
TreadMarks: Distributed Shared Memory

on Standard Workstations and Operating Systems

Pete Keleher, Alan L. Cox, Sandhya Dwarkadas and Willy Zwaenepoel

Department of Computer Science

Rice University

Houston, TX 77251-1892

Abstract

TreadMarks is a distributed shared memory (DSM) system for standard Unix systems such as

SunOS and Ultrix. This paper presents a performance evaluation of TreadMarks running on

Ultrix using DECstation-5000/240's that are connected by a 100-Mbps switch-based ATM LAN

and a 10-Mbps Ethernet. Our objective is to determine the e�ciency of a user-level DSM imple-

mentation on commercially available workstations and operating systems.

We achieved good speedups on the 8-processor ATM network for Jacobi (7.4), TSP (7.2), Quick-

sort (6.3), and ILINK (5.7). For a slightlymodi�ed version of Water from the SPLASH benchmark

suite, we achieved only moderate speedups (4.0) due to the high communication and synchro-

nization rate. Speedups decline on the 10-Mbps Ethernet (5.5 for Jacobi, 6.5 for TSP, 4.2 for

Quicksort, 5.1 for ILINK, and 2.1 for Water), re
ecting the bandwidth limitations of the Ether-

net. These results support the contention that, with suitable networking technology, DSM is a

viable technique for parallel computation on clusters of workstations.

To achieve these speedups, TreadMarks goes to great lengths to reduce the amount of commu-

nication performed to maintain memory consistency. It uses a lazy implementation of release

consistency, and it allows multiple concurrent writers to modify a page, reducing the impact of

false sharing. Great care was taken to minimize communication overhead. In particular, on the

ATM network, we used a standard low-level protocol, AAL3/4, bypassing the TCP/IP protocol

stack. Unix communication overhead, however, remains the main obstacle in the way of better

performance for programs like Water. Compared to the Unix communication overhead, memory

management cost (both kernel and user level) is small and wire time is negligible.

1 Introduction

With increasing frequency, networks of workstations are being used as parallel computers. High-speed

general-purpose networks and very powerful workstation processors have narrowed the performance gap

between workstation clusters and supercomputers. Furthermore, the workstation approach provides a rel-

atively low-cost, low-risk entry into the parallel computing arena. Many organizations already have an

installed workstation base, no special hardware is required to use this facility as a parallel computer, and the

resulting system can be easily maintained, extended and upgraded. We expect that the workstation cluster

approach to parallel computing will gain further popularity, as advances in networking continue to improve

its cost/performance ratio.

This research was supported in part by the National Science Foundation under Grants CCR-9116343, CCR-9211004,

CDA-9222911, and CDA-9310073, by the Texas Advanced Technology Program under Grant 003604014, and by a NASA

Graduate Fellowship.

Various software systems have been proposed and built to support parallel computation on workstation

networks, e.g., tuple spaces [2], distributed shared memory [18], and message passing [23]. TreadMarks

is a distributed shared memory (DSM) system [18]. DSM enables processes on di�erent machines to share

memory, even though the machines physically do not share memory (see Figure 1). This approach is attractive

since most programmers �nd it easier to use than a message passing paradigm, which requires them to

explicitly partition data and manage communication. With a global address space, the programmer can

focus on algorithmic development rather than on managing partitioned data sets and communicating values.

Many DSM implementationshave been reported in the literature (see [20] for an overview). Unfortunately,

none of these implementations are widely available. Many run on in-house research platforms, rather than

on generally available operating systems, or require kernel modi�cations that make them unappealing. Early

DSM systems also su�ered from performance problems. These early designs implemented the shared memory

abstraction by imitating consistency protocols used by hardware shared memory multiprocessors. Given the

large consistency units in DSM (virtual memory pages), false sharing was a serious problem for many

applications.

TreadMarks overcomes most of these problems: it is an e�cient DSM system that runs on commonly

available Unix systems. This paper reports on an implementation on Ultrix using 8 DECStation-5000/240s,

connected both by a 100-Mbps point-to-point ATM LAN and by a 10-Mbps Ethernet. The system has

also been implemented on SunOS using SPARCstation-1's and -2's connected by a 10-Mbps Ethernet. The

implementation is done at the user level, without modi�cation to the operating system kernel. Furthermore,

we do not rely on any particular compiler. Instead, our implementation relies on (user-level) memory

management techniques to detect accesses and updates to shared data. In order to address the performance

problems with earlier DSM systems, the TreadMarks implementation focuses on reducing the amount of

communication necessary to keep the distributed memories consistent. It uses a lazy implementation [14] of

release consistency [13] and multiple-writer protocols to reduce the impact of false sharing [8].

On the 100-Mbps ATM LAN, good speedups were achieved for Jacobi, TSP, Quicksort, and ILINK (a

program from the genetic LINKAGE package [16]). TreadMarks achieved only a moderate speedup for a

slightly modi�ed version of the Water program from the SPLASH benchmark suite [22], because of the

high synchronization and communication rates. We present a detailed decomposition of the overheads.

For the applications measured, the software communication overhead is the bottleneck in achieving high

performance for �ner grained applications likeWater. This is the case even when using a low-level adaptation

layer protocol (AAL3/4) on the ATM network, bypassing the TCP/IP protocol stack. The communication

overhead dominates the memory management and consistency overhead. On a 100-Mbps ATM LAN, the

\wire" time is all but negligible.

The outline of the rest of this paper is as follows. Section 2 focuses on the principal design decisions:

release consistency, lazy release consistency, multiple-writer protocols, and lazy di� creation. Section 3

Proc1

Mem1

Proc2

Mem2

Proc3

Mem3

Network
Shared Memory

Proc N

MemN

Figure 1 Distributed Shared Memory

describes the implementation of these concepts, and also includes a discussion of the Unix aspects of the

implementation. The resulting performance is discussed in Section 4, and compared against earlier work

using eager release consistency in Section 5. We discuss related work in Section 6, and conclude in Section 7.

2 Design

TreadMarks' design focuses on reducing the amount of communication necessary to maintain memory con-

sistency. To this end, it presents a release consistent memory model [13] to the user. Release consistency

requires less communication than conventional, sequentially consistent [15] shared memory, but provides

a very similar programming interface. The lazy implementation of release consistency in TreadMarks fur-

ther reduces the number of messages and the amount of data compared to earlier, eager implementations [8].

False sharing is another source of frequent communication in DSM systems. TreadMarks uses multiple-writer

protocols to address this problem. Multiple-writer protocols require the creation of di�s, data structures

that record updates to parts of a page. With lazy release consistency, di� creation can often be postponed

or avoided, a technique we refer to as lazy di� creation.

2.1 Release Consistency

Release consistency (RC) [13] is a relaxed memory consistency model that permits a processor to delay

making its changes to shared data visible to other processors until certain synchronization accesses occur.

Shared memory accesses are categorized either as ordinary or as synchronization accesses, with the latter

category further divided into acquire and release accesses. Acquires and releases roughly correspond to

synchronization operations on a lock, but other synchronization mechanisms can be implemented on top of

this model as well. For instance, arrival at a barrier can be modeled as a release, and departure from a

barrier as an acquire. Essentially, RC requires ordinary shared memory updates by a processor p to become

visible at another processor q, only when a subsequent release by p becomes visible at q.

In contrast, in sequentially consistent (SC) memory [15], the conventional model implemented by most

snoopy-cache, bus-based multiprocessors, modi�cations to shared memory must become visible to other

processors immediately [15]. Programs written for SC memory produce the same results on an RC memory,

provided that (i) all synchronization operations use system-supplied primitives, and (ii) there is a release-

acquire pair between con
icting ordinary accesses to the same memory location on di�erent processors [13].

In practice, most shared memory programs require little or no modi�cations to meet these requirements.

Although execution on an RCmemory produces the same results as on a SC memory for the overwhelming

majority of the programs, RC can be implemented more e�ciently than SC. In the latter, the requirement

that shared memory updates become visible immediately implies communication on each write to a shared

data item for which other cached copies exist. No such requirement exists under RC. The propagation of

the modi�cations can be postponed until the next synchronization operation takes e�ect.

2.2 Lazy Release Consistency

In lazy release consistency (LRC) [14], the propagation of modi�cations is postponed until the time of the

acquire. At this time, the acquiring processor determines which modi�cations it needs to see according to

the de�nition of RC.

To do so, LRC divides the execution of each process into intervals, each denoted by an interval index.

Every time a process executes a release or an acquire, a new interval begins and the interval index is

incremented. Intervals of di�erent processes are partially ordered [1]: (i) intervals on a single processor are

totally ordered by program order, and (ii) an interval on processor p precedes an interval on processor q

if the interval of q begins with the acquire corresponding to the release that concluded the interval of p.

This partial order can be represented concisely by assigning a vector timestamp to each interval. A vector

timestamp contains an entry for each processor. The entry for processor p in the vector timestamp of interval

i of processor p is equal to i. The entry for processor q 6= p denotes the most recent interval of processor q

that precedes the current interval of processor p according to the partial order. A processor computes a new

vector timestamp at an acquire according to the pair-wise maximum of its previous vector timestamp and

the releaser's vector timestamp.

RC requires that before a processor p may continue past an acquire, the updates of all intervals with a

smaller vector timestamp than p's current vector timestamp must be visible at p. Therefore, at an acquire,

p sends its current vector timestamp to the previous releaser, q. Processor q then piggybacks on the release-

acquire message to p, write notices for all intervals named in q's current vector timestamp but not in the

vector timestamp it received from p.

A write notice is an indication that a page has been modi�ed in a particular interval, but it does not

contain the actual modi�cations. The timing of the actual data movement depends on whether an invalidate,

an update, or a hybrid protocol is used (see [9]). TreadMarks currently uses an invalidate protocol: the arrival

of a write notice for a page causes the processor to invalidate its copy of that page. A subsequent access to

that page causes an access miss, at which time the modi�cations are propagated to the local copy.

Alternative implementations of RC generally cause more communication than LRC. For example, the

DASH shared-memory multiprocessor [17] implements RC in hardware, bu�ering writes to avoid blocking the

processor until the write has been performed with respect to main memory and remote caches. A subsequent

release is not allowed to perform (i.e., the corresponding lock cannot be granted to another processor) until

all outstanding shared writes are acknowledged. While this strategy masks latency, LRC sends far fewer

messages, an important consideration in a software implementation on a general-purpose network because

of the high per message cost. In an eager software implementation of RC [8], a processor propagates its

modi�cations of shared data when it executes a release. This approach also leads to more communication,

because it requires a message to be sent to all processors that cache the modi�ed data, while LRC propagates

the data only to the next acquirer.

2.3 Multiple-Writer Protocols

False sharing was a serious problem for early DSM systems. It occurs when two or more processors access

di�erent variables within a page, with at least one of the accesses being a write. Under the common single-

writer protocols, false sharing leads to unnecessary communication. A write to any variable of a page causes

the entire page to become invalid on all other processors that cache the page. A subsequent access on any

of these processors incurs an access miss and causes the modi�ed copy to be brought in over the network,

although the original copy of the page would have su�ced, since the write was to a variable di�erent from

the one that was accessed locally. This problem occurs in snoopy-cache multiprocessors as well, but it is

more prevalent in software DSM because the consistency protocol operates on pages rather than smaller

cache blocks.

To address this problem, Munin introduced a multiple-writer protocol [8]. With multiple-writer protocols

two or more processors can simultaneously modify their local copy of a shared page. Their modi�cations are

merged at the next synchronization operation in accordance with the de�nition of RC, thereby reducing the

e�ect of false sharing.

2.4 Lazy Di� Creation

In order to capture the modi�cations to a shared page, it is initially write-protected. At the �rst write, a

protection violation occurs. The DSM software makes a copy of the page (a twin), and removes the write

protection so that further writes to the page can occur without any DSM intervention. The twin and the

current copy can later be compared to create a di�, a runlength encoded record of the modi�cations to the

page.

In TreadMarks, di�s are only created when a processor requests the modi�cations to a page or a write

notice from another processor arrives for that page. In the latter case, it is essential to make a di� in order

to distinguish the modi�cations made by the di�erent processors. This lazy di� creation is distinct from

Munin's implementation of multiple-writer protocols, where at each release a di� is created for each modi�ed

page and propagated to all other copies of the page. The lazy implementation of RC used by TreadMarks

allows di� creation to be postponed until the modi�cations are requested. Lazy di� creation results in a

decrease in the number of di�s created (see Section 5) and an attendant improvement in performance.

3 Implementation

3.1 Data Structures

Figure 2 gives an overview of the data structures used. The principal data structures are the PageArray,

with one entry for each shared page, the ProcArray, with one entry for each processor, a set of interval

records (containing mainly the vector timestamp for that interval), a set of write notice records, and a di�

pool. Each entry in the PageArray contains:

1. The current state: no access, read-only access, or read-write access.

2. An approximate copyset specifying the set of processors that are believed to currently cache this page.

3. For each page, an array indexed by processor of head and tail pointers to a linked list of write notice

records corresponding to write notices received from that processor for this page. If the di� corre-

sponding to the write notice has been received, then a pointer to this di� is present in the write notice

record. This list is maintained in order of decreasing interval indices.

Each entry in ProcArray contains a pointer to the head and the tail of a doubly linked list of interval

records, representing the intervals of that processor that the local processor knows about. This list is also

maintained in order of decreasing interval indices. Each of these interval records contains a pointer to a list

of write notice records for that interval, and each write notice record contains a pointer to its interval record.

3.2 Interval and Di� Creation

Logically, a new interval begins at each release and acquire. In practice, interval creation can be postponed

until we communicate with another process, avoiding overhead if a lock is reacquired by the same processor.

When a lock is released to another processor, or at arrival at a barrier, a new interval is created containing

Copyset
Page State

Page Array

.

.

.
Write Notice Records

Proc Array.
0

Interval Records Diff Pool

1

Figure 2 Overview of TreadMarks Data Structures

a write notice for each page that was twinned since the last remote synchronization operation. With lazy

di� creation these pages remain writable until a di� request or a write notice arrives for that page. At that

time, the actual di� is created, the page is read protected, and the twin is discarded. A subsequent write

results in a write notice for the next interval.

3.3 Locks

All locks have a statically assigned manager. Lock management is assigned in a round-robin fashion among

the processors. The manager records which processor has most recently requested the lock. All lock acquire

requests are directed to the manager, and, if necessary, forwarded to the processor that last requested the

lock.

The lock acquire request contains the current vector timestamp of the acquiring processor. The lock

request arrives at the processor that either holds the lock or did the last release on it, possibly after forwarding

by the lock manager. When the lock is released, the releaser \informs" the acquirer of all intervals between

the vector timestamp in the acquirer's lock request message, and the releaser's current vector timestamp.

The message contains the following information for each of these intervals:

1. The processor id.

2. The vector timestamp.

3. All write-notices. The write notice in the message is a �xed 16-bit entry containing the page number.

All of this information can easily be derived by following the pointers from the ProcArray to the appropriate

interval records and from there to the appropriate write notice records.

After receiving this message, the acquirer \incorporates" this information into its data structures. For

each interval in the message,

1. the acquirer appends an interval record to the interval record list for that processor, and

2. for each write notice

(a) it prepends a write notice record to the page's write notice record list, and

(b) adds pointers from the write notice record to the interval record, and vice versa.

Incorporating this information invalidates the pages for which write notices were received.

3.4 Barriers

Barriers have a centralized manager. At barrier arrival, each client \informs" the barrier manager of its vector

timestamp and all of the client's intervals between the last vector timestamp of the manager that the client

is aware of (found at the head of the interval record list for the ProcArray entry for the manager) and the

client's current vector timestamp. When the manager arrives at the barrier, it \incorporates" these intervals

into its data structures. When all barrier arrival messages have been received, the manager then \informs"

all clients of all intervals between their vector timestamp, as received in their barrier arrival message, and

the manager's current vector timestamp. The clients then \incorporate" this information as before. As for

locks, incorporating this information invalidates the pages for which write notices were received.

3.5 Access Misses

If the faulting processor does not have a copy of the page, it requests a copy from a member of the page's

approximate copyset. The approximate copyset for each page is initialized to contain processor 0.

If write notices are present for the page, the faulting processor obtains the missing di�s and applies them

to the page. The missing di�s can be found easily following the linked list of write notices starting from

the entry for this page in the PageArray. The following optimization minimizes the number of messages

necessary to get the di�s. If processor p has modi�ed a page during interval i, then p must have all the di�s

of all intervals (including those from processors other than p) that have a smaller vector timestamp than i. It

therefore su�ces to look at the largest interval of each processor for which we have a write notice but no di�.

Of that subset of the processors, a message needs to be sent only to those processors for which the vector

timestamp of their most recent interval is not dominated by the vector timestamp of another processor's

most recent interval.

After the set of necessary di�s and the set of processors to query have been determined, the faulting

processor sends out requests for the di�s in parallel, including the processor id, the page number and the

interval index of the requested di�s. When all necessary di�s have been received, they are applied in

increasing vector timestamp order.

3.6 Garbage Collection

Garbage collection is necessary to reclaim the space used by write notice records, interval records, and di�s.

During garbage collection, each processor validates its copy of every page that it has modi�ed. All other

pages, all interval records, all write notice records and all di�s are discarded. In addition, each processor

updates the copyset for every page. If, after garbage collection, a processor accesses a page for which it does

not have a copy, it requests a copy from a processor in the copyset.

The processors execute a barrier-like protocol, in which processors request and apply all di�s created

by other processors for the pages they have modi�ed themselves. Garbage collection is triggered when the

amount of free space for consistency information drops below a threshold. An attempt is made to make

garbage collection coincide with a barrier, since many of the operations are similar.

3.7 Unix Aspects

TreadMarks relies on Unix and its standard libraries to accomplish remote process creation, interprocessor

communication, and memory management. In this section, we brie
y describe the implementation of each

of these services.

TreadMarks interprocessor communication can be accomplished either through UDP/IP on an Ethernet

or an ATM LAN, or through the AAL3/4 protocol on the ATM LAN. AAL3/4 is a connection-oriented,

unreliable message protocol speci�ed by the ATM standard. Since neither protocol guarantees reliable

delivery, TreadMarks uses operation-speci�c, user-level protocols on top of UDP/IP and AAL3/4 to insure

delivery.

To minimize latency in handling incoming asynchronous requests, TreadMarks uses a SIGIO signal han-

dler. Message arrival at any socket used to receive request messages generates a SIGIO signal. Since AAL3/4

is a connection-oriented protocol, there is a socket corresponding to each of the other processors. To deter-

mine which socket holds the incoming request, the handler for AAL3/4 performs a select system call. The

handler for UDP/IP avoids the select system call by multiplexing all of the other processors over a single

receive socket. After the handler receives the message, it performs the request and returns.

To implement the consistency protocol, TreadMarks uses the mprotect system call to control access to

shared pages. Any attempt to perform a restricted access on a shared page generates a SIGSEGV signal. The

SIGSEGV signal handler examines the local PageArray to determine the page's state. If the local copy is

read-only, the handler allocates a page from the pool of free pages and performs a bcopy to create a twin.

Finally, the handler upgrades the access rights to the original page and returns. If the local page is invalid,

the handler executes the access miss procedure.

4 Performance

4.1 Experimental Environment

Our experimental environment consists of 8 DECstation-5000/240's running Ultrix V4.3. Each machine has

a Fore ATM interface that is connected to a Fore ATM switch. The connection between the interface boards

and the switch operates at 100-Mbps; the switch has an aggregate throughput of 1.2-Gbps. The interface

board does programmed I/O into transmit and receive FIFOs, and requires fragmentation and reassembly of

ATM cells by software. Interrupts are raised at the end of a message or a (nearly) full receive FIFO. All of

the machines are also connected by a 10-Mbps Ethernet. Unless otherwise noted, the performance numbers

describe 8-processor executions on the ATM LAN using the low-level adaptation layer protocol AAL3/4.

4.2 Basic Operation Costs

The minimum roundtrip time using send and receive for the smallest possible message is 500 �seconds. The

minimum time to send the smallest possible message through a socket is 80 �seconds, and the minimum

time to receive this message is 80 �seconds. The remaining 180 �seconds are divided between wire time,

interrupt processing and resuming the processor that blocked in receive. Using a signal handler to receive

the message at both processors, the roundtrip time increases to 670 �seconds.

The minimum time to remotely acquire a free lock is 827 �seconds if the manager was the last processor

to hold the lock, and 1149 �seconds otherwise. In both cases, the reply message from the last processor to

hold the lock does not contain any write notices (or di�s). The time to acquire a lock increases in proportion

to the number of write notices that must be included in the reply message. The minimum time to perform

an 8 processor barrier is 2186 �seconds. A remote page fault, to obtain a 4096 byte page from another

processor takes 2792 �seconds.

4.3 Applications

We used �ve programs in this study: Water, Jacobi, TSP, Quicksort, and ILINK. Water, obtained from

SPLASH [22], is a molecular dynamics simulation. We made one simple modi�cation to the original program

to reduce the number of lock accesses. We simulated 343 molecules for 5 steps. Jacobi implements a form

of Successive Over-Relaxation (SOR) with a grid of 2000 by 1000 elements. TSP uses a branch-and-bound

algorithm to solve the traveling salesman problem for a 19-city tour. Quicksort sorts an array of 256K integers,

using a bubblesort to sort subarrays of less than 1K elements. ILINK, from the LINKAGE package [16],

performs genetic linkage analysis (see [10] for more details). ILINK's input consists of data on 12 families

with autosomal dominant nonsyndromic cleft lip and palate (CLP).

4.4 Results

Figure 3 presents speedups for the �ve applications. The speedups were calculated using uniprocessor times

obtained by running the applications without TreadMarks. Figure 4 provides execution statistics for each of

the �ve applications when using 8 processors.

The speedup forWater is limited by the high communication (798 Kbytes/second and 2238 messages/second)

and synchronization rate (582 lock accesses/second). There are many short messages (the average message

size is 356 bytes), resulting in a large communication overhead. Each molecule is protected by a lock that is

accessed frequently by a majority of the processors. In addition, the program uses barriers for synchroniza-

tion.

Jacobi exclusively uses barriers for synchronization. Jacobi's computation to communication ratio is an

order of magnitude larger than that of Water. In addition, most communication occurs at the barriers and

between neighbors. On the ATM network, this communication can occur in parallel. The above two e�ects

compound, resulting in near-linear speedup for Jacobi.

TSP is an application that exclusively uses locks for synchronization. Like Jacobi, TSP has a very high

computation to communication ratio, resulting in near-linear speedup. While the number of messages per

second is slightly larger than for Jacobi, TSP transmits only a quarter of the amount of data transmitted

by Jacobi.

Quicksort also uses locks for synchronization. Quicksort's synchronization rate is close to that of Jacobi's.

It, however, sends over twice as many messages and data per second, resulting in slightly lower, although

good, speedups. The number of kilobytes per second transmitted by Quicksort is similar to that transmitted

by Water, but it sends 3 times fewer messages and the number of synchronization operations is an order of

magnitude lower than for Water. As a result, speedup for Quicksort is higher than for Water.

ILINK achieves less than linear speedup on TreadMarks because of a load balancing problem inherent

to the nature of the algorithm [10]. It is not possible to predict in advance whether the set of iterations

distributed to the processors will result in the same amount of work on each processor, without signi�cant

Water

Jacobi

TSP

Quicksort

ILINK

Processors

1 2 3 4 5 6 7 8

S
pe

ed
up

1

2

3

4

5

6

7

8

Figure 3 Speedups Obtained on TreadMarks

Water Jacobi TSP Quicksort ILINK

Input 343 mols 2000x1000 19-city tour 256000 CLP

5 steps
oats integers

Time (secs) 15.0 32.0 43.8 13.1 1113

Barriers/sec 2.5 6.3 0 0.4 0.4

Locks/sec 582.4 0 16.1 53.9 0

Msgs/sec 2238 334 404 703 456

Kbytes/sec 798 415 121 788 164

Figure 4 Execution Statistics for an 8-Processor Run on TreadMarks

computation and communication. Consequently, speedups are somewhat lower than one would expect based

on the communication and synchronization rates.

4.5 Execution Time Breakdown

Figure 5 shows a percentage breakdown of the execution times for 8-processor versions of all 5 applications.

The \Computation" category is the time spent executing application code; \Unix" is the time spent executing

Unix kernel and library code; and \TreadMarks" is the time spent executing TreadMarks code. \Idle Time"

refers to the time that the processor is idle. Idle time results from waiting for locks and barriers, as well as

from remote communication latency.

The largest overhead components are the Unix and idle times. The idle time re
ects to some extent

the amount of time spent waiting for Unix and TreadMarks operations on other nodes. The TreadMarks

overhead is much smaller than the Unix overhead. The largest percentage TreadMarks overhead is for Water

(2.9% of overall execution time). The Unix overhead is at least three times as large as the TreadMarks

overhead for all the applications, and is 9 times larger for ILINK.

Figure 6 shows a breakdown of the Unix overhead. We divide Unix overhead into two categories: commu-

nication and memory management. Communication overhead is the time spent executing kernel operations

to support communication. Memory management overhead is the time spent executing kernel operations to

support the user-level memory management, primarily page protection changes. In all cases, at least 80%

of the kernel execution time is spent in the communication routines, suggesting that cheap communication

is the primary service a software DSM needs from the operating system.

Figure 7 shows a breakdown of TreadMarks overhead. We have divided the overhead into three categories:

memory management, consistency, and \other". \Memory management" overhead is the time spent at the

user-level detecting and capturing changes to shared pages. This includes twin and di� creation and di�

Computation

Unix

TreadMarks

Idle Time

W
at

er

Ja
co

bi

T
S

P

Q
so

rt

IL
IN

K

%
 T

ot
al

 E
xe

cu
tio

n
T

im
e

0

10

20

30

40

50

60

70

80

90

100

Figure 5 TreadMarks Execution Time Breakdown

Communication Memory

Water Jacobi TSP Qsort ILINK

%
 T

ot
al

 E
xe

cu
tio

n
T

im
e

0

2

4

6

8

10

12

14

16

18

Figure 6 Unix Overhead Breakdown

application. \Consistency" is the time spent propagating and handling consistency information. \Other"

consists primarily of time spend handling communication and synchronization. TreadMarks overhead is

dominated by the memorymanagement operations. Maintaining the rather complex partial ordering between

intervals adds only a small amount to the execution time.

4.6 E�ect of Network and Communication Protocol

We ran Water, the application the highest communication overhead on two other communication substrates:

UDP over the ATM network, and UDP over an Ethernet. Figure 8 shows the total 8-processor execution

times for all three di�erent communication substrates and a breakdown into computation, Unix overhead,

TreadMarks overhead, and idle time.

Overall execution time increases from 15.0 seconds on ATM-AAL3/4 to 17.5 seconds on ATM-UDP and to

27.5 seconds on Ethernet-UDP. Computation time and TreadMarks overhead remain constant, Unix overhead

increases slightly, but the idle time increases from 3.9 seconds on AAL3/4 to 5.0 seconds on ATM/UDP,

and to 14.4 seconds over the Ethernet. The increase from ATM-AAL3/4 to ATM-UDP is due to increased

protocol overhead in processing network packets. For the Ethernet, however, it is largely due to network

saturation.

4.7 Summary

TreadMarks achieves good speedups for Jacobi, TSP, Quicksort, and ILINK on the 100 Mbit/sec ATM LAN.

For a slightly modi�ed version of the Water program from the Splash benchmark suite, TreadMarks achieved

only a moderate speedup, because of the large number of small messages.

The overhead of the DSM is dominated by the communication primitives. Since wire time is negligible

on the ATM LAN for our applications, the greatest potential to improve overall performance is reducing

Memory Consistency Other

Water Jacobi TSP Qsort ILINK

%
 T

ot
al

 E
xe

cu
tio

n
T

im
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 7 TreadMarks Overhead Breakdown

Computation

Unix

TreadMarks

Idle Time

ATM ATM/UDP Ethernet

S
ec

on
ds

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Figure 8 Execution Time for Water

the software communication overhead. Although the use of the lightweight AAL3/4 protocol reduces the

total send and receive time, these are only a part of the overall communication overhead. Lower-overhead

user-level communications interfaces or a kernel-level implementation would improve performance.

A kernel implementation of the memory management would have little e�ect on overall performance. In

the worst case (Water), TreadMarks spent less than 2.2% of its time detecting and capturing changes to

shared pages. Most of this time is spent copying the page and constructing the di�. Less than 0.8% of the

time is spent in the kernel generating the signal or performing the mprotect.

5 Lazy vs. Eager Release Consistency

5.1 Eager Release Consistency: Design and Implementation

We implemented an eager version of RC (ERC) to assess the performance di�erences between ERC and

LRC. At the time of a release, ERC creates di�s of modi�ed pages, and distributes each di� to all processors

that cache the corresponding page. Our implementation of ERC uses an update protocol. Eager invalidate

protocols have been shown to result in inferior performance for DSM systems [14]. We are thus comparing

LRC against the best protocol available for ERC. With an eager invalidate protocol, the di�s cause a large

number of invalidations, which trigger a large number of access misses. In order to satisfy these access

misses, a copy of the entire page must be sent over the network. In contrast, lazy invalidate protocols only

move the di�s, because they maintain enough consistency information to reconstruct valid pages from the

local (out-of-date) copy and the di�s.

5.2 Performance

Figures 9 to 12 compare the speedups, the message and data rates, and the rate of di� creation between the

eager and lazy version of the �ve applications. In order to arrive at a fair comparison of the message and

the data rate, we normalize these quantities by the average execution time of ERC and LRC.

LRC performs better than ERC for Water and Quicksort, because the LRC sends fewer messages and

a smaller amount of data. In Water, in particular, ERC sends a large number of updates at each release,

because all processors have copies of most of the shared data.

Jacobi performs slightly better under LRC than under ERC. Although communication requirements are

similar in both cases, Figure 12 shows that the lazy di� creation of LRC generates 25% fewer di�s than

ERC, thereby decreasing the overhead. For ILINK, performance is comparable under both schemes.

For TSP, ERC results in better performance than LRC. TSP is implemented using a branch-and-bound

algorithm that uses a current minimum to prune searching. The performance on LRC su�ers from the fact

that TSP is not a properly labeled [13] program. Although updates to the current minimum tour length are

synchronized, read accesses are not. Since LRC updates cached values only on an acquire, a processor may

read an old value of the current minimum. The execution remains correct, but the work performed by the

processor may be redundant since a better tour has already been found elsewhere. With ERC, this is less

likely to occur since ERC updates cached copies of the minimum when the lock protecting the minimum is

released. By propagating the bound earlier, ERC reduces the amount of redundant work performed, leading

to a better speedup. Adding synchronization around the read accesses would deteriorate performance, given

the very large number of such accesses.

6 Related Work

Among the many proposed relaxed memory consistency models, we have chosen release consistency [13],

because it requires little or no change to existing shared memory programs. An interesting alternative is

entry consistency (EC) [4]. EC di�ers from RC in that it requires all shared data to be explicitly associated

with some synchronization variable. On a lock acquisition EC only propagates the shared data associated

with that lock. EC, however, requires the programmer to insert additional synchronization in shared memory

programs to execute correctly on an EC memory. Typically, RC does not require additional synchronization.

Lazy Eager

Water Jacobi TSP Qsort ILINK

S
pe

ed
up

0

1

2

3

4

5

6

7

8

Figure 9 Comparison of Lazy and

Eager Speedups

Lazy Eager

Water Jacobi TSP Qsort ILINK
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Figure 10 Message Rate (messages/sec)

Lazy Eager

Water Jacobi TSP Qsort ILINK
0

100

200

300

400

500

600

700

800

900

1000

Figure 11 Data Rate (kbytes/sec)

Lazy Eager

Water Jacobi TSP Qsort ILINK
0

50

100

150

200

250

300

350

400

450

500

Figure 12 Di� Creation Rate (di�s/sec)

In terms of comparisons with other systems, we restrict ourselves to implementations on comparable

processor and networking technology. Di�erences in processor and network speed and their ratio lead to

di�erent tradeo�s [9], and makes comparisons with older systems [3, 8, 11, 12, 18, 21] di�cult. We have

however borrowed from Munin [8] the concept of multiple-writer protocols. Munin also implements eager

release consistency, which moves more messages and data than lazy release consistency.

Bryant et al. [7] implemented SSVM (Structured Shared Virtual Memory) on a star network of IBM

RS-6000s running Mach 2.5. Two di�erent implementation strategies were followed: one using the Mach

external pager interface [24], and one using the Mach exception interface [5]. They report that the latter

implementation|which is very similar to ours|is more e�cient, because of the inability of Mach's external

pager interface to asynchronously update a page in the user's address space. Also, the time to update a page

in a user's address space is higher for the external pager interface than for the exception interface (1.2 vs. 0.7

milliseconds) because the need for a data request - data provided message transaction when using the

external pager interface. The overhead of a page fault (without the actual page transfer) is approximately 1

milliseconds, half of which is attributed to process switching overhead in the exception-based implementation.

The time to transfer a page (11 milliseconds) dominates all other overheads in the remote page fault time.

Bershad et al. [4] use a di�erent strategy to implement EC in the Midway DSM system, running on

DECStation-500/200s connected by an ATM LAN and running Mach 3.0. Instead of relying on the VM

system to detect shared memory updates, they modify the compiler to update a software dirty bit. Our

results show that, at least in Ultrix and we suspect in Mach as well, the software communication overhead

dominates the memory management overhead.

DSVM6K [6] is a sequentially consistent DSM system running on IBM RS/6000s connected by 220-

Mbps �ber optic links and a nonblocking crossbar switch. The system is implemented inside the AIX v3

kernel and uses a low-overhead protocol for communication over the �ber optic links (IMCS). A remote

page fault takes 1.75 milliseconds when using IMCS, and is estimated to take 3.25 milliseconds when using

TCP/IP. The breakdown of the 1.75 milliseconds page fault time is: 1.05 milliseconds for DSVM6K overhead,

0.47 milliseconds for IMCS overhead and 0.23 milliseconds of wire time. Shiva [19] is an implementation

of sequentially consistent DSM on an Intel IPSC/2. Shiva is implemented outside the kernel. A remote

page fault takes 3.82 milliseconds, and the authors estimate that time could be reduced by 23 percent by

a kernel implementation. In comparison, our page fault times are 2.8 milliseconds using AAL3/4. While

these numbers are hard to compare because of di�erences in processor and networking hardware, our results

highlight the cost of the software communication overhead. Either an in-kernel implementation or fast

out-of-kernel communication interfaces need to be provided in order to build an e�cient DSM system.

7 Conclusions

Good performance has been achieved for DSM systems built on various research operating systems. However,

in order to use DSM as a platform for parallel computation on clusters of workstations, e�cient user-level

implementations must be available on commercial operating systems. It is with this goal in mind that we

set out to conduct the experiment described in this paper.

We implemented a DSM system at the user level on DECstation-5000/240's connected to a 100-Mbps

ATM LAN and a 10-Mbps Ethernet. We focused our implementation e�orts on reducing the cost of commu-

nication, using techniques such as lazy release consistency, multiple-writer protocols, and lazy di� creation.

On the ATM network, we avoided the overhead of UDP/IP by using the low-level AAL3/4 protocol.

On the ATM network, we achieved good speedups for Jacobi, TSP, Quicksort, and ILINK, and moderate

speedups for a slightly modi�ed version of Water. Latency and bandwidth limitations reduced the speedups

by varying amounts on the Ethernet. We conclude that user-level DSM is a viable technique for parallel

computation on clusters of workstations connected by suitable networking technology.

In order to achieve better DSM performance for more �ne-grained programs like Water, the software

communication overhead needs to be reduced through lower-overhead communication interfaces and imple-

mentations.

References

[1] S. Adve and M. Hill. Weak ordering: A new de�nition. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pages 2{14, May 1990.

[2] S. Ahuja, N. Carreiro, and D. Gelernter. Linda and friends. IEEE Computer, 19(8):26{34, August 1986.

[3] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. A distributed implementation of the shared data-object

model. Distributed Systems and Multiprocessor Workshop, pages 1{19, 1989.

[4] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared memory system. In

Proceedings of the '93 CompCon Conference, pages 528{537, February 1993.

[5] D. Black, D. Golub, R. Rashid, A. Tevanian, and M. Young. The Mach exception handling facility.

SigPlan Notices, 24(1):45{56, May 1988.

[6] M.L. Blount and M. Butrico. DSVM6K: Distributed shared virtual memory on the Risc System/6000.

In Proceedings of the '93 CompCon Conference, pages 491{500, February 1993.

[7] R. Bryant, P. Carini, H.-Y. Chang, and B. Rosenburg. Supporting structured shared virtual memory

under Mach. In Proceedings of the 2nd Mach Usenix Symposium, November 1991.

[8] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of Munin. In Pro-

ceedings of the 13th ACM Symposium on Operating Systems Principles, pages 152{164, October 1991.

[9] S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of release consistent software

distributed shared memory on emerging network technology. In Proceedings of the 20th Annual Inter-

national Symposium on Computer Architecture, pages 244{255, May 1993.

[10] S. Dwarkadas, A. A. Sch�a�er, R. W. Cottingham Jr., A. L. Cox, P. Keleher, and W. Zwaenepoel.

Parallelization of general linkage analysis problems. To appear in Journal of Human Heredity, 1993.

[11] B. Fleisch and G. Popek. Mirage: A coherent distributed shared memory design. In Proceedings of the

12th ACM Symposium on Operating Systems Principles, pages 211{223, December 1989.

[12] A. Forin, J. Barrera, and R. Sanzi. The shared memory server. In Proceedings of the 1989 Winter

Usenix Conference, pages 229{243, December 1989.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency

and event ordering in scalable shared-memory multiprocessors. In Proceedings of the 17th Annual

International Symposium on Computer Architecture, pages 15{26, May 1990.

[14] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed shared

memory. In Proceedings of the 19th Annual International Symposium on Computer Architecture, pages

13{21, May 1992.

[15] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Transactions on Computers, C-28(9):690{691, September 1979.

[16] G.M. Lathrop, J.M. Lalouel, C. Julier, and J. Ott. Strategies for multilocus linkage analysis in humans.

Proceedings of National Academy of Science, 81:3443{3446, June 1984.

[17] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache coher-

ence protocol for the DASH multiprocessor. In Proceedings of the 17th Annual International Symposium

on Computer Architecture, pages 148{159, May 1990.

[18] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Transactions on

Computer Systems, 7(4):321{359, November 1989.

[19] K. Li and R. Schaefer. A hypercube shared virtual memory system. 1989 International Conference on

Parallel Processing, 1:125{131, 1989.

[20] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and algorithms. IEEE Computer,

24(8):52{60, August 1991.

[21] U. Ramachandran and M.Y.A. Khalidi. An implementation of distributed shared memory. Software:

Practice and Experience, 21(5):443{464, May 1991.

[22] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared-memory.

Technical Report CSL-TR-91-469, Stanford University, April 1991.

[23] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:Practice and Expe-

rience, 2(4):315{339, December 1990.

[24] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black, and R. Baron.

The duality of memory and communication in the implementation of a multiprocessor operating system.

In Proceedings of the 11th ACM Symposium on Operating Systems Principles, pages 63{76, October

1987.

