed implementation may be warranted.

6 Related Work
Multicore resource contention and interference (par-

ticularly the shared last-level cache, off-chip bandwidth,
and memory) has been well studied in previous work.
Suh et al. [23] focus on minimizing cache misses using
hardware counter-assisted marginal gain analysis. Page
coloring [7, 26] has been used in the operating system
memory allocator to effectively partition cache space
without the need for specialized hardware features. Inter-
task interference at the DRAM memory level has been
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mitigated using parallelism-aware batch scheduling [18].
In an offline approach, Mars et al. [17] designed co-
running microbenchmarks to control pressure on shared
resources, and thereby predict the performance interfer-
ence between colocated applications. While these tech-
niques help manage resource contention, they do not ad-
dress the impact of non-uniform topology on traffic due
to data sharing.

ESTIMA [6] uses stall cycles to learn and predict ap-
plication scalability on larger core counts using an offline
approach. In contrast, our focus is on online multipro-
grammed workload scheduling. Rao et al. [20] discuss
using processor uncore pressure to minimize NUMA
induced bottlenecks when scheduling virtual machines.
While their approach of minimizing overall uncore pres-
sure works to mitigate resource contention, it is not ef-
fective in eliminating resource pressure caused by data
sharing.

Several efforts have also been made to automatically
determine sharing among tasks. Tam et al. [24] uti-
lized address sampling (available on Power processors)
to identify task groups with strong data sharing. Tang
et al. [25] relied on the number of accesses to “shared”
cache lines to identify intra-application data sharing. Our
past work [22] monitored and separated inter-CPU co-
herence activity from memory traffic to determine the
benefits of consolidating tasks on the same socket versus
distributing tasks across CPU sockets. Our work in this
paper makes two new contributions. First, we identify la-
tency tolerance in some workloads where inter-CPU co-
herence activity does not necessarily lead to CPU stalls
and performance degradation. Second, we identify when
the benefits of consolidating tasks on the same physical
core due to data sharing outweigh performance loss due
to contention for functional units and cache space.

Scheduling for simultaneous hardware multithreading,
e.g., Intel’s hyperthreads [13], has not been ignored in
the past. Early work by Nakajima and Pallipadi [19] pro-
posed two simple scheduling heuristics—1) task cache
affinity to one hyperthread infers affinity to its sibling hy-
perthread; 2) scheduler should prefer a CPU whose sib-
ling hyperthread is idle. Bulpin and Pratt [5] calibrated a
blackbox linear model that predicts hyperthreading per-
formance impact on a range of processor metrics. Their
blackbox model provides no semantics on the hypothet-
ical linear relationship and it is unclear how it applies
broadly to other processors. Work in this paper monitors
the cache coherence traffic, resulting stalls, and instruc-
tion retirement rates to understand the inter-CPU data
sharing and potential latency tolerance, and thereby in-
form hyperthread colocation decisions.

The scalability of multicore and hardware multithread-
ing has also been an emphasis in software system de-
signs. For instance, Zhang et al. [27] presented user-

space techniques (in the OpenMP runtime) to optimize
inter-hyperthread data locality, instruction mix, and load
balance. Multicore operating systems like Corey [4]
and Multikernel [2] are designed to minimize cross-
CPU sharing and synchronization for enhanced scalabil-
ity. More recently, Callisto [9] is an OpenMP runtime
system to handle synchronization and balance load on
multicores. These efforts to improve software scalabil-
ity are complementary to our CPU scheduling work—
e.g., reduced data sharing traffic in some software tasks
presents more flexibility to the scheduler that must con-
sider resource contention, data sharing, and load balanc-
ing issues among all system and application tasks.

7 Conclusions
This paper presents new advances in resolving the ten-

sion between data sharing and resource contention in
multicore task to core mapping. We make three spe-
cific contributions. First, we demonstrate the impor-
tance of identifying application latency tolerance, in ad-
dition to capturing data sharing traffic [22, 24, 25], in
determining the true benefits of application and thread
colocation. Second, we recognize that core-level shar-
ing must pay attention to resource contention between
hardware threads [5, 19] and show that a combination of
IPC and coherence activity thresholds can inform the per-
formance tradeoffs of core sharing. Third, we build an
adaptive CPU socket and core sharing scheduler, called
SAM-MPH, that uses history to avoid ineffective migra-
tions due to oscillatory or transient behavior.

We perform experiments with a broad range
of applications including SPEC CPU2000 [1],
the PARSEC parallel benchmark suite [3], and
GraphLab [16] / GraphChi [14] graph processing
applications. Evaluation on a dual-socket, 40-CPU
IvyBridge machine shows that SAM-MPH is 25% faster
than Linux for standalone applications. On a larger
80-CPU Haswell machine with 4 sockets, SAM-MPH
can halve the runtime of standalone workloads and
can improve performance over Linux by up to 61%
for multiprogrammed workloads. While SAM-MPH
relies on thresholds to identify resource bottlenecks,
our results show that performance is not sensitive to
precise threshold values. Finally, SAM-MPH’s runtime
overhead in performance counter collection, analysis,
and decision making is ∼1%, making it suitable for
production use.
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