
Evaluation of EPILOG: a Reasoner for Episodic Logic

Fabrizio Morbini and Lenhart Schubert
University of Rochester

Abstract

It can be quite hard to objectively evaluate a reasoner geared
towards commonsense problems and natural language appli-
cations if it uses a nonstandard logical language for which
there exist no publicly available datasets. We describe here
the evaluation of our recent improvements of the EPILOG

system, a reasoner for Episodic Logic, a superset of first-
order logic geared towards natural language applications. We
used both a sample of interesting commonsense questions ob-
tained from the ResearchCyc knowledge base and the stan-
dard TPTP library to provide an evaluation that tests the
unique features of Episodic Logic and also puts the perfor-
mance of EPILOG into perspective with respect to the state of
the art in first-order logic theorem provers. The results show
the extent of recent improvements to EPILOG, and that very
expressive commonsense reasoners need not be grossly inef-
ficient.

Introduction

We present here the evaluation of the progress made in the
development of the EPILOG system ((Schubert et al. 1993)
and (Schaeffer et al. 1993)), motivated by the recent effort
towards building a self-aware agent (Morbini and Schubert
2008). EPILOG is an inference engine for Episodic Logic
(EL) ((Schubert and Hwang 2000) and (Hwang and Schubert
1993)) that has been under development since 1990 ((Schu-
bert et al. 1993) and (Schaeffer et al. 1993)).

The EPILOG system and EL are designed with natural lan-
guage (NL) understanding in mind. The natural way to test
its capabilities (both on the reasoning front and on the repre-
sentation front) is by using a publicly available set of com-
monsense problems.

Among several collections that are available, we opted for
the set of problems contained in the ResearchCyc knowledge
base. They comprise more than 1600 problems that provide
both the English formulation of a question and its transla-
tion into CycL1. In addition to the abundance of interest-
ing and challenging questions, another advantage of using
this dataset is that it allows the comparison between our and
Cyc’s interpretation of each question.

The last point highlights the problem of comparison for
systems that use for their evaluation a dataset based on En-

1http://www.cyc.com/cycdoc/ref/cycl-syntax.html

Set

Episode
Color

Meta Number

Part

Hier

Time

Type Equality Other

String

Specialist

interface

Response

generator

EPILOG
core

KB

Figure 1: The high level structure of EPILOG1.

glish. Because a question expressed in English can be for-
malized in many ways and at various levels of detail, it is
very difficult to use the results obtained to compare different
systems. This lack of a dataset expressed in logic to facilitate
comparisons is not easily solved given the lack of agreement
on a single logical language well-suited for NL; and even if
such a language existed each English sentence can still be
interpreted in many ways and at different levels of detail.

Therefore, to give a more complete picture of the perfor-
mance of the EPILOG system and to facilitate comparisons
with other systems, we decided to evaluate it as well against
the widely used TPTP dataset for FOL theorem provers.
This puts the basic performance of the reasoner in perspec-
tive with respect to the state of the art in FOL theorem
provers. The evaluation on Cyc’s commonsense test cases
instead tests the features that distinguish EPILOG from a tra-
ditional FOL theorem prover.

In the paper if we need to distinguish between the legacy
EPILOG system and the new version we will refer to the for-
mer as EPILOG1 and to the latter as EPILOG2.

This paper is organized as follows: first we briefly de-
scribe the high-level structure of the EPILOG system, and
then highlight the major improvements made to EPILOG in
the EPILOG2 system. Then we describe in detail the evalua-
tion of the system and state our conclusions.

EPILOG

In this section we briefly describe EPILOG and EL. Figure
1 represents the building blocks of the EPILOG1 system and

how they are connected together. EPILOG1’s core contains
the inference routines, the parser, the normalizer and the
storage and access schemas to retrieve and add knowledge
from/to the knowledge base. A set of specialists, connected
to the core inference engine through an interface module,
help the general inference routines to carry out special in-
ferences quickly (e.g., type inference to conclude whether
[Car1 Artifact] is true given that Car1 is a coupe and coupes
are a type of car, cars are vehicles, and vehicles are artifacts).
The specialist interface consists of a series of flags associ-
ated with some key predicates/functions that automatically
activate predefined functions in a particular specialist.

EPILOG is a reasoner for EL. EL is a highly expressive
natural logic with unique features, including modifiers, rei-
fiers, substitutional and generalized quantifiers and episodic
operators, making EL particularly suited for (NL) applica-
tions. Briefly, the major differences with respect to FOL are
the following.

To represent events and their relations, three episodic op-
erators are introduced: *, ** and @. These operators take
a well-formed formula (wff) and a term (an event) as argu-
ments. For example, the EL formula [[D1 lose-control-of
V1] ** e1] expresses that e1 is the event characterized by
D1 losing control of V1. (Note that predicates are preceded
by their “subject” argument in wffs.) Substitutional quan-
tification over predicative expressions, wffs, and other syn-
tactic entities is required to express meaning postulates and
introspective knowledge. It is also important for interfacing
the general inference engine with specialists (as described
later). EL modifiers correspond to the modifiers used in NL,
e.g., “very”, “almost” or “by sheer luck”, and reification op-
erators are used to represent generics and attitudes. Quan-
tifiers allow for the use of a restrictor. For example, in the
sentence “Most dogs are friendly”, “dogs” is the restrictor
of the quantifier “most”. For the quantifiers ∀ and ∃ the re-
strictor can be incorporated into the remainder of the quan-
tified sentence, but for many generalized quantifiers this is
not possible.

EPILOG2
In this section we mention the major changes made to EPI-
LOG1. The interface to knowledge bases (KB) has been re-
designed to facilitate 1) temporary modifications to a KB
(introduced for example by the assumption-making used
during inference) and 2) the development and testing of
new access schemas (i.e. mechanisms to retrieve knowledge
from a KB). The result is a KB system based on inheritance
of KBs (similar to what Cyc uses for inheritance of micro-
theories) in which each KB is associated with a particular
access schema that can be easily changed.

The parser was changed from an if-then based mechanism
to a system based on a standard chart parser. This allows for
easy debugging and modifications to the ever-evolving EL
grammar.

The interface to specialists is now based on explicit meta-
knowledge stored like any other knowledge. This knowl-
edge specifies under what conditions a particular specialist
functionality can be called. For example the formula (∀wff

w [’w without-free-vars] [[(apply ’apply-fn-knownbyme?

’w) = ’yes] ⇒ [(that w) knownbyme]]) describes when the
introspective specialist can be called to answer whether EPI-
LOG knows a particular formula w. The interface is based on
this Apply function, which is known to the inference engine
as having a special meaning.

An automatic system to extract type information has been
added to EPILOG. Currently this system is used 1) to build
type hierachies, 2) to keep track of the return type of func-
tions based on the type of the arguments and 3) to build a hi-
erarchy for the arguments of transitive predicates (also tran-
sitive predicates are automatically detected by looking for
formulas like (∀ x (∀ y (∀ z (([x P y] and [y P z]) ⇒ [x P
z])))), expressing transitivity).

The question-answering (QA) framework has been totally
redesigned to allow for QA inside QA (used in introspec-
tion and called recursive QA). In addition subgoals are now
selected using a hierachical agenda that sorts the subgoals
based on 1) the size of the formula associated with subgoal
g relative to the size of the biggest formula among the sib-
lings of g; 2) the % of times a descendant of g or g itself was
selected for inference but no improvement was obtained2; 3)
the % of g that is solved (this is greater than 0 only for a sub-
goal that at some point can be split, e.g., a conjunction); 4)
the % difference between the size of g’s formula and the size
of the smallest formula among the descendants of g whose
solution would imply a solution of g; for conjunction of sub-
goals, their average size is considered.

Evaluation

To evaluate the progress of our effort to build a self-aware
agent based on EPILOG2, we used two methods: 1) test-
ing on a selected small set of examples from the common-
sense test cases contained in Research Cyc; 2) the scalability
test included in the TPTP library of problems for theorem
provers; this scalability test was constructed from the Open-
Cyc knowledge base. With the first type of evaluation we are
testing the adequacy of EL for directly expressing English
questions and background knowledge, and the reasoning ca-
pabilities of EPILOG2. With the second type of evaluation
we are testing how EPILOG2 fares in relation to the state of
the art of FOL theorem provers.

First we will describe the set of questions used to test
EPILOG2’s commonsense reasoning capabilities. Most of
the questions have been manually encoded in EL because
the general-purpose English to EL translator is not yet ro-
bust enough to handle these questions. However care has
been taken not to simplify the EL form of those questions to
make the job of the reasoner easier; instead we made an ef-
fort to produce EL versions that would likely be produced by
an automatic, compositional English-to-EL translator. This
is why some questions may appear more complex than one
might expect, based on traditional “intuited” formalizations
of English sentences.

In the formulas used in the following examples, we use
Epi2Me as the internal constant that refers to the system it-
self.

2An improvement is measured either by a decrease in size of
the resulting subgoal, or solution of the subgoal.

Question 1 is “How old are you?”, which in EL becomes:

(whterm x (∃term y [’x rounds-down ’y]
(∃ z [’y expresses z (K (plur year))]

(∃ e [e at-about Now]
[[z age-of Epi2Me] ** e]))))

K is a reification operator that maps a predicate (here,
(plur year), a predicate true of any collection of years) to
a kind (here, the kind whose realizations are collections of
years).

We have assumed that the representation of the question
would be expanded pragmatically to include conventional
restrictions on the form of the answer expected, i.e., an an-
swer in rounded-down years rather than, say, seconds. These
pragmatic constraints depend on the question itself; for ex-
ample they would be different for a question like “How old
is this bagel/star/rock/etc.?”. In the future we would like to
automatically include such constraints by means of “cooper-
ative conversation axioms”. We might have an axiom saying
something like: If X informs Y about a quantitative attribute
F (such as weight, age, temperature, etc.) of some entity Z,
then X is conversationally obligated to express F(Z) in units
that are conventional for entities of the type(s) instantiated
by Z. In addition we would need various axioms about the
conventional units for expressing weight, age, etc., of vari-
ous types of entities. These axioms would then be used to
refine the raw logical form of a question to include the prag-
matic constraints. However, here we just focused on solving
the question, manually adding the necessary pragmatic con-
straints.

Some of the key knowledge used to answer this question
is the following:

This axiom defines the age of an entity during a particular event,
when the entity’s birth date is known:

(∀ y (∀ x [x (be (birth-date-of y))]
(∀ e [[(time-elapsed-between (date-of e) x) age-of y] @ e])))

Axiom defining the relation between the ** and @ operators:

(∀wff w (∀ e ([w @ e] ⇔
(∃ e1 [e1 same-time e] [w ** e1]))))

Axiom that describes which specialist function to call to express
the function time-elapsed-between in a particular type of unit:

(∀ x (x is-date) (∀ y (y is-date)
(∀pred type (’type el-time-pred)

(∀ r (’r = (Apply ’diff-in-dates? ’x ’y ’type))
(’r expresses (time-elapsed-between x y)

(K (plur type)))))))

The most interesting part of this example is the use of a set
of axioms based on the Apply function to make the reasoning
system “aware” of a set of procedures useful in computing
mathematical operations and in doing type conversions. In
this way EPILOG2 is able to return the answer to the question
expressed as an integer that is the floor of the amount of time
in years that has elapsed between the date of birth of EPILOG

and now (the moment of speech). In EL the unifier found
for the variable x of the initial question is: (amt 18 (K (plur
year))).
Question 2 is “What’s your name?”, which expressed in EL
is:

(∃ e [e at-about now0]
[(wh z ([z name] and [Epi2Me have z])

(∃ y [y thing] [y (BE (L x (x = z)))])) ** e])

Some of the key knowledge used to answer this question
is the following:

The event now0 is during the event e2:

[now0 during e2]

The event e2 is characterized by EPILOG having the name ’epilog-
name’:

[[Epi2Me have ’epilog-name] ** e2]

If one event is characterized by something possessing something
else, then that will also be true for any event during the first event:

(∀ x (∀ y (∀ z [[x have y] ** z]
(∀ zz [zz during z] [[x have y] @ zz]))))

Of interest here is the last axiom because it ascribes “in-
ward persistence” (homogeneity) to predicate have, a prop-
erty it shares with other atelic predicates. The two other
formulas are hand-additions to the current knowledge base,
but they should be automatically inserted, the first by the En-
glish to EL generator, the second by a self-awareness demon
that is in charge of maintaining basic information about the
agent, for instance, its name, its state (e.g. sleeping, awake,
etc.) and its “state of health” (e.g., cpu consumption, free
memory, garbage collection status, etc.).

To correctly answer this question the reasoner also uses
lexical knowledge that states which predicates are atemporal
and therefore can be moved out of the scope of the ** op-
erator. This knowledge is expressed in EL and it is used by
the normalizer. An example is (’thing EL-type-pred), stating
that ’thing’ is a type predicate and therefore atemporal.
Question 3 shows how EPILOG could answer questions
about its own knowledge. The question is “What do you
know about the appearance of pigs?”, which in EL we ex-
pressed as:

(wh x [x appearance-fact-about (K (plur pig))])

Some of the relevant knowledge involved in this example
is:

Pigs are thick-bodied:

[(K (plur pig)) thick-bodied]

The predicate ‘thick-bodied’ is an appearance predicate:

[’thick-bodied appearance-pred]

Every wff that uses an appearance predicate is a fact about the ap-
pearance of its subject:

(∀pred p [’p appearance-pred]
(∀ x [x p] [(that [x p]) appearance-fact-about x]))

One could construct much more complex formulas per-
taining to the appearance of something, e.g., that the appear-
ance of a person’s hair – say, color and style – constitutes
appearance information about the person.

The remaining questions are taken from the ResearchCyc
1.0 collection of commonsense test cases. About 81% of
these test cases have been axiomatized to become solvable

by Cyc; among those presented here, the last two have a
solution in Cyc. An important difference between our and
Cyc’s approach to these problems is in the style of formal-
ization: Cyc’s representations are in a simplified form that
1) is geared towards the CycL style (e.g., using many con-
catenated names for complex expressions instead of compo-
sitionally combining the parts), which is far from NL-based
representations; and 2) omits important details (e.g. tempo-
ral relations) and pragmatic constraints.
Question 4 is “Can gasoline be used to put out a
fire?”. In Cyc this is the test case named #$CST-Can-

YouUseGasToPutOutAFire, and the question is
expressed as: ((TypeCapableFn behavior-

Capable) GasolineFuel ExtinguishingA-

Fire instrument-Generic). (TypeCapableFn

behaviorCapable) returns a predicate that describes
the capacity for a certain behavior of a certain type of
thing in a certain role position. In effect the question
becomes, “Is gasoline-fuel behaviorally-capable of being a
generic-instrument in fire-extinguishing?”

We also interpret the question generically, but we adhere
more closely to a possible English phrasing, asking whether
there could be an instance where a person uses gasoline to
put out a fire:

(∃ e [e during (extended-present-rel-to Now)]
(∃ x [x person]

(∃ y [y ((nn gasoline) fuel)]
(∃ z [z fire]

[[x (able-to ((in-order-to (put-out z)) (use y)))]
@ e]))))

Some of the knowledge relevant to this question is:

If some person is able to use some stuff to put-out a fire then s/he
must be at the same location as the fire, must have at hand that stuff
and that stuff must be flame-suppressant:

(∀ e [e during (extended-present-rel-to Now)]
(∀ x [x person] (∀ y [y stuff] (∀ z [z fire]

([[x (able-to ((in-order-to (put-out z)) (use y)))] @ e]
⇒ ([[x has-at-hand y] @ e] ∧ [[x loc-at z] @ e]

[y flame-suppressant]))))))

Gasoline is flammable stuff:

(∀ x [x ((nn gasoline) fuel)] ([x flammable] ∧ [x stuff]))

Flammable things are not flame-suppressant:

(∀ x [x flammable] (not [x flame-suppressant]))

The question is answered negatively by using the knowl-
edge that to be able to put-put a fire one must use a flame-
suppressant material, and gasoline is not a flame-suppressant
material.
Question 5 is Cyc’s question named #$CST-DoesCyc-

HaveABiologicalFather, which in English is “Do
you (Cyc) have a biological father?”. In Cyc the question
is represented as (thereExists ?F (biological-

Father Cyc ?F)).
We expressed the question in EL as follows:

(∃ e [e at-about Now]
(∃ y [[Epi2Me (have-as ((attr biological) father)) y]

** e]))

In this question, have-as is a so-called “subject-adding
operator” that takes a unary predicate as argument and re-
turns a binary predicate. In this case ((attr biological) fa-
ther) is the monadic predicate true for all individuals that
are biological fathers. (have-as ((attr biological) father)) is
the binary predicate that is true for all pairs of individuals in
which the object of the predicate is the father of its subject.

The relevant knowledge for this example is:

EPILOG is an artifact:

[Epi2Me artifact]

No artifact is a natural object:

(∀ x [x artifact] (not [x natural-obj]))

A creature is a natural object:

(∀ x [x creature] [x natural-obj])

All creatures have a biological father:

(∀ x ([x creature] ⇔
(∃ y (∃ e

[[x (have-as ((attr biological) father)) y] ** e]))))

The question is answered negatively by using the knowl-
edge that EPILOG is an artificial thing and therefore not a
natural object. Further it is known that only creatures can
have a biological father and that creatures are a subtype of
natural objects.
Question 6 corresponds to Cyc’s question named
#$CST-AnimalsDontHaveFruitAsAnatomical-

Parts-HypothesizedQueryTest In Cyc the
question is expressed as (implies (isa ?ANIMAL

Animal) (not (relationInstanceExists

anatomicalParts ?ANIMAL Fruit))).
In EL we express the question (more naturally, we claim)

as:

(∀ e [e during (extended-present-rel-to Now)]
(No x [x animal]

[[x (have-as anatomical-part) (K fruit)] ** e]))

The function extended-present-rel-to applied to an event
e returns the event that started long ago and continues long
pass the end of the event e. The extent of the event returned
should be context-dependent. However, for this question this
is irrelevant given that the knowledge used is presumed true
for any event. The relevant knowledge for this example is:

Plant stuff is not animal stuff:

(∀ x [x plant-stuff] (not [x animal-stuff]))

Fruits are made of plant stuff:

[(K fruit) made-of (K plant-stuff)]

Animals are made of animal stuff:

[(K animal) made-of (K animal-stuff)]

If an individual x is made of (kind of stuff) p and if (kind of stuff)
q is a subtype of p then x is made of q:

(∀ x (∀pred p [x made-of (k p)]
(∀pred q (∀ y [y p] [y q])

[x made-of (k q)])))

If an individual x is made of (kind of stuff) p and if (kind of stuff)
q is disjoint from p then x is not made of q:

(∀ x (∀pred p [x made-of (k p)]
(∀pred q (∀ y [y p] (not [y q]))

(not [x made-of (k q)]))))

If a type p is made of (kind of stuff) q then all individuals of type p
are made of q:

(∀pred p (∀pred q ([(k p) made-of (k q)] ⇔
(∀ y [y p] [y made-of (k q)]))))

Every part is made of the material of the whole:

(∀ w (∀ e (∀ p
([[w (have-as anatomical-part) p] ** e] ⇒
(∀ wm [w made-of wm] [p made-of wm])))))

We decided to answer the question by saying that all parts
are made of the same substance of which the whole is made.
However the case of artificial parts/organs is not captured
by this knowledge. One could improve on it by saying that
organic parts must be made of biologically compatible mate-
rials, while any artificial parts must be made of durable inert
materials that are compatible with the organic parts they are
in contact with.
Question 7 corresponds to Cyc’s question named #$CST--
DoAgentsBelieveWhatTheyKnow. The English ver-
sion of the question reads “If you know that something is the
case, do you believe that it is the case?”. In Cyc the question
is represented as: (implies (knows ?AGT ?PROP)
(beliefs ?AGT ?PROP)). In EL we provide the fol-
lowing representation as a direct reflection of English sur-
face form3:

(∀ e0 [e0 at-about Now]
(∀ x [x thing]
([[Epi2Me know (that (∃ e1 [e1 at-about e0]

[[x (be the-case)] ** e1]))
] ** e0] ⇒

(∃ e2 ([e2 at-about Now] and [e0 same-time e2])
[[Epi2Me (believe

(that (∃ e3 [e3 at-about e2]
[[x (be the-case)] ** e3])))

] ** e2]))))

The key knowledge to answer this question is the follow-
ing axiom:

If an event is characterized by some agent knowing something then
it is also characterized by the agent believing it:

(∀ e (∀ x (all p ([[x know p] ** e] ⇒ [[x believe p] ** e]))))

Question 8 (our last example) corresponds to Cyc’s
commonsense test case named #$CST-CanYouAttack-
SomeoneWithAGolfClub. In English the question is
“Can you attack someone with a golf club?”. Cyc expresses
it in the same way as question 4: ((TypeCapableFn

behaviorCapable) GolfClub Physically-

AttackingAnAgent deviceUsedAsWeapon).
In EL we represent the question as:4

3apart from the events and event relations introduced by the
temporal deindexing that follows logical form computation (Schu-
bert and Hwang 2000).

4EPILOG also answers the case in which “you” is interpreted
literally to mean EPILOG itself. In this case, the question is an-

(∃ x [x golf-club] (∃ y [y person] (∃ z [z person]
(∃ e [[y ((adv-a (with-instr x)) (attack z))] ** e]))))

The knowledge relevant to this question is:

If an object can be swung by hand, and is solid, and weighs at least
two pounds, it can be used as a striking weapon:

(∀ x [x phys-obj]
[[(∃ e [[x (pasv ((adv-a (by (k hand))) swing))] ** e]) ∧

[x solid]
(∃ w [[x weighs w] ∧ [w ¿= (k ((num 2) pound))]])]
⇒ (∃ e [[x (pasv (use-as ((nn striking) weapon)))] ** e])])

A golf club can be swung by hand, is solid, and weighs at least two
pounds:

(∀ x [x golf-club]
[(some e [[x (pasv ((adv-a (by (k hand))) swing))] ** e]) ∧
[x solid] [x phys-obj] (∃ w [[x weighs w] ∧

[w ≥ (k ((num 2) pound))]])])

For any striking weapon, one person can attack another with the
weapon, by striking him or her with it:

(∀ x [x ((nn striking) weapon)] (∃ y [y person] (∃ z [z person]
(∃ e [[y ((adv-a (by-means (Ka ((adv-a (with-instr x))

(strike z)))))
((adv-a (with-instr x)) (attack z)))] ** e]))))

There is a golf-club:

(∃ x [x golf-club])

(”by-means” modification is monotone) If an agent does some ac-
tion by means of another action, then he does the first action:

(∀pred p (∀ x (∀ y
(∀ e [[x ((adv-a (by-means y)) p)] ** e] [[x p] ** e]))))

This question is answered positively by using the knowl-
edge that golf-clubs are heavy and solid and can be swung
by a person and that objects with those properties can be
used to attack another person.
FOL scalability tests: the second part of the evaluation put
into perspective the performance of the reasoner with re-
spect to standard FOL theorem provers on the classic TPTP5

dataset. In particular we used the CSR6 problems derived
from the conversion into FOL of the OpenCyc ontology (Ra-
machandran, Reagan, and Goolsbey 2005).

We used the subset of CSR problems that was designed
to test the scalability of a theorem prover. In particular the
problems used were those designated as CSR025 through
CSR074 in segments 1 to 5. Even though the access schema
of EPILOG2 is a simple exhaustive one and therefore not
scalable, the results will provide a good bottom-line com-
parison with future improvements of EPILOG.

Table 1 summarizes the results. The systems compared
are EPILOG17, EPILOG2, and Vampire 9, which is represen-

swered negatively using introspection, a closure axiom that asserts
that EPILOG’s knowledge with respect to major abilities is com-
plete, the fact that physical actions are major ability and that at-
tacking somebody requires the ability to perform physical actions.

5See http://www.cs.miami.edu/̃ tptp/
6See http://www.opencyc.org/doc/tptp challenge problem set

in particular the section The Scaling Challenge Problem Set.
7In particular it is the version of June 22

nd
2005.

Segment Size (min/avg/max) EPILOG1 FI EPILOG1 no FI EPILOG2 Avg depth Vampire 9

1 (22/59/163) 46 46 100 5.9 100

2 (-/1101/-) 46 44 92 5.6 100

3 (-/7294/-) 0 0 54 4.5 82

4 (-/42981/-) 0 0 48 4.3 32

5 (-/534435/-) 0 0 12 1.3 0

Table 1: Summary of the tests carried out between EPILOG1, EPILOG2 and the Vampire theorem prover, version 9. The first
column contains the segment number (1-5) of the segments comprising the scalability subset of the CSR dataset (with 50
problems in each segment). Column 2 lists min, max and average number of formulas contained in the problems in that specific
segment. (If all problems contain the same number of formulas only the average is shown). Columns 3, 4, and 5 show the
percentage of problems for which a solution was found, respectively by EPILOG1 with forward inference enabled, EPILOG1
without forward inference and EPILOG2 (which by default has no forward inference enabled). Column 6 shows the average
depth of the answer found by EPILOG2. Column 7 shows the percentage of problems solved by Vampire. All system have been
limited to a timeout of 120 seconds.

tative of state-of-the-art FOL theorem provers8. All systems
were run under the same conditions and were subjected to a
2 minute limit per problem.

Conclusion and Further Work

In this paper we described how we evaluated the work on the
development of the latest version of the EPILOG system in
a way that we think tests the particular features that charac-
terize EPILOG and that also may allow for comparison with
other commonsense reasoners independently of which logi-
cal language they use.9

The evaluation was divided into 2 parts. In the first we
selected 8 examples, five of which were from ResearchCyc.
These examples were selected to test the features of EL and
of EPILOG such as introspective question answering, quota-
tion and subtitutional quantification, interfacing to special-
ists, etc. The second part was based on a subset of the TPTP
dataset used to test the scalability of a theorem prover. This
part, in addition to providing a baseline for assessing future
enhancements of EPILOG, demonstrates significant perfor-
mance gains achieved here over EPILOG1, and will facilitate
further comparisons with other theorem provers. Moreover,
the results show that a reasoner for a highly expressive logic
doesn’t have to be impractically inefficient compared to a
less expressive one10. It should be kept in mind that in addi-
tion to not lagging far behind state-of-the-art performance in
FOL theorem provers in their domain of competence, EPI-
LOG is capable of additional modes of reasoning and metar-
easoning as shown by the first evaluation.

In future we plan to close the remaining gap between EPI-
LOG and FOL theorem provers, implement a more efficient
access schema for knowledge retrieval, implement proba-
bilistic reasoning, provide for uniform handling of gener-
alized quantifiers, and extend the new approach to specialist
deployment to all specialists.

8Download available at http://www.cs.miami.edu/̃ tptp/CASC/J4/-
Systems.tgz

9Allowing longer times had minimal effect on both systems.
10contrary to the alleged “expressivity/tractability tradeoff”.

Acknowledgements

This work was supported by NSF grant IIS-0535105 and by
a 2007-2008 gift from Bosch Research and Technology Cen-
ter (Palo Alto); the content has benefited significantly from
the very useful comments of the anonymous referees.

References

Hwang, C., and Schubert, L. 1993. Episodic logic: A sit-
uational logic for natural language processing. In P. Aczel,
D. Israel, Y. K., and Peters, S., eds., Situation Theory and
its Applications, volume 3. Stanford, CA: Center for the
Study of Language and Information. 303–338.

Morbini, F., and Schubert, L. K. 2008. Metareasoning as an
integral part of commonsense and autocognitive reasoning.
In Metareasoning 08, 155–162.

Ramachandran, D.; Reagan, P.; and Goolsbey, K. 2005.
First-Orderized ResearchCyc: Expressivity and Efficiency
in a Common-Sense Ontology.

Schaeffer, S.; Hwang, C.; de Haan, J.; and Schubert, L.
1993. EPILOG, the computational system for episodic
logic: User’s guide. Technical report, Dept. of Comput-
ing Science, Univ. of Alberta.

Schubert, L., and Hwang, C. 2000. Episodic Logic meets
Little Red Riding Hood: A comprehensive, natural rep-
resentation for language understanding. In Iwanska, L.,
and Shapiro, S., eds., Natural Language Processing and
Knowledge Representation: Language for Knowledge and
Knowledge for Language. Menlo Park, CA: MIT/AAAI
Press. 111–174.

Schubert, L. K.; Schaeffer, S.; Hwang, C. H.; and de Haan,
J. 1993. EPILOG: The Computational System for Episodic
Logic. USER GUIDE.

