
Implicit Skolemization: Efficient Reference to Dependent
Entities

Lenhart Schubert
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226, USA

schubert@cs.rochester.edu

1 Introduction

Consider the following examples of functional reference.
(1) All of the graduates received a job offer (at the job fair), and all of them accepted

their offer.
(2) If all of the graduates received a job offer then all of them accepted their offer.

While these examples resemble the kinds of sentences that have motivated theories of dy-
namic binding such as DRT and DPL [10], they are not easily handled within these standard
frameworks. The problem is that the entity referred to by “their offer” is variable. The
logical form (LF) of (1) is not captured by

(3) (∀x) [graduate(x) → (∃y) job-offer(y) ∧ receive(x,y)] ∧
(∀x) [graduate(x) → accept(x,y)],

since the final occurrence of y is not dynamically bound – the values assigned to y in the
existential clause do not persist beyond the scope of the initial ∀-quantifier. The following
LF does capture the meaning of (1):

(4) (∀x) [graduate(x) → (∃y) job-offer(y) ∧ receive(x,y)] ∧
(∀x) [graduate(x) ∧ (∃y) (job-offer(y) ∧ receive(x,y))] → accept(x,y).

Here the final occurrence of y is dynamically bound by the existentially quantified wff in
the antecedent, and the binding evidently depends on the graduate x under consideration,
as required. However, this putative LF bears no simple, systematic relation to (1); in
essence, it repeats the content of the first half of (3) in order to provide an appropriate
dynamic binding environment for y in the second half. So from a computational semantics
perspective, this is not an attractive approach.

We propose a systematic alternative requiring no ad hoc repetition of material. The idea
is to generalize the state-change mechanism of DPL so that what is ‘carried forward’ as a
value of y from a formula like that in the first half of (3) is a function – in this case, one that
maps graduates to their job offers. This function can then be applied in the second half of
(3) to pick out job offers corresponding to particular graduates; i.e, the final phrase in (3)
becomes accept(x, y(x)). We will indicate that this way of treating the LFs of functionally
dependent anaphors is applicable as well to many instances of bridging anaphora. Finally
we will briefly comment on the utility of our generalization of DPL in representing definite
reference to functionally dependent entities of the sort encountered in frames, scripts, and
generic sentences.
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2 Generalized variable assignments and functional DPL

The consistent use of existentially quantified variables as functions entails some slight
changes in ordinary logical syntax. In particular, if a variable is bound anywhere by an
existential quantifier, it may not be bound anywhere else by an existential or universal
quantifier. Instead, any occurrences outside the scope of its ∃-quantifier should involve
application of the variable to 0 or more arguments, thus yielding a term. In effect, existen-
tial variables will serve outside their ‘defining contexts’ as implicit Skolem constants and
functions. More precisely, suppose that a formula (∀x)φ contains a formula (∃y)ψ in its
scope. We say that y depends on x if (∃y)ψ does not lie within the scope of a negation in
φ. Then the ‘defining context’ (relative to a formula Ω) of y in a formula (∃y)ψ (embedded
by Ω) is (∃y)ψ itself if y does not depend on any ∀-variables (in Ω), and otherwise it is the
largest formula of form (∀x)φ (in Ω) such that y depends on x. The adicity of an existential
variable y used outside the scope of its ∃-quantifier is then the number of ∀-variables on
which it depends in its defining context, relative to the smallest formula Ω that contains
both the ∃-quantifier of y and the external occurrence of y. However, rather than insisting
on conformity with this subtle constraint, we will formulate the semantics of predication so
that atoms containing ‘ill-formed’ terms will be treated as false.

Given a vocabulary Var of variables and a domain of interpretation D, a generalized
variable assignment (gva) is any partial function1

U : Var → F , where
F =

⋃
n∈N Fn, and

Fn = Dn → D
= D → (D → (...(D → D)...)),

(n arrows), the class of (curried) partial functions from Dn to D, where F0 is just D. In the
following, all occurrences of U and V (with or without subscripts) denote gva’s. Uy:f , for
any y ∈ Var and any individual or function f ∈ F , will denote the variant of U which is the
same as U except that its value at y is f . M = (D, I), where I is an ordinary interpretation
function.

Much as in DPL, the semantic value of a formula φ relative to a modelM, written [[φ]]M,
will be a satisfaction set whose elements are pairs 〈U, V 〉 of gva’s. If V = U for all such
elements, φ is said to be M-static, and otherwise it is M-dynamic.2 If φ is M-static for
all models M, it is (uniformly) static, and otherwise it is (potentially) dynamic. Formulas
containing no ∃-quantifiers and ones whose ∃-quantifiers are embedded by negations turn
out to be uniformly static, as in DPL. However, certain formulas that are uniformly static in
DPL, such as (∀x)[Q(x)→ (∃y)P (y)] or Q(x)∨ (∃y)P (y), may beM-static orM-dynamic
in our semantics, depending on M; in particular, both formulas are M-static if I(P ) = ∅
and M-dynamic otherwise. We will consider some more meaningful examples after filling
in a few semantic details below. A useful related notion is the following: a variable y ∈ Var
isM-static in φ if V (y) = U(y) for all 〈U, V 〉 ∈ [[φ]]M; otherwise it isM-dynamic in φ; y is
(uniformly) static in φ if it isM-static in φ for all modelsM, and it is (potentially) dynamic
in φ otherwise. Roughly speaking, stativity provides a semantic criterion for distinguishing
variables that are free or ∀-bound in φ from those that are ∃-bound in φ, except that
∃-variables whose quantifier occurs within a static formula are themselves static. (Again,

1In a preliminary ESSLLI’04 version of this paper, the author used total functions [19]; the use of partial
functions allows some subtle problems to be addressed, and enables a fuller treatment of generic sentences.

2Static formulas are often termed conditions, but this terminology makes it awkward, for instance, to
talk about the conditions under which a formula is a ‘condition’.
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occurrences within the scope of ¬, or the occurrences of (∃y)P (y) in the two formulas above,
with I(P ) = ∅, illustrate this.)

The semantics of terms, predication, equality, negation and conjunction are identical
to those of DPL, modulo the use of gva’s. Thus predication, equality, and negation are
necessarily static, while conjunctions may be dynamic. One minor wrinkle is that in order
to deal with undefined values of partial functions, and to render adicity violations in the
use of variables as functors harmless, we assume that a term σ(τ) lacks a value (relative to
a model and a gva) if σ lacks a value or denotes an individual, or τ lacks a value or denotes
a function. The usual semantics of predication will then make atoms containing valueless
terms false, assuming that a tuple with undefined elements cannot be a member of a set,
and that [[σ = τ ]]M is reckoned as false if either or both terms are undefined. (By “false”
we mean here that a gva U that renders a term valueless relative to the given model cannot
give rise to an element 〈U, V 〉 in the satisfaction set of the atom containing that term.)

The intuitive idea in the following semantics of quantification is this. We want a set of n
nested universally quantified sentences, all embedding an existentially quantified sentence
(∃y)φ to ‘output’ an n-place function as the value of y, at least when y is not static in the
scopes of the ∀-quantifiers. The semantics of universal quantification relies on our semantic
criterion for ‘detecting’ nonstatic ∃-variables, using it to assign a function as value of any
such existential variable in its scope, in each ‘output’ assignment it produces. The function
is chosen so that it ‘works’ uniformly for all values of the universally quantified variable. The
correct adicity of these functions is obtained through the use of curried functions, i.e., each
level of universal quantification embedding an existential adds another level of functional
dependence.

(5) [[(∃y)φ]]M = {〈U, V 〉 | for some d ∈ D, 〈Uy:d, V 〉 ∈ [[φ]]M};

(6) [[(∀x)φ]]M = {〈U, V 〉 | for all d ∈ D, there is a gva V ′ such that 〈Ux:d, V
′
x:d〉 ∈ [[φ]]M,

where for all variables y, V ′(y) = V (y) = U(y) if y is M-static in φ,
and V ′(y) = V (y)(d) if y is M-dynamic in φ}.

(We assume that truth of V ′(y) = V (y)(d) requires V (y) to be a function, i.e., an element
of F \ D, even if V ′(y) is undefined – in which case V (y) must be undefined at d.3 ) Note
how (5) and (6) formalize the above intuitions: in (6), because of the final clause, a function
V (y) may be returned (in the ‘output’ state of (∀x)φ) as the denotation of a variable y that
is ∃-quantified within φ, provided that the values V (y)(d) of that function for all d ∈ D
may be produced as values of y in the ‘output’ state of φ, i.e., as values of V ′(y). In turn,
(5) ensures (as in standard DPL) that values produced for y are ones that verify the scope
of the ∃-quantifier.

It is also clear from the definition of static/dynamic variables that (6) allows only variables
∃-quantified within φ to export (new) functional output values. We have already noted that
not all such ∃-quantified variables export (new) functional output values. An intuitively
meaningful example is the following:

(∀ x)[mule(x) → ¬(∃ y) offspring(y,x)],
Here y receives no (new) value since all negated formulas are static by definition. Likewise
no functional value (distinct from the input value) is exported for y in

3To see that V ′(y) can be undefined, even when y is M-dynamic in φ, consider for instance φ = Q(x) ∨
(∃y)P (x, y), where Q(x) is true in M for a certain value of x, say d, and (∃y)P (x, y) is true for other values
(and for all values of x, at least one of the disjuncts is true). Then we can have 〈Ux:d, Ux:d〉 ∈ [[φ]]M, thanks
to the first disjunct, even if U(y) is undefined.
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(∀ x)[unicorn(x) → (∃ y) magical-horn(y,x)]
as long as there are no unicorns in the model under consideration, since a conditional with
a false antecedent is static (see below). If the model allows for unicorns but not magical
horns, then of course the satisfaction set of the conditional is empty and so certainly no
values are exported for y or for any other variable. The following “Implicit Skolemization”
theorem formalizes and generalizes the above observations.

Theorem (Implicit Skolemization). For any formula φ and modelM, if 〈U, V 〉 ∈ [[φ]]M
then for any variable y that is M-dynamic in φ, φ contains a (unique) ∃-quantifier binding
y, where that quantifier is not embedded by any negation in φ, and V (y) ∈ Fn where n is
the number of ∀-quantifiers in φ embedding the ∃-quantifier for y.
Proof: See Appendix. The proof of course depends on the completion of the definition of
[[·]]M, which follows.

Disjunction and conditionals do not behave as in standard DPL: they can ‘export’ dy-
namic bindings of existential variables. At least for conditional sentences this is essential to
our enterprise, since otherwise universally quantified contexts whose scope is a conditional
sentence (the usual case – see (3)) would fail to export functional values for existentials
lying within those conditionals:

(7) [[φ ∨ ψ]]M = {〈U, V 〉 | either 〈U, V 〉 ∈ [[φ]]M or 〈U, V 〉 ∈ [[ψ]]M}

(8) [[φ→ ψ]]M = {〈U, V 〉 | either V = U and for no gva U ′, 〈U,U ′〉 ∈ [[φ]]M,
or for some gva U ′, 〈U,U ′〉 ∈ [[φ]]M and 〈U ′, V 〉 ∈ [[ψ]]M}

(Note that we could have written the second alternative on the right-hand side of (8) as
〈U, V 〉 ∈ [[(φ∧ψ)]]M.) So for instance the anaphoric “it” in the following sentences could be
translated in terms of dynamically bound variables in the LFs (imagine a euphoric physicist
uttering (9), and a somewhat verbose robber uttering (10)):

(9) Either I’ve lost my mind, or I’ve come up with a Theory of Everything. It combines
ideas from string theory, holographic-universe theory, and loop quantum gravity.

(10) If you value your life, you’ll hand over some cash fast. It had better be more than a
few bucks.

(11) Holmes reasoned that if an intruder had opened the safe, he must have left fingerprints
on the knobs of the safe. ?And indeed he had.

While anaphoric reference to an indefinite within a disjunction or conditional is typically
infelicitous as a result of Gricean implicatures, there seems to be no particular advantage
to blocking such reference in the target logic for semantic representation. In fact, when the
implicatures are blocked (as in (9), where one presumes the falsity of the first disjunct, or in
(10), where one presumes the truth of the antecedent of the conditional), we want dynamic
binding to be enabled. In a sense, the proposed semantics ‘explains’ why an attempted
reference to an indefinite (∃y)φ occurring within a disjunction or conditional is typically
infelicitous: if nothing can be presumed about the truth of the immediate constituents of
such a sentence, then even if the sentence as a whole is true, an external anaphor y may
fail to refer to anything pertinent (or anything at all).4

4It can be argued that we may want to refer into doubly negated contexts as well, in view of examples such
as “It is not true that this house doesn’t have a bathroom. It is in the attic.” This point can be generalized to
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In addition, (8) differs from standard DPL in that it presupposes a ‘weak’ interpretation
of conditionals. For example, it renders the sentence

If John received a job offer today, then he accepted it
true in circumstances where John received multiple job offers but accepted just one; whereas
on a ‘strong’ reading, the sentence would be false. While it would be possible to change the
semantics to deliver strong readings (while still allowing export of variable bindings from
conditionals), we take weak readings to be basic (as for instance in [6] and [18]).5

We will also have occasion in section 3.1 to consider the following ‘maximally dynamic’
version of (7), in order to deal with referential difficulties posed by quantified sentences with
a disjunctive restrictor:

(7′) [[φ ∨ ψ]]M = {〈U, V 〉 | (a) 〈U, V 〉 ∈ [[φ]]M and for no U ′, 〈U,U ′〉 ∈ [[ψ]]M; or
(b) 〈U, V 〉 ∈ [[ψ]]M and for no U ′, 〈U,U ′〉 ∈ [[φ]]M; or (c) 〈U, V 〉 ∈ [[(φ ∧ ψ)]]M}

For this semantics, reference will be successful in (9) even if the speaker has, in fact, lost
his mind, as long as he has also come up with a Theory of Everything. (Note that by the
second part of condition (7′)(a), no pair 〈U, V 〉 that verifies the first disjunct alone can
verify the disjunction, if the conjunction is true.) Likewise reference will be successful in
the following example, even if both disjuncts are true:

(12) Either John has a very bad violin, or he plays it very poorly.

The definitions of truth and entailment are as follows, for formulas φ and ψ.

(13) φ is true [false] in model M relative to gva U iff for some [no] gva V , 〈U, V 〉 ∈ [[φ]]M.

(14) φ |= ψ iff for all models M and all U, V , if 〈U, V 〉 ∈ [[φ]]M then for some gva’s V ′,W ,
〈U, V ′〉 ∈ [[φ]]M and 〈V ′,W 〉 ∈ [[ψ]]M.

(14) aligns entailment with the conditional semantics (8), in the sense that it supports the
equivalence

(15) φ |= ψ iff |= φ→ ψ.
This is easily proved in both directions from (13) and (14).

(14) also allows for the following sort of detachment:
(16) [(∃xP (x))→ Q(x)], ∃y P (y) |= Q(x),

where the premises are ordered as shown.
It is also useful, for application to linguistic semantics, to define a notion of truth for a

text, viewed as a nonempty sequence of formulas. This notion of truth is not relativized to
a gva:

(17) Text φ1, ..., φn is true [false] in modelM iff for some [no] gva V , 〈∅, V 〉 ∈ [[(φ1 ∧ ...∧
φn)]]M.

locutions creating downward-entailing contexts, such as the object positions of deny and lack in “I deny that
this house lacks a bathroom. It is in the attic.” However, allowing for this in the proposed semantics appears
to require adding negative satisfaction sets (bearing witness to the falsity of a sentence) to the semantic
machinery, a significant complication that we do not pursue here.

5Geurts [9] suggests that subjects confronted with the task of judging the truth of donkey sentences for
given states of affairs (e.g., presented visually) don’t actually discern and choose between separate ‘readings’;
rather, they use the form of the sentence, certain intuitions about individuation (i.e., how hard or easy it is
to ‘count’ an individual more than once in evaluating multiple situations), and weak uniqueness implicatures
to arrive at a truth value judgement directly. His view seems reconcilable with the position taken here. For
instance, the supposed strong reading of “Every student who received a job offer turned it down” can be
regarded as the result of counting students with multiple job offers multiple times, once for each job offer –
thereby preserving the uniqueness presumption that there is just one job offer per student (as offeree).
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In other words, we start out with the empty assignment, and allow this to be dynamically
extended by existential quantifiers (and by universal quantifiers within their scopes). This
notion of truth will be relevant to some examples discussed in the following section. Note
that under this definition, since we are “filling in” undefinedness with falsity, a text consist-
ing of (or containing as sequence element, with no prior occurrence of x) an open sentence
such as P (x) is simply false in all models. However, we count a formula as logically false
only if it is false in all models relative to all gva’s, not just the empty gva. The presumption
is that truth/falsity of texts is of interest chiefly for dynamically closed texts, i.e., ones in
which all variables receive values either through local binding by a quantifier or through
dynamic binding via a prior existentially quantified formula.

3 Some applications

The semantics just outlined allows for a very simple, direct logical representation of (dis-
ambiguated) referential connections in ordinary discourse, including not only the familiar
types of donkey anaphora, but also anaphora involving functional dependencies, as in (1)
and (2). (We will shortly delve into some subtleties in the use of such functional terms.)
The present proposal is related to the author’s scheme of dynamic Skolemization [18], but
deals satisfactorily with negative environments such as “It is not the case that John owns a
donkey and beats it” (which under dynamic Skolemization is true if John owns two donkeys
and beats only one).6

In the remainder of this discussion, we consider three issues: the appropriate use of
functional expressions as logical forms of anaphoric noun phrases; bridging anaphora; and
frame/script-like knowledge.

3.1 Using functional expressions for anaphoric noun phrases

Ordinary language typically quantifies over restricted nominal domains (rather than over the
entire domain of individuals), so to facilitate the discussion of LFs for functional anaphora
we will generalize (6) to allow for a restrictor. We could have simply relied on the equivalence

(∀x : φ)ψ ⇔ (∀x)(φ→ ψ),
but we wish to set the stage as well for a discussion of quantifiers like Most, for which no
such equivalence is available.

For convenience we define the notion of a truth domain, for any variable x, formula φ,
model M, and gva U as follows:

(18) TM,U (x, φ) =def {d ∈ D| for some gva V, 〈Ux:d, V 〉 ∈ [[φ]]M}
We now generalize (6) to

(19) [[(∀x : φ)ψ]]M = {〈U, V 〉| (a) TM,U (x, φ) = ∅ and V = U , or else
(b) TM,U (x, φ) 6= ∅ and for all d ∈ D, there is a gva V ′ such that
(i) if d ∈ TM,U (x, φ) then 〈Ux:d, V

′
x:d〉 ∈ [[φ ∧ ψ]]M and otherwise V ′ = U ; and

(ii) for all variables y, V ′(y) = V (y) = U(y) if y is M-static in (φ ∧ ψ), and
V ′(y) = V (y)(d) if y is M-dynamic in (φ ∧ ψ)}.

We should observe, first of all, that this definition is indeed semantically equivalent to
(∀x)(φ→ ψ):
Proposition 1. For all models M, [[(∀x : φ)ψ]]M = [[(∀x)(φ→ ψ)]]M.
Proof: See Appendix.

6The idea of treating variables as functions is suggested as an alternative to dynamic Skolemization at
the end of that paper.
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Note that according to condition (a), when the restrictor truth domain is empty, V (y)
is the same as U(y) for all variables y. For example, as we observed previously for the
sentence “Every unicorn x has a magical horn y”, if our model has no unicorns, then a
subsequent term such as y(Indigo) will refer to something arbitrary or will fail to refer
(leading to falsity of the embedding predication). This is a reasonable outcome under the
assumed circumstances.

Note also that for d outside TM,U (x, φ), ‘old’ values U(y) of variables are preserved by V ,
since in that case V (y)(d) in (b)(ii) equals U(y), by the ‘otherwise’-clause in (b)(i). So in
particular undefinedness is preserved in the application of the notion of textual truth (17).
Thus if we consider a restrictor φ that is true relative to some x-variants Ux:d of U and
false relative to others, then V (y)(d) will be U(y) (which can be arbitrary, or undefined)
for those d ∈ D that fail to verify φ relative to Ux:d.

However, these spurious or missing values are irrelevant to uses of a term such as y(z)
as the LF of an anaphor, as long as in the context of use, z is guaranteed to satisfy the
‘applicability conditions’ for y, i.e., the conditions C such that the defining context for y
could be rewritten as (∀x : C(x))(∃y)[ ... ]. (More generally, there may be nested quantifiers,
with applicability conditions contributed by each level of ∀-quantification.) For example, in
the following sentence,
(20) Every student x wrote a paper y, but no students x who took the exam handed in their

paper on time,

y would be assigned a function whose value for any student is a paper written by that
student, while its value for other arguments would be arbitrary or undefined. In other
words, the applicability condition for y is that the value of the argument of y must be a
student. This certainly holds for students who took the exam, and so y(x) can be properly
used as the LF of “their paper”. On the other hand, use of such an LF would violate the
suggested applicability conditions in the sentence
(21) Every student x wrote a paper y or took the exam, but no students x handed in their

paper on time.7

Here the applicability condition for y is that its argument should denote a student who
didn’t take the exam, since the defining context for y is equivalent to “Every student x who
didn’t take the exam wrote a paper y”; but the quantification “no students x ...” iterates
over all students, including those who took the exam, and for these students, y(x) may
‘accidentally’ denote some entity (such as an exam booklet) that was indeed handed in (on
time) by x; thus “no students x handed in y(x) on time” may well be formally false even
when “no students x handed in their paper on time” is intuitively true.

However, if we rigidly enforce applicability conditions we are left with the problem of
assigning an LF to anaphors like that in (21). While the use of “their paper” in (21)
does seem to falsely presuppose or at least implicate that every student has a paper, the
sentence seems true even if that presupposition or implicature is violated, as long as none of
the students who wrote a paper handed it in on time. A possible answer is that y(x) provides
the correct interpretation when we employ the ‘maximally dynamic’ disjunction semantics
(7′) rather than (7), and bring to bear our notion of textual truth (as per (17)), rather than
truth relative to an arbitrary assignment. Observe that if (21) is treated as a text and our
initial assignment is empty, then for any assignment V that can result from the first clause,

7(21) was suggested by Ken Shan (personal communication); its variant (20) and the discussion of these
sentences were motivated by his comments
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V (y)(d) will be well-defined for all and only the students d who wrote a paper, where that
paper is given by V (y)(d). Thus if we formalize “their paper” as y(x) in the second clause,
this will have a reference precisely for those students who wrote a paper, and the desired
claim will be made about these students. For students who did not write a paper, the value
of y(x) will be undefined, but the claim that they did not hand in y(x) will be true, as an
undefined entity cannot be handed in, according to our semantics of predication. If “but
no” in (21) were replaced by “and all”, then truth of the text would indeed require that all
students wrote and handed in a paper. This seems intuitively reasonable – cf., David Ahn’s
discussion of the sentence “Every German loves his kangaroo” in [1].

3.2 Bridging anaphora

The phenomena we have been focusing on appear in a slightly different guise in bridging
anaphora, illustrated in (22).

(22) Cora walked up to a house. She knocked on the door.
First, we want to point out the simplicity of the logical form of the second sentence on a
functional analysis. Suppose that part of the background knowledge for (22) is

(23) (∀x)[house(x) → (∃y)door(y) ∧
part-of(y,x) ∧ at-front-of(y,x)]

(Every house has a front door). On our semantics, this makes available a function, namely
y, for referring to the door of a house. Thus the (resolved) LF of the second sentence of
(22) becomes (ignoring tense)

(24) knock-on(Cora,y(z)),
where z is the ∃-variable for the house in the LF of the first sentence.

This LF also has significant semantic advantages: while y(z) is a specific choice of referent
for “the door” (viz., the front door), it does not commit us to a presumption of uniqueness,
in contrast with a more ‘literal’ interpretation of the definite such as ıw[door(w) ∧ part-
of(w, z)]. A uniqueness assumption may well be incorrect; (22) is perfectly felicitous even
if houses are also known to have back doors, or, occasionally, multiple front doors.8

3.3 Frames, scripts, and generic sentences

In AI, general knowledge of the sort exemplified by (23) has traditionally been represented
using frames [13] – packets of knowledge about particular kinds of things (such as a house)
belonging to an inheritance hierarchy (perhaps including buildings, architectural objects,
or artifacts more generally), and providing information about various parts or aspects of
those kinds of things (such as walls, doors, windows, location, etc.) via ‘slots’ interpreted as
functions. Over time, frames have evolved into description logics [3], but the idea remains
much the same. Closely related to frames are scripts [15], except that these attempt to
formalize familiar kinds of structured events (such as dining at a restaurant) rather than
structured objects. But just as in the case of frames, the relevant aspects (i.e, participants,
and subevents, such as entering, getting seated, ordering, etc.) can be modelled as entities
(‘roles’) functionally dependent on the whole, and thus frame or description logic formalisms
can be applied.

While well-studied from a logical and computational perspective, frames and descrip-
tion logics have been developed more or less independently of linguistic considerations. In
particular, there has been little discussion of the relation between knowledge expressed in

8This of course means that y(z) may not be the only possible choice of referent, but that is an issue that
any reference resolution strategy must face. Similar examples are “He reached into his pocket”, “He likes his
neighbor, “He went to the doctor”, etc.
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language and knowledge expressed in frames or description logics. Knowledge engineers
who employ the latter simply use their intuitions and their understanding of the target for-
malisms to code knowledge about the domain of interest. But one would expect that such
work would become much easier if the knowledge to be formalized could be expressed in
ordinary language and automatically translated into a formal representation. Indeed, much
knowledge coding could be avoided altogether if the general knowledge that can be found
in on-line lexicons, encyclopedias, manuals, and other text corpora could be automatically
interpreted and extracted.

What is potentially attractive about the present proposal (and this is something it shares
with dynamic Skolemization) is that it shows how the functional dependencies expressed
by slots in frames and roles in scripts (and slots or attributes in description logics) might
be directly derived from linguistically expressed general knowledge. For example, an LF
similar to (23) might be the logical translation of an ordinary sentence (something like
“Every house has [as part of it] a door at its front”), and this translation provides a ‘front-
door function’ y that can subsequently be used outside its defining context, just like a slot
or role name, to refer to a particular aspect – the front door – of instances (or subtypes) of
the general type, house.

In the case of structured events, we would similarly obtain functions for referring to
participants or subevents simply by ∃-quantification. For example, the LF of a verbal
description of the events that transpire when a person dines at a restaurant would probably
involve, among other things, an ∃-quantified entering event, an ∃-quantified getting-seated
event, an ∃-quantified server, and so on. (See [18] for a simple verbally expressed ‘dining’
script and the interpretation of its roles/subevents as functions.) Since the ∃-quantifiers lie
within the scope of a ∀-quantifier over dining events (and perhaps patrons and restaurants),
they make available functions that can subsequently be used to refer to roles and subevents
in specific dining events (or special cases of such events).

One advantage of using ‘ordinary logic’ (adapted as suggested here, and perhaps enriched
in other ways) rather than frames, scripts or description logics as the target language
for linguistically expressible knowledge is that we gain flexibility and expressiveness. For
example, the fact that chimneys of houses serve to vent combustion gases from furnaces or
fireplaces would be virtually inexpressible in description logics developed so far.9 It would
also be hard to integrate, say, a frame for a dining establishment with a script for dining
– allowing for such facts as that tables for patrons are placed in close proximity to one
another, and that servers serve patrons at multiple tables.

Our proposals here also seem extensible in a way that would meet the referential re-
quirements of general knowledge admitting exceptions, i.e., generic knowledge. In keeping
with the literature on generics (e.g., [5, 2]), let us assume the availability of generalized
quantifiers such as Most and Few. The semantics of Most would be given by the following
analogue of (19), with “most” interpreted in some specific way (say, more than half, in the
case of finite sets).

(25) [[(Most x : φ)ψ]]M = {〈U, V 〉| (a) TM,U (x, φ) = ∅ and V = U , or else
(b) TM,U (x, φ) 6= ∅ and most of its elements are contained in TM,U (x, φ ∧ ψ),
and for all d ∈ D, there is a gva V ′ such that
(i) if d ∈ TM,U (x, φ ∧ ψ) then 〈Ux:d, V

′
x:d〉 ∈ [[φ ∧ ψ]]M and otherwise V ′ = U ; and

(ii) for all variables y, V ′(y) = V (y) = U(y) if y is M-static in (φ ∧ ψ), and

9Well, we could have a purpose slot with value vent-combustion-gases-from... etc., but that would
hardly support useful inferential linkages to notions like ‘venting’, ‘combustion’, etc.

9



V ′(y) = V (y)(d) if y is M-dynamic in (φ ∧ ψ)}.

One point to note about this definition is that the implicit Skolem functions that are gener-
ated by existentials within the restrictor or nuclear scope provide meaningful values corre-
sponding not only to most elements of the restrictor domain, but to all elements for which
the restrictor and nuclear scope are true – which potentially includes the entire restrictor
domain (namely, in the case where ‘most’ could truthfully be strenghtened to ‘all’).

Now, one thing we can express with such an extension of our language is generic reference
to dependent entities whose defining context is universal. For example, consider again the
front-door function y ‘generated’ in (23) (its defining context); we could express that the
front door of a house usually (in most instances) opens inward as

(26) (Most x: house(x))opens-into(y(x),x).
(26) is much simpler (and arguably more easily obtainable from surface form) than DRT-
or DPL-based LFs, which would require ‘copying-over’ of the defining properties of y from
(26) into the restrictor of Most in (26).

Further, suppose that the defining context for a dependent entity like the front door in
(23) is itself generic, i.e., it states that most (rather than all) houses have a front door.
Then functional anaphors based on such defining contexts still behave as we would want.
In particular, the truth of (24) would guarantee that Cora knocked on the front door of z,
even if there are more houses with a front door than are required to verify the weakened,
generic version of (23). While for a z that is not a house (e.g., if (22) had said “Cora walked
up to a house or a trailer home”, and only the latter alternative is true), y(z) could have an
arbitrary denotation that accidentally verifies (24). However, under our text semantics (17),
such a misapplied reference would again just lead to falsity of the predication containing it,
here (24).

3.4 Related work and concluding comments

The author’s previous ‘dynamic Skolemization’ proposal [18] was aimed at the same
kinds of applications as the present one, but involved syntactic substitution of con-
stants/functions for existentials, accompanied by stipulation of definitional clauses for these
constants/functions. The advantage of this strategy is that it directly yields ordinary first-
order sentences, avoiding dynamic semantics. Most instances of donkey anaphora and
functional anaphora are amenable to it. However, as already noted, dynamic Skolemization
is viable in unnegated contexts only; and extending it to negated contexts would require
rather complex restructuring of the original logical forms. Thus the present approach is
more general and theoretically satisfactory.

In [20], Steedman sketches an approach to donkey anaphora wherein an indefinite like “a
donkey” would receive an initial logical form like arb‘donkey’, which would in turn yield a
Skolem term like Skdonkey(x), x being the universally quantified variable(s) in whose quan-
tifier scopes the indefinite is included. This appears to be similar to dynamic Skolemization,
though the syntactic details and mechanism weren’t spelled out at the time. Steedman sub-
sequently elaborated this idea in [21], essentially rendering an indefinite NP of form “an N”
as skolemi(λxN ′(x)), regarded as an underspecified term with unique index i, to be re-
placed by an ordinary Skolem function when the functional dependency of the individual
’arbitrarily selected’ from the truth set of the predicate can be determined. However, the
Skolem constants and functions are not treated in the semantics as ordinary constants and
functions, but rather are dynamically interpreted, rather like DRT discourse referents or
DPL ∃-variables, apart from the introduction of explicit functional dependencies. In that
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respect, Steedman’s approach has similarities with both dynamic Skolemization (though
the latter treats Skolem constants/functions as ordinary, nondynamic constants/functions),
and implicit Skolemization (though the latter retains the ∃-quantified form of indefinites).
Detailed comparisons are difficult at this point because of the extensive technical differences
between the two approaches, and because different phenomena have been focused on (e.g.,
scope ambiguity in Steedman’s work, and extension to quantifiers like Most in the present
work).

The use of Skolem functions for indefinites has also been studied by a number of other
researchers, e.g., Schlenker [16, 17], Winter [26], Barker [4], Hardt [11], and Dekker [7],
often with a view towards sorting out the strengths and weaknesses of various approaches
to the logic of E-type pronouns [8], scope ambiguity, and branching quantifiers. Besides
Skolem function-based approaches, these approaches include choice functions and ‘pronoun
of laziness’ accounts. The motivating examples in these discussions are often very similar
to the ones that provided the impetus for the dynamic Skolemiztion proposal and for the
present work. For example, Dekker [7] cites an example attributed to Gabriel Sandu,

(27) Most men had a gun, but only a few used it,
which clearly involves functional reference, and which lends itself nicely to the implicit
Skolemization proposal herein. The same paper also cites a sentence due to Schlenker [16],

(28) If each student x improves in two subjects y, then noone will fail the exam
[variables x, y added here for convenience],

where the speaker has in mind not only that the two subjects vary from student to student,
but that they are any given student’s worst subjects. Again, this could be straightforwardly
expressed in the current framework, with the speaker’s presumption stated as

(29) For each student x, y(x) are x’s worst two subjects.
However, while the literature provides some nice examples motivating a Skolemized ap-

proach, the mechanism for Skolem function introduction has generally not been spelled out
in detail, either as a systematic syntactic strategy, or as an implicit semantic phenomenon.

Two other kinds of theories of anaphora, formulated within DPL-like frameworks but with
little resemblance to Skolemized approaches and emphasizing the interpretation of plural
pronouns, have formally addressed some of the phenomena motivating implicit Skolemiza-
tion. One kind of theory, exemplified by [12] and [25], models the dependency of variables
on other variables by using augmented variable assignments whose values are individuals
paired with variable assignments. For example, the dependence of y on x in “Every student
x wrote a paper y” would be reflected in augmented assignments where the various possible
individuals assigned to x are paired with assignments that assign appropriate dependent
values to y. The second kind of theory, exemplified by [22, 24, 23] and [14], relies simply on
sets of (partial) variable assignments as input and output states of utterances. In this case
the dependence of a variable y on a variable x is implicit in the fact that when we examine
different assignments within the same state, we find that a particular value of y co-occurs
with some value of x, but not with some other value of x (even though both values of x
occur in the same state). For simple plural reference, as in “The students x were smart
and the papers y were of high quality”, these dependencies play no role – what matters is
just the set of values assigned to x or to y by different assignments in the output state
of the utterance that provides the plural referents for x and y. But the dependencies can
be exploited by use of a distribution operator that can be thought of as interpreting the
English floating quantifier each. Thus “They x each submitted it (their paper y) to L&P”
is understood formally as involving a distribution operator that ensures that a given input
state will generate a given output state only if for any given value d of x, the subset of
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assignments of the input state that assign d to x can generate the subset of assignments in
the output state that assign d to x.10

Both types of theories are aimed at pronominal anaphora, such as we find in
(30) Every man loves a woman. They send them flowers.

Dependencies in such examples are always ‘short-range’ – a pronoun cannot be used to
refer to a distant linguistic antecedent, especially not if a functional dependency is involved.
For example, we cannot paraphrase the second sentence in (22) as “She knocked on #it”,
intending it to refer to a front door or front-door function introduced many utterances
earlier and not mentioned subsequently. In the writings cited above, determining referents
of anaphoric definite descriptions is viewed as an AI problem lying outside the immediate
purview of dynamic semantics. Still, here is an attempt to use Nouwen’s formalism [14]11 to
deal with the second sentence in (22), assuming that a sentence like (23) (interpreting “Every
house has a front door”) has been introduced at some earlier point, setting up correlated
variables x (for houses) and y (for front doors) in the variable assignments comprising the
resultant state; assume that x′ is the variable introduced for the house that Cora walked
up to:
∃x′′ẋ′′ ⊆ xẋ′′ = x′δ̇∗(λu. knock-on(Cora, y))(x′′).

This introduces a new variable x′′, setting its value to the house x′ under consideration
(where the subset relation means that any (partial) variable assignment that supplies a
value for x′′ must supply the same value for x). The purpose of the new variable is to
ensure that any assignment that provides a value for x′′ will also provide the appropriate
correlated value for y, i.e., the front door of x′′ (and hence x′, in view of the equality
x′′ = x′). This then makes it possible to apply the distribution operator δ∗ to a predicate
expressing the property of being an entity u such that Cora knocks on a certain thing or
set of things y. Though the λ-abstraction is vacuous, application of the distributed version
of the predicate to x′′ ensures that the only values of y that can verify knock-on(Cora,y)
are ones corresponding to possible values of x′′, of which there is but one – the front door
of the house x′′ = x′.

We will not make any similar attempt to formulate a ‘long-range’ functional anaphor
in the syntactically rather unconventional and semantically quite complex formalisms of
[12] or [25]; even the above van den Berg / Nouwen-like representation may be remote from
what those authors would propose. Obviously, this is a matter for further research and
for the time being no definite conclusions can be drawn about the relative merits of these
theories and the approach based on implicit Skolemization, with respect to the general
phenomenon of functionally dependent anaphora. Implicit Skolemization does seem to
have some advantages from a computational semantics perspective, in that the syntax of
(restricted) quantification is conventional, and functional reference is syntactically simple
and explicit and is semantically ‘persistent’ in the sense that implicitly established Skolem
functions remain available for anaphoric reference even if their defining context lies in an
arbitrarily large knowledge base (as mentioned in the discussion of bridging anaphora and
frame- or script-like knowledge).

An interesting question raised by the cited work on plural anaphora, however, is whether

10It may appear from these remarks that the dynamics of meaning in the theories mentioned here depends
on the names of variables used – as it does for existential variables in implicit Skolemization. While this
is true for most of the theories, Nouwen’s formalization is actually variable-free, and provides a basis for a
bottom-up dynamic semantics for natural language that is compositional in the strong sense of not requiring
a level of semantic representation.

11with some slight adjustments harking back to van den Berg [22], for expository reasons
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implicit Skolemization could be extended to deal systematically with plurals. For example,
do we have a way of picking out the set of students and the set of papers they wrote,
given that “Most students x wrote a paper y”? Here are some cursory observations. In the
example, we could access the set of students who wrote papers and the set of papers that
were written respectively as the domain and range of the implicit Skolem function, i.e.,
{c|(∃d)d = y(c)} and {d|(∃c)d = y(c)} (which of course could be reformulated in terms of
set membership and quantification over sets, or in various other ways).12 However, what
if no functional dependency is involved, as in “Most students stayed home; they felt the
recitation was redundant”? One possibility is to introduce Davidsonian event variables into
sentence predicates, which would then be implicitly Skolemized and could thus supply the
required sets. Another possibility is to introduce existentially quantified set variables with
all noun phrase interpretations, which is essentially the strategy in [25]. Various issues
arise concerning accessibility of referents and the ‘division of labor’ between semantics and
pragmatics (cf. [14, 25]), but these are matters for future investigation.
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Appendix: Proofs

We prepare for the proof of the Implicit Skolemization theorem by noting the following:
Lemma. Regardless of M and φ, only ∃-variables can be M-dynamic in φ.
Proof. Assume an arbitrary model M and formula φ. Variables not bound in φ can
be seen to be uniformly static in φ by an easy induction, with atomic formulas as
basis. Note that in the ∀-semantics in (6), any variable y that is not bound in the
scope will be static by the induction assumption, and so we will have V (y) = U(y),
i.e., the variable remains static. By the same token, we have V (x) = U(x), where
x is the ∀-quantified variable in (6) (and is thus not bound within the scope of the
quantifier), so variables that are ∀-quantified in a formula φ are also uniformly static.
On the other hand, for the ∃-quantified variable y in (5), U may differ from Ux:d

at x, and thus the induction argument showing that variables that are static in smaller
formulas are also static in larger ones fails for ∃-quantified variables, and only for these. 2

Theorem (Implicit Skolemization). For any formula φ and modelM, if 〈U, V 〉 ∈ [[φ]]M
then for any variable y that is M-dynamic in φ, φ contains a (unique) ∃-quantifier binding
y, where that quantifier is not embedded by any negation in φ, and V (y) ∈ Fn where n is
the number of ∀-quantifiers in φ embedding the ∃-quantifier for y.
Proof. (a) Let φ be any formula, let M be any model, let 〈U, V 〉 ∈ [[φ]]M, and assume
that y isM-dynamic in φ. Then by the lemma, y is ∃-quantified in φ. Its quantifier cannot

12The way we have formulated the partial function semantics would ensure that the domain will be the
set of all students who wrote a paper, and the range will contain one paper for each of these students.
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be embedded by a negation, since the semantics of negation renders any variable y in its
scopeM-static, and this property is inherited by all larger formulas embedding the negation
except possibly a larger formula that ∃-quantifies y (by the same sort of inductive argument
that was sketched in the proof of the lemma) – but according to our assumed syntax a
variable cannot be ∃-quantified at a ‘higher’ level, when it is already ∃-quantified within
the scope of the higher-level quantifier.

It remains to show that V (y) ∈ Fn where n is the number of ∀-quantifiers in φ embedding
the ∃-quantifier for y. As a basis for induction, consider the case φ = (∃y)ψ. By (5), and
since y is static in ψ, V (y) = Uy:d(y) = d for some d ∈ D, and so V (y) ∈ F0. The induction
hypothesis is that the theorem holds for all formulas of a certain size s or less. We now
consider the cases where φ is (χ ∧ χ′), (χ′ ∧ χ), (χ ∨ χ′), (χ′ ∨ χ), (χ → χ′), (χ′ → χ),
(∃x)χ, or (∀x)χ, where χ, χ′ are of size s or less, χ contains (∃y)ψ, and χ′ does not contain
an ∃-quantified occurrence of y (and no occurrence of y at all in the three cases where χ′

precedes χ). (Note that we are omitting φ = ¬χ, as this form is inconsistent with the
assumption that y is M-dynamic in φ.) We show in each case that V (y) ∈ Fn, with n as
stipulated above.
(χ ∧ χ′): According to the semantics of conjunction, there is a gva U ′ such that 〈U,U ′〉
∈ [[χ]]M, and 〈U ′, V 〉 ∈ [[χ′]]M. Since y is assumed to be dynamic in φ, and since it is
∃-quantified in χ, the induction hypothesis implies that U ′(y) ∈ Fk, where k is the number
of ∀-quantifiers embedding (∃y)ψ in χ (for some ψ). But y is not ∃-quantified in χ′, so it is
static in χ′, and so V (y) = U ′(y) and hence V (y) ∈ Fk, and of course n = k here.
(χ′ ∧ χ), (χ ∨ χ′), (χ′ ∨ χ): The argument for each of these cases is quite similar to the
preceding one.
(χ → χ′): Here the assumption that y is M-dynamic in φ entails the first clause in (8),
concerned with the case of a false antecedent (relative to U) does not apply. The second
clause in (8) is essentially the semantics of conjunction, and so the same argument as for
(χ ∧ χ′) applies.
(χ′ → χ): Much the same argument as for (χ→ χ′) applies.
(∃x)χ: Since y is ∃-quantified in χ, hence by our syntax x and y are distinct variables, and
so y must beM-dynamic in χ (if it wereM-static in χ it would also beM-static in φ), and
the induction hypothesis applies to χ. Now, according to the ∃-semantics in (5), any pair
〈U, V 〉 satisfying (∃x)χ differs from a corresponding pair 〈Ux:d, V 〉 satisfying χ at most in
the value assigned by U to x; so the value of V (y) is inherited by φ from the scope χ, and
this is ∈ Fk by the induction hypothesis, where k is the number of ∀-quantifiers embedding
the ∃-quantifier of y in χ; and of course n = k.
(∀x)χ: Again, since y is M-dynamic in φ, it is M-dynamic in χ. (If y were M-static in χ,
it would beM-static in φ, by the condition forM-static variables in (6).) So the induction
hypothesis applies to y in χ. Hence in the condition derived from (6), that for all d ∈ D,
〈Ux:d, V

′
x:d〉 ∈ [[χ]]M, we know that V ′x:d(y) ∈ Fk, where k is the number of ∀-quantifiers

embedding the ∃-quantifier for y in χ. But (6) also posits that for y M-dynamic in χ,
V ′(y) = V (y)(d). Thus V (y) is a function which, when applied to any d ∈ D, yields a
function in Fk, provided that V ′(y) is defined. In other words, V (y) ∈ Fk+1, and of course
k+1 = n, the number of ∀-quantifiers embedding the ∃-quantifier for y in φ (= (∀x)χ). 2

Proposition 1. For all models M, [[(∀x : φ)ψ]]M = [[(∀x)(φ→ ψ)]]M.
Proof. ⇐: Let 〈U, V 〉 be in [[(∀x)(φ → ψ)]]M. From (6) for all d ∈ D, there is a gva V ′

such that 〈Ux:d, V
′
x:d〉 ∈ [[φ→ ψ]]M, where for all variables y,

V ′(y) = V (y) = U(y) if y is M-static in (φ→ ψ), and
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V ′(y) = V (y)(d) if y is M-dynamic in (φ→ ψ).
Consider any d ∈ D and the corresponding V ′. First suppose TM,U (x, φ) = ∅. Then
〈Ux:d, V

′
x:d〉 ∈ [[φ → ψ]]M implies that Ux:d = V ′x:d, by (8). But x is static in (φ → ψ), so

V ′(x) = U(x) and so V ′ = U . In fact, with TM,U (x, φ) = ∅, (8) implies that all variables
areM-static in(φ→ ψ), so V ′ = V = U . This confirms case (a) of the (∀x : φ)ψ-semantics.

Now suppose TM,U (x, φ) 6= ∅. Then from the premise that 〈Ux:d, V
′
x:d〉 ∈ [[φ→ ψ]]M and

the further assumption that d ∈ TM,U (x, φ), it follows that 〈Ux:d, V
′
x:d〉 ∈ [[φ∧ψ]]M. If that

further assumption is false, 〈Ux:d, V
′
x:d〉 can be an element of [[φ→ ψ]]M only if there is no

U ′ such that 〈Ux:d, U
′〉 ∈ [[φ]]M, by (8); in that case V ′x:d = Ux:d, and thus V ′ = U , since

x is static in (φ → ψ). In either case, noting that a variable y is M-static [-dynamic] in
(φ ∧ ψ) iff it is M-static [-dynamic] in (φ→ ψ) (as is easily verified, since with [[φ]]M = ∅,
every variable is M-static in (φ ∧ ψ)),
V ′(y) = V (y) = U(y) if y is M-static in (φ ∧ ψ), and
V ′(y) = V (y)(d) if y is M-dynamic in (φ ∧ ψ).

This confirms case (b) of the (∀x : φ)ψ-semantics.
⇒: Conversely, let 〈U, V 〉 be in [[(∀x : φ)ψ]]M. Then from (19), either (a) TM,U (x, φ) = ∅

and V = U , or (b) TM,U (x, φ) 6= ∅ and for all d ∈ D there is a gva V ′ such that (i)
if d ∈ TM,U (x, φ), then 〈Ux:d, V

′
x:d〉 ∈ [[φ ∧ ψ]]M, and otherwise V ′ = U ; and (ii) for all

variables y,
V ′(y) = V (y) = U(y) if y is M-static in (φ ∧ ψ), and
V ′(y) = V (y)(d) if y is M-dynamic in (φ ∧ ψ).

We want to show that 〈U, V 〉 be in [[(∀x)(φ → ψ)]]M, i.e., for all d ∈ D, there is a gva V ′

such that 〈Ux:d, V
′
x:d〉 ∈ [[φ → ψ]]M, where for all variables y, V ′(y) = V (y) = U(y) if y is

M-static in (φ→ ψ), and V ′(y) = V (y)(d) if y is M-dynamic in (φ→ ψ).
For case (a), TM,U (x, φ) = ∅, so for any d ∈ D, 〈Ux:d, Ux:d〉 ∈ [[φ→ ψ]]M by (8), and so U

provides the required V ′ in the preceding statement. For case (b), where TM,U (x, φ) 6= ∅,
consider any d ∈ D and the corresponding V ′ assured by (b). Then if d ∈ TM,U (x, φ),
we have 〈Ux:d, V

′
x:d〉 ∈ [[φ ∧ ψ]]M, hence by (8), 〈Ux:d, V

′
x:d〉 ∈ [[φ → ψ]]M, and by (ii), and

the previously noted equivalence of (φ ∧ ψ) and (φ→ ψ) with respect to the M-static/M-
dynamic distinction for any variable y,
V ′(y) = V (y) = U(y) if y is M-static in (φ→ ψ), and
V ′(y) = V (y)(d) if y is M-dynamic in (φ→ ψ).

If d 6∈ TM,U (x, φ), then with V ′ = U , 〈Ux:d, V
′
x:d〉 = 〈Ux:d, Ux:d〉 and this is in [[φ→ ψ]]M by

(8). Also, we again have from (ii) that
V ′(y) = V (y) = U(y) if y is M-static in (φ→ ψ), and
V ′(y) = V (y)(d) if y is M-dynamic in (φ→ ψ),

where in this case V ′(y) = U(y). 2
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