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M u lt i c o r e  s y s t e M s  p r o M i s e  t o 
deliver increasing performance only if 
programmers make thread-level paral-
lelism visible in software. Unfortunately, 
multithreaded programs are difficult to 
write, largely because of the complexity 
of synchronization. Transactional memory 
(TM) aims to hide this complexity by raising 
the level of abstraction. Several software, 
hardware, and hybrid implementations 
of TM have been proposed and evalu-
ated, and hardware support has begun to 
appear in commercial processors. In this 
article we provide an overview of TM from 
a systems perspective, with a focus on 
implementations that leverage hardware 
support. We describe the principal hard-
ware alternatives, discuss performance and 
implementation tradeoffs, and argue that 
a classic “policy-in-software, mechanism-in-
hardware” strategy can combine excellent 
performance with the flexibility to accom-
modate different system goals and work-
load characteristics.

For more than 40 years, Moore’s Law has packed 
twice as many transistors on a chip every 18 
months. Between 1974 and 2004, hardware ven-
dors used those extra transistors to equip their pro-
cessors with ever-deeper pipelines, multi-way issue, 
aggressive branch prediction, and out-of-order exe-
cution, all of which served to harvest more instruc-
tion-level parallelism (ILP). Because the transistors 
were smaller, vendors were also able to dramati-
cally increase the clock rate. All of that ended 
about four years ago, when microarchitects ran out 
of independent things to do while waiting for data 
from memory, and when the heat generated by 
faster clocks reached the limits of fan-based cool-
ing. Future performance improvements must now 
come from multicore processors, which depend on 
explicit, thread-level parallelism. Four-core chips 
are common today, and if programmers can figure 
out how to use them, vendors will deliver hun-
dreds of cores within a decade. The implications 
for software are profound: Historically only the 
most talented programmers have been able to write 
good parallel code; now everyone must do it.
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Sadly, parallel programming is hard. Historically it has been limited mainly 
to servers, with “embarrassingly parallel” workloads, and to high-end sci-
entific applications, with enormous data sets and enormous budgets. Even 
given a good division of labor among threads (something that’s often diffi-
cult to find), mainstream applications are plagued by the need to synchro-
nize access to shared state. For this, programmers have traditionally relied 
on mutual exclusion locks, but these suffer from a host of problems, includ-
ing the lack of composability (one can’t nest two lock-based operations in-
side a new critical section without introducing the possibility of deadlock) 
and the tension between concurrency and clarity: Coarse-grain lock-based 
algorithms are relatively easy to understand (grab the One Big Lock, do 
what needs doing, and release it) but they preclude any significant parallel 
speedup; fine-grained lock-based algorithms allow independent operations 
to proceed in parallel, but they are notoriously difficult to design, debug, 
maintain, and understand.

Transactional Memory (TM) aims to simplify synchronization by raising the 
level of abstraction. As in the database world, the programmer or compiler 
simply marks a block of code as “atomic”; the underlying system then prom-
ises to execute the block in an “all-or-nothing” manner isolated from similar 
blocks (transactions) in other threads. The implementation is typically based 
on speculation: It guesses that transactions will be independent and executes 
them in parallel, but watches their memory accesses just in case. If a conflict 
arises (two concurrent transactions access the same location, and at least one 
of them tries to write it), the implementation aborts one of the contenders, 
rolls back its execution, and restarts it at a later time. In some cases it may 
suffice to delay one of the contending transactions, but this does not work if, 
for example, each transaction tries to write something that the other has al-
ready read.

TM can be implemented in hardware, in software, or in some combination 
of the two. Software-only implementations have the advantage of running on 
legacy machines, but it is widely acknowledged that performance competi-
tive with fine-grain locks will require hardware support. This article aims 
to describe what the hardware might look like and what its impacts might 
be on system software. We begin with a bit more detail on the TM program-
ming model and a quick introduction to software TM. We then describe sev-
eral ways in which brief, small-footprint transactions can be implemented 
entirely in hardware. Extension to transactions that overflow hardware 
tables or must survive a context switch are considered next. Finally, we 
describe our approach to hardware-accelerated software-controlled transac-
tions, in which we carefully separate policy (in software) from mechanism 
(in hardware).

Transactional Memory in a Nutshell

Although TM systems vary in how they handle various subtle semantic is-
sues, all are based on the notion of serializability: Regardless of implementa-
tion, transactions appear to execute in some global serial order. Writes by 
transaction A must never become visible to other transactions until A com-
mits, at which time all of its writes must be visible. Moreover, writes by 
other transactions must never become visible to A partway through its own 
execution, even if A is doomed to abort (for otherwise A might perform 
some logically impossible operation with externally visible effects). Some TM 
systems relax the latter requirement by sandboxing A so that any erroneous 
operations it may perform do no harm to the rest of the program.
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The principal motivation for TM is to simplify the parallel programming 
model. In some cases (e.g., if transactions are used in lieu of coarse-grain 
locks), it may also lead to performance improvements. An example appears 
in Fig. 1: If X ≠ Y, it is likely that the critical sections of Threads 1 and 2 can 
execute safely in parallel. Because locks are a low-level mechanism, they pre-
clude such execution. TM, however, allows it. If we replace the lock...unlock 
pairs with atomic{...} blocks, the typical TM implementation will execute the 
two transactions concurrently, aborting and retrying one of the transactions 
only if they actually conflict. 

Thread 1  Thread 2 
lock(hash_tab.mutex)  lock(hash_tab.mutex) 
  var = hash_tab.lookup(X);   var = hash_tab.lookup(Y); 
  if(!var)    if(!var) 
    hash_tab.insert(X);     hash_tab.insert(Y); 
unlock(hash_tab.mutex)  unlock(hash_tab.mutex) 

F i g u r e  1 :  L o s s  o F  p a r a L L e L i s m  a s  a  r e s u Lt  o F  L o c k s  [ 1 3 ]

iMpleMeNTaTioN

Any TM implementation based on speculation must perform at least three 
tasks: It must (1) detect and resolve conflicts between transactions execut-
ing in parallel; (2) keep track of both old and new versions of data that are 
modified speculatively; and (3) ensure that running transactions never per-
form erroneous, externally visible actions as a result of an inconsistent view 
of memory.

Conflict resolution may be eager or lazy. An eager system detects and re-
solves conflicts as soon as a pair of transactions have performed (or are 
about to perform) operations that preclude committing them both. A lazy 
system delays conflict resolution (and possibly detection as well) until one 
of the transactions is ready to commit. The losing transaction L may abort 
immediately or, if it is only about to perform its conflicting operation (and 
hasn’t done so yet), it can wait for the winning transaction W to either abort 
(in which case L can proceed) or commit (in which case L may be able to 
occur after W in logical order).

Lazy conflict resolution exposes more concurrency by permitting both 
transactions in a pair of concurrent R-W conflicting transactions to commit 
so long as the reader commits (serializes) before the writer. Lazy conflict res-
olution also helps in ensuring that the conflict winner is likely to commit: If 
we defer to a transaction that is ready to commit, it will generally do so, and 
the system will make forward progress. Eager conflict resolution avoids in-
vesting effort in a transaction L that is doomed to abort, but it may waste the 
work performed so far if it aborts L in favor of W and W subsequently fails 
to commit owing to conflict with some third transaction T. Recent work [17, 
22] suggests that eager management is inherently more performance-brittle 
and livelock-prone than lazy management. The performance of eager sys-
tems can be highly dependent on the choice of contention management (arbi-
tration) policy used to pick winners and losers, and the right choice can be 
application-dependent.

Version management typically employs either direct update, in which specula-
tive values are written to shared data immediately and are undone on abort, 
or deferred update, in which speculative values are written to a log and re-
done (written to shared data) on commit. Direct update may be somewhat 
cheaper if—as we hope—transactions commit more often than they abort. 



; LO G I N : 	A pr I L 	20 0 9	 tA ppI N G	I NtO	pA r A LLe LI sm	wIth	tr A N sAc tI O N A L	m emO ry	 15

Systems that perform lazy conflict resolution, however, must generally use 
deferred update, to enable parallel execution of (i.e., speculation by) conflict-
ing  writers.

a brief look aT sofTware TM

To track conflicts in the absence of special hardware, a software TM (STM) 
system must augment a program with instructions that read and write some 
sort of metadata. If program data are read more often than written (as is 
often the case), it is generally undesirable for readers to modify metadata, 
since that tends to introduce performance-sapping cache misses. As a result, 
readers are invisible to writers in most STM systems and bear full responsi-
bility for detecting conflicts with writers. This task is commonly rolled into 
the problem of validation—ensuring that the data read so far are mutually 
consistent.

State-of-the-art STM systems perform validation on every nonredundant 
read. The supporting metadata varies greatly: In some systems, a reader in-
spects a modification timestamp or writer (owner) id associated with the 
location it is reading. In other systems, the reader inspects a list of Bloom 
filters that capture the write sets of recently committed transactions [21]. In 
the former case, metadata may be located in object headers or in a hash table 
indexed by virtual address.

Figure 2 shows the overhead of an STM system patterned after TL2 [5], 
running the STAMP benchmark suite [12]. This overhead is embedded in 
every thread, cannot be amortized with parallelism, and in fact tends to 
increase with processor count, owing to contention for metadata access. 
Here, versioning adds 2%–150% to program run time, while conflict detec-
tion and validation add 10%–290%. Static analysis may, in some cases, be 
able to eliminate significant amounts of redundant or unnecessary valida-
tion, logging, and memory fence overhead. Still, it seems reasonable to ex-
pect slowdowns on the order of factors of 2–3 in STM-based code, relative to 
well-tuned locks, reducing the potential for their adoption in practice.

F i g u r e  2 :  e x e c u t i o n  t i m e  b r e a k d o w n  F o r  s i n g L e - t h r e a d 
r u n s  o F  a  t L 2 - L i k e  s t m  s y s t e m  o n  a p p L i c a t i o n s  F r o m  s t a m p, 
u n i n s t r u m e n t e d  c o d e  r u n  t i m e  =  1
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Hardware for small Transactions

On modern processors, locks and other synchronization mechanisms tend 
to be implemented using compare-and-swap (CAS) or load-linked/store-
conditional (LL/SC) instructions. Both of these options provide the ability 
to read a single memory word, compute a new value, and update the word, 
atomically. Transactional memory was originally conceived as a way to ex-
tend this capability to multiple locations.

HerliHy aNd Moss

The term “transactional memory” was coined by Herlihy and Moss in 1993 
[9]. In their proposal (“H&M TM”), a small “transactional cache” holds spec-
ulatively accessed locations, including both old and new values of locations 
that have been written. Conflicts between transactions appear as an attempt 
to invalidate a speculatively accessed line within the normal coherence pro-
tocol and cause the requesting transaction to abort. A transaction commits 
if it reaches the end of its execution while still in possession of all specula-
tively accessed locations. A transaction will always abort if it accesses more 
locations than will fit in the special cache, or if its thread loses the processor 
as a result of preemption or other interrupts.

oklaHoMa updaTe

In modern terminology, H&M TM called for eager conflict resolution. A 
contemporaneous proposal by Stone et al. [23] envisioned lazy resolution, 
with a conflict detection and resolution protocol based on two-phase com-
mit. Dubbed the “Oklahoma Update” (after the Rogers and Hammerstein 
song “All er Nuthin’ ”), the proposal included a novel solution to the doomed 
transaction problem: As part of the commit protocol, an Oklahoma Update 
system would immediately restart any aborted competing transactions by 
branching back to a previously saved address. By contrast, H&M TM re-
quired that a transaction explicitly poll its status (to see if it was doomed) 
prior to performing any operation that might not be safe in the wake of in-
consistent reads.

aMd asf

Recently, researchers at AMD have proposed a multiword atomic update 
mechanism as an extension to the x86-64 instruction set [6]. Their Ad-
vanced Synchronization Facility (ASF), although not a part of any current 
processor roadmap, has been specified in considerable detail. As H&M TM 
does, it uses eager conflict resolution, but with a different contention man-
agement strategy: Whereas H&M TM resolves conflicts in favor of the trans-
action that accessed the conflicting location first, ASF resolves it in favor of 
the one that accessed it last. This “requester wins” strategy fits more easily 
into standard invalidation-based cache coherence protocols, but it may be 
somewhat more prone to livelock. As Oklahoma Update does, ASF includes 
a provision for immediate abort.

suN rock

Sun’s next-generation UltraSPARC processor, expected to ship in 2009 [7], 
includes a thread-level speculation (TLS) mechanism that can be used to 
implement transactional memory. As do H&M TM and ASF, Rock [24] uses 
eager conflict management; as does ASF, it resolves conflicts in favor of the 
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requester. As do Oklahoma Update and ASF, it provides immediate abort. In 
a significant advance over these systems, however, it implements true pro-
cessor checkpointing: On abort, all processor registers revert to the values 
they held when the transaction began. Moreover, all memory accesses within 
the transaction (not just those identified by special load and store instruc-
tions) are considered speculative.

sTaNford Tcc

Although still limited (in its original form) to small transactions, the Trans-
actional Coherence and Consistency (TCC) proposal of Hammond et al. 
[8] represented a major break with traditional concepts of memory access 
and communication. Whereas traditional threads (and processors) interact 
via individual loads and stores, TCC expresses all interaction in terms of 
transactions.

Like the multi-location commits of Oklahoma Update, TCC transactions 
are lazy. Individual writes within the transaction are delayed (buffered) and 
propagated to the rest of the system in bulk at commit time. Commit-time 
conflict detection and resolution employ either a central hardware arbiter or 
a distributed two-phase protocol. As in Rock, doomed transactions suffer an 
immediate abort and roll back to a processor checkpoint.

discussioN

A common feature of the systems described in this section is the careful le-
veraging of existing hardware mechanisms. Eager systems (H&M TM, ASF, 
and Rock) leverage existing coherence protocol actions to detect transaction 
conflicts. In all five systems, hardware avoids most of the overhead of both 
conflict detection and versioning. At the same time, transactions in all five 
can abort simply because they access too much data (overflowing hardware 
resources) or take too long to execute (suffering a context switch). Also, al-
though the systems differ in both the eagerness of conflict detection and 
resolution and the choice of winning transaction, in all cases these policy 
choices are embedded in the hardware; they cannot be changed in response 
to programmer preference or workload characteristics.

unbounded Transactions

Small transactions are not sufficient if TM becomes a generic programming 
construct that can interact with other system modules (e.g., file systems and 
middleware) that have much more state than the typical critical section. 
It also seems unreasonable to expect programmers to choose transaction 
boundaries based on hardware resources. What is needed are low-overhead 
“unbounded” transactions that hide hardware resource limits and per-
sist across system events (e.g., context switches, system calls, and device 
 interrupts).

To support unbounded transactions, a TM system must virtualize both con-
flict detection and versioning. In both cases, the obvious strategy is to mimic 
STM and move transactional state from hardware to a metadata structure in 
virtual memory. Concrete realizations of this strategy vary in hardware com-
plexity, degree of software intervention, and flexibility of conflict detection 
and contention management policy. In this section, we focus on implemen-
tation tradeoffs, dividing our attention between hardware-centric and hy-
brid hardware-software schemes. Later, we will turn to hardware-accelerated 
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schemes that are fundamentally controlled by software, thereby affording 
policy freedom.

Hardware-ceNTric sysTeMs

Several systems have extended simple hardware TM (HTM) systems with 
hardware controllers that iterate through data structures housed in vir-
tual memory. For example, the first unbounded HTM proposal, UTM [1], 
called for both an in-memory log of transactional writes and an in-memory 
descriptor for every fixed-size block of program data (to hold read-write 
permission bits). The descriptors (metadata) constituted an unbounded ex-
tension of the access tracking structures found in bounded (small-transac-
tion) HTM. The log constituted an unbounded extension of bounded HTM 
versioning. Although located in virtual memory, both structures were to be 
maintained by a hardware controller active on every transactional read and 
write.

Subsequent unbounded HTM proposals have typically employed a two-level 
strategy in which a hardware controller implements small transactions in the 
same way as bounded HTM, but invokes firmware (or low-level software) 
handlers when space or time resources are exhausted. VTM [14], for exam-
ple, uses deferred update and buffers speculative writes in the L1 cache as 
long as they fit. If a speculative line must be evicted owing to limited capac-
ity or associativity, firmware (microcode) moves the line and its metadata to 
a data structure in virtual memory and maintains both a count of such lines 
and summary metadata (counting Bloom filters) for all evicted lines. On a 
context switch, a handler iterates through the entire cache and moves all 
speculative lines to this data structure. Subsequent accesses (when the count 
is nonzero) trigger firmware handlers that perform lookup operations of the 
in-memory data structures and summary metadata in order to detect con-
flicts (or fetch prior updates within the same transaction). Unfortunately, the 
cost of lookups is nontrivial.

Bloom-filter–based access-set tracking has also been used in direct-update 
systems. In LogTM-SE [25], a hardware controller buffers old values in an 
undo log residing in virtual memory, while speculative values update the 
original locations (which requires eager conflict resolution in order to avoid 
atomicity violations). Bloom filters are easy to implement in hardware and 
can be small enough to virtualize (save and restore) easily. Their drawback is 
imprecision. Although erroneous indications of conflict are not a correctness 
issue (since in the worst case, transactions can still execute one at a time), 
they may lead to lower performance [3].

Hardware-centric systems such as VTM and LogTM-SE hide most of the 
complexity of virtualization from the system programmer, resulting in a 
relatively simple run-time system. This simplicity, however, gives rise to se-
mantic rigidity. Special instructions are needed, for example, to “leak” infor-
mation from aborted transactions (e.g., for performance analysis). Similarly, 
policies that have first-order effects on performance (e.g., conflict resolution 
time, contention management policy) are fixed at system design time.

Hybrid approacHes

Hardware-centric approaches to unbounded TM demand significant invest-
ment from hardware vendors. Hybrid TM systems [4, 10] reduce this in-
vestment by adopting a two-level strategy in which the second level is in 
software. They begin with a “best-effort” implementation of bounded HTM; 
that is, they attempt to execute transactions in hardware, but the attempt 
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can simply fail owing to implementation limitations. Software is then ex-
pected to pick up the pieces and ensure that all transactions are supported. 
The key idea is to generate two code sequences for transactions: an STM-
compatible version that can run on stock processors and a second version 
that invokes the best-effort HTM. To ensure high performance, the STM is 
deployed only when HTM fails. The challenge is to ensure that HTM and 
STM transactions interoperate correctly. This is achieved by instrumenting 
the HTM transactions so that every memory operation also checks for con-
current, conflicting STM transactions. If one exists, then the HTM transac-
tion fails, since it lacks the ability to perform conflict resolution with respect 
to the STM transaction.

Although hybrid systems keep the hardware simple, the instrumentation for 
interoperability may add significant overhead to HTM transactions. More 
ambitious hybrid systems [2] may improve performance by implementing 
conflict detection entirely in hardware (using extra bits associated with main 
memory), while performing versioning in software. As did hardware-centric 
unbounded TM, hybrid TM suffers from policy inflexibility inherited from 
the all-hardware case, and from significant overhead whenever overflow oc-
curs.

Hardware-accelerated software-controlled Transactions

Experimental evidence suggests that although eager conflict management 
may avoid wasted work, lazy systems may exploit more parallelism, avoid 
performance pathologies, and eliminate the need for sophisticated (and po-
tentially costly) contention management [11, 17, 22]. Intermediate strategies 
(e.g., mixed conflict management, which resolves write-write conflicts ea-
gerly and read-write conflicts lazily) may also be desirable for certain appli-
cations. Unfortunately, the hardware-centric and hybrid TM systems that we 
have discussed so far embed the choice of both conflict resolution time and 
contention management policy in silicon.

Hardware-accelerated but software-controlled TM systems [15, 16, 20] strive 
to leave such policy decisions under software control, while using hardware 
mechanisms to accelerate both bounded and unbounded transactions. This 
strategy allows the choice of policy to be tuned to the current workload. It 
also allows the TM system to reflect system-level concerns such as thread 
priority. As in the designs covered earlier, existing hardware mechanisms 
must be carefully leveraged to avoid potential impact on common-case non-
transactional code.

The key insight that enables policy flexibility is that information gathering 
and decision making can be decoupled. In particular, data versioning, access 
tracking, and conflict detection can be supported as decoupled/separable 
mechanisms that do not embed policy. Conflict resolution time and conten-
tion management policy can then be decided dynamically by the application 
or TM runtime system.

decoupled versioNiNg

To support lazy conflict resolution, we proposed a deferred-update version-
ing mechanism we call Programmable Data Isolation (PDI) [15]. PDI allows 
selective use of processor-private caches as a buffer for speculative writes or 
for reading/caching the current version of locations being speculatively writ-
ten remotely. PDI lines are tracked by augmenting the coherence protocol 
with a pair of additional states. Data associated with speculative writes is 
not propagated to the rest of the system, allowing multiple transactions to 
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speculatively read or write the same location. However, coherence actions 
are propagated, allowing remote caches to track the information necessary to 
return them to a coherent state, without resolving the detected conflict im-
mediately.

To support cache overflow of speculative state, a hardware-based overflow 
table (akin to a software-managed translation lookaside buffer) is added 
to the miss path of the L1 cache. Replacement of a speculatively modified 
cache line results in it being written back to a different (software-specified) 
region of the process’s virtual memory space. A miss in the overflow table 
results in a trap to software, which can then set up the necessary mapping. 
In other words, software controls where and how the speculative modifica-
tions are maintained while hardware performs the common case (in the crit-
ical path) operation of copying data into and out of the cache.

decoupled coNflicT deTecTioN aNd resoluTioN

Access tracking can be performed in hardware by adding extra bits in the 
private cache to indicate a speculatively modified copy. However, this track-
ing is bounded by the size of the cache. Alternative forms of tracking for an 
unbounded amount of metadata include Bloom-filter signatures [3] and ECC 
bits in memory [2]. Our hardware [16] provides one set of Bloom filters on 
each processor to represent the read and write sets of the running thread 
and another to summarize the speculative read and write sets of all cur-
rently preempted threads. These signatures and, in some cases, the PDI state 
bits are checked on coherence protocol transitions in order to detect con-
flicts among concurrently executing transactions.

To decouple conflict detection from resolution time, we provide conflict sum-
mary tables (CSTs) that record the occurrence of conflicts without necessarily 
forcing immediate resolution. More specifically, CSTs indicate the transac-
tions that conflict, rather than the locations on which they conflict. This in-
formation concisely captures what a TM system needs to know in order to 
resolve conflicts at some potentially future time. Software can choose when 
to examine the tables and can use whatever other information it desires (e.g., 
priorities) to drive its resolution policy.

When a transaction commits, its speculative state is made visible to the rest 
of the system. To avoid the doomed transaction problem without software 
polling or sandboxing, conflicting transactions must be alerted and aborted 
immediately. We enable such aborts with a mechanism known as alert-on-
update (AOU). This mechanism adds one extra bit, set under software con-
trol, to each tag in the cache. When the cache controller detects a remote 
write of a line whose bit is set, it notifies the local processor, effecting an 
immediate branch to a previously registered handler. This mechanism can 
be very lightweight, since the handler invocation is entirely at the user level. 
By ensuring immediate aborts, AOU avoids the need for validation, thereby 
eliminating a large fraction of the cost for the metadata checks shown in 
Figure 2. By choosing what (data, metadata, or transaction status word) and 
when (at access or commit time) cache lines are tagged as AOU, software can 
choose between object-based and block-based granularity and among eager, 
mixed, and lazy conflict resolution.

Using AOU, PDI, signatures, and CSTs, we have developed a series of soft-
ware-controlled, hardware-accelerated TM systems. RTM-Lite [15, 20] uses 
AOU alone for validation and conflict detection in a software TM framework 
(RSTM [18]). RTM-Lite is able to achieve up to a 5x speedup over RSTM on a 
single thread. RTM [15] uses both AOU and PDI to eliminate validation and 
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versioning/copy overhead for transactions that fit in the cache. RTM is able 
to achieve up to an 8.7x speedup over RSTM. At the same time, it achieves 
only 35%–50% of the single-thread throughput of coarse-grain locks. The 
remaining overhead is due to software metadata updates and to the indi-
rection needed for compatibility with transactions that fall back to software 
after overflowing the cache space available to PDI.

FlexTM [16] uses all four mechanisms to achieve flexible policy control 
without the need for software-managed metadata. The resulting single-
thread performance is close to that of coarse-grain locks, demonstrating that 
eliminating per-access software overheads is essential to realizing the full 
potential of TM. Scalability is also improved relative to RTM-Lite and RTM. 
In contrast to other systems supporting lazy conflict resolution (e.g., TCC), 
FlexTM avoids the need for commit-time conflict detection: A processor’s 
CSTs, which are purely local structures, identify the transactions with which 
the running transaction conflicts. Software can easily iterate through those 
transactions, aborting each. Experimental results [15–17, 22] confirm the 
ability to improve throughput by tailoring conflict resolution time and con-
tention management policy based on application access patterns and over-
all system goals. The decoupled nature of the various hardware mechanisms 
also allows them to be used for a variety of non–TM-related tasks, including 
debugging, security, fast locks, and active messages.

conclusion

The goal of Transactional Memory is to simplify synchronization in shared-
memory parallel programs. Pure software approaches to implementing TM 
systems suffer from performance limitations. In this article, we presented 
an overview of emerging hardware support for TM that enhances perfor-
mance, but with some limitations. The technology is still in its infancy, and 
widespread adoption will depend on the ability to support a wide spectrum 
of application behaviors and system requirements. Enforcing a single policy 
choice at design time precludes this flexibility. Hence, we advocate hardware 
acceleration of TM systems that leave policy in software. We described a set 
of mutually independent (decoupled) hardware mechanisms consistent with 
this approach and presented a series of systems that use this hardware to 
eliminate successive sources of software TM overhead. Decoupling facilitates 
incremental development by hardware vendors and leads to mechanisms 
useful not only for TM, but for various other purposes as well [15, 16, 19].

Several challenges remain. We need developers to integrate TM with existing 
systems, introduce new language constructs, and develop the necessary tool-
chains. We also need to support composability and allow existing libraries 
to coexist with TM. Finally, we need to resolve a variety of challenging se-
mantic issues, through a combination of formalization and experience with 
realistic applications. We hope this article will help to foster that process by 
stimulating broader interest in the promise of transactional memory.
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