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Abstract

This paper presents a rule-based approach
to constructing lexical axioms from Word-
Net verb entries in an expressive semantic
representation, Episodic Logic (EL). EL
differs from other representations in be-
ing syntactically close to natural language
and covering phenomena such as general-
ized quantification, modification, and in-
tensionality while still allowing highly ef-
fective inference. The presented approach
uses a novel preprocessing technique to
improve parsing precision of coordina-
tors and incorporates frames, hand-tagged
word senses, and examples from WordNet
to achieve highly consistent semantic in-
terpretations. EL allows the full content
of glosses to be incorporated into the for-
mal lexical axioms, without sacrificing in-
terpretive accuracy, or verb-to-verb infer-
ence accuracy on a standard test set.

Evaluation of semantic parser perfor-
mance is based on EL-match, introduced
here as a generalization of the smatch met-
ric for semantic structure accuracy. On
gloss parses, the approach achieves an EL-
match F1 score of 0.83, and a whole-
axiom F1 score of 0.45; verb entailment
identification based on extracted axioms is
competitive with the state-of-the-art.

1 Introduction

Words encapsulate a great deal of knowledge, and
in conjunction with language syntax, allow human
beings to construct sentences that convey novel
ideas to one another. Any system intended for
broad natural language understanding will need to
be able to perform inferences on the words that are
the building blocks of language. For this reason,

Gloss – slam2.v : “strike violently”
Axiom – ((x slam2.v y) ** e)

→ ((x (violently.adv (strike.v y))) ** e)

Figure 1: Example of rule extraction from ma-
chine readable dictionaries for WordNet entry of
slam2.v.

there have been many attempts to transduce in-
formal lexical knowledge from machine readable
dictionaries into a formally structured form (Cal-
zolari, 1984; Chodorow et al., 1985; Harabagiu et
al., 1999; Moldovan and Rus, 2001; Hobbs, 2008;
Allen et al., 2013).

Consider an example of the types of knowl-
edge these approaches seek to extract in Figure 1.
WordNet defines slam2.v, i.e., sense 2 of the verb
slam, as “strike violently”. This gloss states an im-
plication that if “x slams y” characterizes an event
e, then “x strikes y violently” also characterizes
event e. All language phenomena must be able
to be represented and reasoned about for such ax-
ioms to be useful in a language understanding sys-
tem. This is where previous approaches share a
common shortcoming: the logical representations
that the lexical knowledge is mapped into are in-
sufficient for representing many common natural
language devices or for performing inference.

The contributions of this paper are the follow-
ing:

• We demonstrate limitations in previous ap-
proaches to extracting lexical knowledge
from machine readable dictionaries, partic-
ularly in their choices of logical representa-
tion.

• We present an approach to extracting lexical
axioms in EL, which is a logical representa-
tion that overcomes these limitations. Our
approach includes novel preprocessing and



information synthesis strategies for making
precise axioms.

• We present EL-smatch, a generalized smatch
scoring metric for partial scoring of seman-
tic parses with complex operators and predi-
cates.

The remainder of the paper presents related
work in Section 2, background in Section 3, then
a description of our semantic parsing approach in
Section 4. A description of EL-smatch is presented
in Section 5, followed by experimental results in
Section 6, and future work and conclusions in Sec-
tion 7.

2 Related Work

There have been many approaches in the past
to extracting lexical information from machine-
readable dictionaries. Early approaches to this
problem focused on surface-level techniques, in-
cluding hypernym extraction (Calzolari, 1984;
Chodorow et al., 1985), pattern matching (Al-
shawi, 1989; Vossen et al., 1989; Wilks et al.,
1989), and co-occurrence data extraction (Wilks
et al., 1989).

In an evaluation of such methods, Ide & Vero-
nis (1993) identified key challenges that thwart
progress on this problem—challenges that persist
to this day. Among these are the fact that dictio-
nary glosses are often abstract, sometimes miss
important information (such as arguments), and
may be inconsistent with one another. Evidently
there is a need for sophisticated extraction tech-
niques to acquire accurate and consistent knowl-
edge from dictionaries.

Most modern approaches to this problem use
WordNet (Miller, 1995) as the lexical resource be-
cause of the linguistic and semantic annotations
that accompany the glosses. Some work encodes
WordNet glosses into variants of first-order logic
(FOL) (Harabagiu et al., 1999; Moldovan and
Rus, 2001; Hobbs, 2008), such as Hobbs Logical
Form (HLF) (Hobbs, 1985), while other work en-
codes them into OWL-DL (OWL Working Group,
2004; Allen et al., 2011; Allen et al., 2013; Or-
fan and Allen, 2015; Mostafazadeh and Allen,
2015). A particularly noteworthy line of work is
that by Allen et al. (2013), which integrates in-
formation from a high-level ontology with glosses
of semantically related clusters of words to con-
struct inference-supporting micro-theories of con-

cepts corresponding to these words. While these
advances are significant, they are limited by the
expressivity of the representations used, in com-
parison with the richness of natural language.

2.1 Limitations of Logical Representations
Used by Previous Approaches

As discussed by Schubert (2015), the choice of se-
mantic representation is an important component
of the natural language understanding problem.
Because of space constraints, we will discuss only
a few of the relevant issues and point the reader
to (Schubert, 2015) for a more in-depth analysis
of the issues at hand. The logical representation
used for robust language understanding must sat-
isfy the following requirements:

• Express the semantic content of most, if not
all, possible natural language constructions;

• Have associated methods of inference;

• Have a formal interpretation.

The semantic representations used by previous
approaches fall short on at least one of the above
requirements. FOL struggles to express predicate
modification (especially nonintersective modifi-
cation), nonstandard quantifiers such as most or
at least 50, and modality. Approaches that rely
on functionalizing predication and connectives as
a means of allowing for arbitrary propositional
attitudes ultimately fail because quantifiers cannot
be functionalized; thus they cannot capture the
meaning of sentences with a modally embedded
quantifier such as the following (with believes
taking scope over every):

Kim believes that every galaxy harbors life.

HLF (Hobbs, 1985) is another common choice
of semantic representation. It strives to capture
sentential meaning within a subset of FOL by
treating all words as predicates, including nega-
tion, disjunction, quantifiers, and modifiers. But it
is unable to distinguish between events and propo-
sitions and between predicate and sentence mod-
ifiers, and the formal interpretation of quantifica-
tion in HLF can lead to contradiction (Schubert,
2015).

OWL-DL (OWL Working Group, 2004) was
designed for knowledge engineering on specific
domains and thus cannot handle many common



natural language phenomena, such as predicate
and sentence reification, predicate modification,
self-reference, and uncertainty. There have been
many efforts to allow for such phenomena, with
varying degrees of success. As just one exam-
ple, consider the common practice in OWL-DL of
treating predicate modification as predicate inter-
section. For example, “whisper loudly” is repre-
sented as whisper u ∀of -1.(loudly). whisper is
the set of individual whispering events and ∀of -
1.(loudly) is the set of individual events that are
modified by the adverb loudly. But according to
WordNet, to whisper is to speak softly, so under an
intersective interpretation of the modifiers, a loud
whisper is both soft and loud. Similarly, WordNet
glosses the verb spin as revolve quickly, so that
under an intersective interpretation, a slow spin is
both quick and slow. Analogously for nouns, a
large pond or large brochure would be both large
and small (brochure is glossed as a small book,
and pond as a small lake). Even more difficult
issues, from an OWL-DL perspective, are gener-
alized quantifiers, uncertainty, attitudes, and reifi-
cation, such as exemplified in the sentence

When self-driving cars are properly adopted,
vehicles that need humans to drive them will prob-
ably be banned, according to Tesla CEO Elon
Musk.

For a fuller discussion of issues in representa-
tions based on FOL, HLF, OWL-DL, etc., again
see (Schubert, 2015).

3 Background

This section describes background material under-
lying our semantic parsing approach. First, we de-
scribe WordNet (Miller, 1995), our input lexical
resource. Then, we describe Episodic Logic (EL),
our choice of semantic representation for lexical
axioms.

3.1 WordNet

WordNet is a lexical knowledge base that contains
glosses for words, enumerates the word senses
of each word, groups synonyms into synsets,
encodes generality/specificity relations as hyper-
nym/hyponyms, and provides schematic sentence
structures for each word in the form of simple
frames. The semantic annotations accompanying
the glosses help in building a robust parser by
reducing the amount of inference necessary for
building axioms and assisting in handling mistakes

in the glosses. Also, a significant proportion of
the words in WordNet glosses have been tagged
with their word senses and part-of-speech in the
Princeton Annotated Gloss Corpus.1 This helps
with the important but often neglected word sense
disambiguation (WSD) aspect of the interpretation
problem; certainly ambiguous or faulty WSD can
lead to misunderstandings and faulty inferences (is
Mary had a little lamb about ownership or din-
ing?). We use WordNet 3.0, which at the time
of writing is the most recent version that is fully
available for the UNIX environment, and focus on
the verbs in this paper.

3.2 Episodic Logic

EL (Schubert and Hwang, 2000) was designed to
be close to natural language, with the intuition that
a logical representation that retains much of the
expressivity of natural language will be able to
more fully represent the complex constructs in nat-
ural language. EL provides constructs that are not
common in most FOL-based languages, such as
predicate modifiers, generalized quantifiers, reifi-
cation, and ways of associating episodes (events
or situations) with arbitrarily complex sentences.
Importantly, EL is backed by a comprehensive in-
ference system, EPILOG, which has been shown to
be competitive with FOL theorem provers despite
its substantially greater expressivity (Morbini and
Schubert, 2009).

EL uses infix notation for readability, with the
“subject” argument preceding the predicate and
any additional arguments following the predicate.
For associating episodes with logical sentences,
EL introduces two modal operators ‘**’ and ‘*’.
[Φ ** e] means that Φ characterizes (i.e. describes
as a whole) episode e and [Φ * e] means that Φ is
true in (i.e. describes a piece or aspect of) episode
e.

We show that EL overcomes some of the limi-
tations of previous work that have been discussed
using an example. Below is the EL representation
for the sentence Kim believes that every galaxy
harbors life.

(Kim.name believe.v

(That (∀x (x galaxy.n)

(x harbor.v (K life.n)))))

That and K are sentence and predicate reifica-

1http://wordnet.princeton.edu/glosstag.shtml



tion operators, respectively and (∀x Φ(x) Ψ(x))

is equivalent to (∀x (Φ(x) → Ψ(x))).2 For dis-
cussion of the semantic types of the operators
alluded to in this section and the connection to
Davidsonian event semantics and other variants of
event/situation semantics, see the papers describ-
ing EL (Schubert and Hwang, 2000; Schubert,
2000).

4 Gloss Axiomatization

In this section, we describe our approach to se-
mantic parsing and axiomatization of WordNet en-
tries. Our approach consists of three major steps:

1. Argument structure inference (Section 4.1)

2. Semantic parsing of the gloss (Section 4.2)

3. Axiom construction (Section 4.3)

Figure 2 shows the entire process for the pre-
viously introduced example, slam2.v. The argu-
ment inference step refines the WordNet sentence
frames using the provided examples. Specific pro-
nouns associated with argument position are in-
serted as dummy arguments into the correspond-
ing argument positions in the gloss, and the mod-
ified gloss is semantically parsed into EL. Axiom
construction replaces the dummy arguments with
variables and constructs a scoped axiom relating
the entry word and the semantic parse of the gloss
using the characterization operator ‘**’. In the
simple example slam2.v, most of the subroutines
used in each step have no effect. All transforma-
tions outside the scope of the BLLIP parser are
performed with hand-written rules, which were
fine-tuned using a development set of 550 verb
synset entries.

4.1 Argument Structure Inference

We initially use the frames in WordNet to hypoth-
esize the argument structures. For example, the
frames for quarrel1.v are [Somebody quarrel1.v]
and [Somebody quarrel1.v PP]. From this we hy-
pothesize that quarrel1.v has a subject argument
that is a person, no object argument, and may in-
clude a prepositional phrase adjunct.

Then we refine the frames by looking at the
examples and gloss(es) available for the synset.

2However, EL’s quantifier syntax also allows, e.g.,

(most.det x Φ(x) Ψ(x)), which is not re-
ducible to FOL.

The examples for quarrel1.v: “We quarreled over
the question as to who discovered America” and
“These two fellows are always scrapping3 over
something” suggest that the subject argument can
be plural and the PP can be specialized to PP-
OVER. We identify the arguments and semantic
types of the examples through a semantic parse,
which is obtained using the method described in
Section 4.2. Then we either update existing frames
or introduce additional frames based on the agree-
ment among examples and the number of available
examples. We similarly obtain semantic types for
arguments from glosses. For example, paint1.v
has the gloss “make a painting” and the frame
[Somebody -s Something]. Based on the gloss, we
infer that the semantic type for the object argument
is painting. Gloss-based argument structure infer-
ence can be done during the gloss parsing step, to
avoid redundant computation.

Finally, we merge redundant frames. For ex-
ample, frames that differ only in that one has
somebody in a certain argument position where
the other has something are merged into one
frame where we simply use something (as a
category allowing for both things and persons).
Also there are rules for merging predicate com-
plement types (Adjective/Noun & PP → Adjec-
tive/Noun/PP) and adding dative alternations to di-
transitive frames [Somebody -s Somebody Some-
thing]→ [Somebody -s Something to Somebody].

4.2 Semantic Parsing of Glosses

Sentence-level semantic parsers for EL have been
developed previously, which we can use for se-
mantic parsing of the glosses (Schubert, 2002;
Schubert and Tong, 2003; Gordon and Schubert,
2010; Schubert, 2014). For the parser to be ef-
fective, some preprocessing of the glosses is nec-
essary because glosses often omit arguments, re-
sulting in an incomplete sentence. There are
also some serious shortcomings to general seman-
tic parsers, particularly in handling coordinators
and/ or. In this section, we describe the complete
semantic parsing process of glosses and the details
of each step. Throughout our semantic parsing im-
plementation, we use the tree-to-tree transduction
tool (TTT) (Purtee and Schubert, 2012) for trans-

3quarrel1.v and scrap2.v are in the same synset, so they
share example sentences and are interchangeable in this con-
text.



WordNet entry
slam2.v
Tagged gloss: (VB strike1) (RB violently1)

Frames: [Somebody slam2.v Something]

[Somebody slam2.v Somebody]

Examples: (“slam the ball”)

4.1 Argument Structure Inference
Refined Frames:

[Somebody slam2.v Something]

4.2 Semantic Parsing
Parse: (Me.pro (violently1.adv

(strike1.v It.pro)))
4.3 Axiom Construction
Axiom: (∀x1 (∀y1 (∀e [[x1 slam2.v y1] ** e]

[[[x1 (violently1.adv (strike1.v y1))] ** e]
and [x1 person1.n] [y1 thing12.n]

Figure 2: Example gloss axiomatization process for WordNet entry slam2.v. The numbering corresponds
to the subsections where these stages are discussed in detail.

parent and modular tree transformations4 and the
BLLIP parser (Charniak, 2000) to get Treebank
parses.

The general outline of the gloss processing steps
is described below:

1. Create separate POS-tagged word sequences
for distinct glosses:

a. Label gloss g with POS tags using the
Princeton Annotated Gloss Corpus, backing
off to the synset type in the sense key.5

b. Split multigloss trees along semicolons for
individual POS tagged glosses p1, p2, ..., pn.

2. Create an easy-to-parse sentence for each gloss:

a. Factor out coordinators, leaving the first
conjunct in the gloss. Save the coordinated
phrases cpi for later insertion.

b. Insert dummy arguments (I, it, them).
c. Drop POS tags to create new gloss g′i.

3. Syntactically parse each gloss sentence into ini-
tial LFs:

a. Parse g′i into tree ti using the BLLIP parser.
b. Refine POS tags in ti using the Princeton

Annotated Gloss Corpus.
c. Run ti through the sentence-level semantic

parser to get logical form si.

4. Refine the initial LFs:

a. Reinsert coordinated phrases cpi into si.
4We do not explicitly state where TTT is used in the al-

gorithm since it is a general tree transformation tool, which
is used throughout the algorithm whenever a tree transforma-
tion is necessary.

5Every word in the glosses of the Princeton Annotated
Gloss Corpus is labeled with the POS tag or the sense key.
The synset type distinguishes between nouns, verbs, adjec-
tives, and adverbs.

b. Introduce word senses into the logical form.

We now describe the sentence-level semantic
parser, coordinator factorization, argument inser-
tion/inference, and word sense introduction in
more detail.

4.2.1 Sentence Level Semantic Parser
The sentence-level semantic (EL) parser we use is
modeled after the partial interpreter used by the
KNEXT system (Van Durme et al., 2009; Gor-
don and Schubert, 2010). First, the parser applies
corrective and disambiguating transformations to
raw Treebank trees. For example, these correct
certain systematic prepositional phrase (PP) at-
tachment errors, distinguish copular be from other
forms, assimilate verb particles into the verb, par-
ticularize SBAR constituents to relative clauses,
adverbials, or clausal nominals, insert traces for
dislocated constituents, etc. Second, the parser
uses about 100 rules to compositionally interpret
Treebank parses into initial interpretations. Fi-
nally, coreference resolution, quantifier, coordi-
nator, and tense scoping, temporal deindexing,
(non-embedded) Skolemization, equality reduc-
tion, conjunction splitting and other canonicaliza-
tion operations are applied to refine the logical
form.

4.2.2 Argument Insertion and Inference
WordNet glosses (and glosses in general) only in-
clude arguments when necessary to specify some
semantic type for the argument. Figure 3 displays
example glosses from WordNet that demonstrate
this treatment of arguments. Both the subject and
object arguments in the gloss of slam2.v are omit-
ted, and the subject is omitted from the gloss of
paint1.v, while the object in the gloss is included.



Argument position English text EL atom
subject I/my/myself Me.pro
direct object it It.pro
indirect object them They.pro

Table 1: Mappings between dummy argument po-
sition, text, and EL atoms.

slam2.v – subject strike object violently
paint1.v – subject make a painting

Figure 3: Example glosses demonstrating the
treatment of arguments in glosses. Underlined
words are arguments and italicized arguments in-
dicate where an argument should exist, but does
not in the gloss.

We make arguments explicit and unify their
treatment in order to improve Treebank and se-
mantic parses and simplify the axiom construc-
tion step, described in Section 4.3. Figure 4 shows
unified versions of the glosses that appear in Fig-
ure 3, slam2.v and paint1.v. In this unified treat-
ment, all arguments are represented by argument
position-specific dummy arguments. Table 1 lists
the dummy arguments and their relation to the ar-
gument position and EL. Dummy arguments are
inserted into the POS tagged gloss pi based on the
inferred argument structure from Section 4.1 and
the insertions are achieved through pattern match-
ing of the POS tags.

Finally, some glosses contain references to the
subject using the terms one, one’s, or oneself (e.g.
sprawl1.v : sit or lie with one’s limbs spread out).
These are mapped to I, my, and myself, respec-
tively to correctly corefer with the dummy subject
argument I.

4.2.3 Coordinator Factorization
Treebank and semantic parsers are prone to errors
for coordinated phrases, often mistaking them for
appositives, or vice-versa. To minimize such er-
rors, we developed a method of factorizing coordi-
nated phrases. The conjuncts can usually be iden-
tified by syntactic and semantic relatedness. This

slam2.v – I’ll strike it violently
paint1.v – I’ll make it; (it : a painting)

Figure 4: Unified versions of WordNet glosses
from Figure 3.

can be seen in the WordNet gloss for edit1.v: pre-
pare for publication or presentation by correcting,
revising, or adapting. We use linguistic phrase
types as a proxy for syntactic and semantic relat-
edness. That is, we identify coordinated groups
of verb phrases, noun phrases, adjectival phrases,
and prepositional phrases. These phrase groups
are pulled out of the sentence, and only the first
phrase in the group is left in the sentence.

The phrase groups are identified using a set of
rules that were fine-tuned with reference to the
development set of verb synsets. The rules tend
to handle common modifications, such as adjec-
tives in noun phrases. For ambiguous cases, such
as prepositional modification, factorization is not
performed.

The phrase groups are passed through a modi-
fied sentence-level semantic parser (stopping short
of the coordinator scoping step), and embedded
back into the gloss logical form before the co-
ordinator scoping step in the semantic parsing of
the gloss. The place of insertion is identified by
matching the first phrase in the phrase group with
a phrase in the logical form.

4.2.4 Word Sense Introduction
Word sense introduction is assisted by the hand-
tagged word senses in WordNet. All words that are
not hand-tagged with a word sense are given the
lowest numbered word sense with a frame match-
ing the context of its use in the gloss. Generally,
the lower numbered word senses in WordNet are
the most relevant senses of the word.

4.3 Axiom Construction
Finally, we take the results from Sections 4.1 and
4.2 and construct the axiom. Dummy arguments in
the parsed gloss are correlated with the arguments
in the frame using the mapping in Table 1. We re-
place the arguments with variables, introduce log-
ical formulas asserting the semantic types (from
the argument structure in Section 4.1), and con-
struct an axiom asserting that the truth of the entry
word with the proper argument structure (without
semantic types) implies the truth of the semantic
parse of the gloss and semantic types of the ar-
guments. Before axiom construction, the example
from Figure 2, slam2.v, has the following refined
frame and semantic parse of the gloss from Sec-
tions 4.1 and 4.2, respectively:



[Somebody slam2.v Something]
[Me.pro

(violently1.adv (strike1.v It.pro))]

After we replace the arguments and create for-
mulas asserting the semantic types, we have:
[x1 slam2.v y1]
[x1 (violently1.adv (strike1.v y1))]
[x1 person1.n], [y1 thing12.n]

Finally, we construct an axiom of form
(∀x Φ(x) Ψ(x)) (equivalent to (∀x (Φ(x) →
Ψ(x)))) and using the modal characterization op-
erator **:
(∀x1,y1,e

[[x1 slam2.v y1] ** e]
[[[x1 (violently1.adv

(strike1.v y1))] ** e]
and [x1 person1.n] [y1 thing12.n]

We can easily generate converse axioms as well,
such as that if a person strikes something violently,
then it is probably the case that he or she slams it
(in the slam2.v sense). EL allows us to express
a degree of uncertainty in the formulation of the
converse, and this is appropriate to the extent that
lexical glosses cannot be expected to provide com-
plete, “airtight” definitions, but rather just the most
important semantic content. However, in this pa-
per we limit ourselves to discussion of the “for-
ward” version of gloss-derived axioms.

5 EL-smatch

In this section we introduce EL-smatch, a gen-
eralized formulation of smatch (Cai and Knight,
2013), the standard evaluation metric for AMR
parsing (Banarescu et al., 2013). Smatch repre-
sents each logical form as a conjunction of triples
of three types:

1. instance(variable, type)

2. relation(variable, variable)

3. attribute(variable, value)

Every node instance of the logical form is asso-
ciated with a variable, and the nodes are described
and related to each other using the above triples.
Thus, type and value can both only be atomic con-
stants. The smatch score is then defined as the
maximum f-score (of triples) obtainable via a one-
to-one matching of variables between the two for-
mulas (Cai and Knight, 2013).

In order to capture complex types of EL, we in-
troduce an additional triple:

instance(variable, variable).

EL
(me.pro (very.adv happy.a))

EL-smatch Triple Representation
instance(a, very.adv) ∧
instance(b, happy.a) ∧
instance(d, me.pro) ∧
ARG0(a, b) ∧
instance(c, a) ∧
ARG0(c, d)

EL-smatch Graph Representation

instance ARG0

ARG0instance

instance

instance

very.adv

happy.a

me.pro

a

b

c

d

Figure 5: Example of syntactic mapping from EL
to EL-smatch triple and graph representations for
sentence “I am very happy”.

The first variable argument is associated with
the instance, and the second variable argument,
with the type.

With this addition to the representation, we can
syntactically map EL formulas into a conjunction
of triples by introducing a node variable for every
component of the formula and then describing and
relating the components using the triples. Since
the representation used by smatch is the same as
that of AMR, we can map the triple representation
into a graph representation in the same manner as
AMR formulas. Figure 5 shows an example of the
use of the new instance triple in mapping the EL
formula for “I am very happy” into these represen-
tations. However, this mapping does not relate the
semantics of EL to AMR since the interpretation
of the triples differ for AMR and EL formulas.

6 Experiments

We conducted two experiments to demonstrate the
efficacy of our approach for semantic parsing and
the usefulness of the resulting axioms for infer-
ence.6

6One reviewer suggested comparing our axioms with on-
tologies linked to WordNet, such as SUMO (Niles and Pease,
2001) and DOLCE (Gangemi et al., 2002), or with the hy-
pernym hierarchy of WordNet. Such an experiment was per-
formed by Allen et al. (2013), which showed that WordNet
glosses contain information that is not found in the structural



Measure Precision Recall F1
EL-smatch 0.85 0.82 0.83
Full Axiom 0.29 1.00 0.45

Table 2: Performance against gold standard parses
of 50 synsets.

6.1 Semantic Parsing Evaluation

We constructed a gold standard set of axioms by
selecting 50 random WordNet synsets that were
not used during development. Gold standard ax-
ioms for these synsets were written by the first
author, then refined in collaboration between the
two authors.7 The 50 synsets resulted in 52 ax-
ioms and 2,764 triples in the gold standard. The
results in Table 2 show the system performance us-
ing both EL-smatch and full axiom metrics. In the
full axiom metric, the precision measures the num-
ber of axioms that are completely correct, and the
recall measures the number of axioms generated
(which can vary due to merged glosses and multi-
ple frames). The EL-smatch score of 0.83 shows
that the axioms are generally good, even when not
completely correct. Generating completely correct
axioms is difficult because there are multiple non-
trivial subproblems, such as prepositional attach-
ment and word sense disambiguation. EL-smatch
displays a more fine-grained measure of our sys-
tem performance than the full axiom metric.

6.2 Inference Evaluation

To our knowledge, no earlier work evaluates infer-
ence in a manner that captures the details of se-
mantically rich lexical axioms. Therefore, in or-
der to compare our results to previous work, we
evaluate a stripped-down version of our inference
mechanism on a manually created verb entailment
dataset (Weisman et al., 2012). This dataset con-
tains 812 directed verb pairs, v1 → v2, which
are annotated ‘yes’ if the annotator could think
of plausible contexts under which the entailment
from v1 to v2 holds. For example, identify en-
tails recognize in some contexts, does not entail
describe is any context. Though the dataset is not
rich, many previous systems (Mostafazadeh and
Allen, 2015; Weisman et al., 2012; Chklovski and

relations of WordNet. A similar experiment by us is unlikely
to shed additional light on the topic.

7Due to time constraints, this evaluation was performed
on a gold standard developed primarily by only one annotator.
We hope to remedy this in future work including an analysis
of interannotator agreement.

Method Precision Recall F1
Our Approach 0.43 0.53 0.48
TRIPS 0.50 0.45 0.47
Supervised 0.40 0.71 0.51
VerbOcean 0.33 0.15 0.20
Random 0.28 0.29 0.28

Table 3: Performance against gold standard parses
of 50 synsets.

Pantel, 2004) have evaluated on this dataset, es-
tablishing it as a basic standard of comparison. In
order to fit our axioms to this dataset, we remove
semantic roles (verb arguments and adjuncts) from
our axioms. Also, since the dataset has no word
senses, the inferences begin with every synset that
contains a sense of the starting word, and the final
predicted entailments suppress sense distinctions.
When generating inferences, we find verbs in the
consequent of the axiom that are not modified by
a negation or negating adverb (e.g., nearly, al-
most, etc.). Such inferences are chained up to three
times, or until an abstract word is reached (e.g.,
be, go, etc.), which glosses do not sufficiently de-
scribe. This blacklist contains 24 abstract words.

Table 3 shows the results on this dataset. TRIPS
is an approach by Mostafazadeh & Allen (2015),
which constructs axioms from WordNet using the
TRIPS parser and represents its axioms in OWL-
DL, Supervised is a supervised learning approach
by Weisman et al. (2012), VerbOcean classifies
entailments according to the strength relation of
the VerbOcean knowledege-base (Chklovski and
Pantel, 2004), and Random is a method that ran-
domly classifies the pair with probability equal to
the distribution in the testset (27.7%). The perfor-
mance of our system is competitive with state-of-
the-art systems TRIPS and Supervised on this task.
Our system performance splits the performance of
TRIPS and Supervised in all three measures.

The inference capabilities of our axioms exceed
what is evaluated by this testset. Because of space
constraints, an example of a more expressive in-
ference using extracted axioms is included in sup-
plementary material8.

6.3 Error Analysis

In the semantic parsing evaluation, most of the
parsing errors arose from a failure in the sentence

8http://www.cs.rochester.edu/u/gkim21/papers/high-
fidelity-lex-supplementary.pdf



parser or preprocessing directly preceding the sen-
tence parser. That is, 17 out of the 52 axioms had
errors arising from the sentence parser. These er-
rors arose from either linguistic patterns that we
did not encounter in our development set or in
complex sentences (e.g. take a walk for one’s
health or to aid digestion, as after a meal). Many
of these can be avoided in the future by increas-
ing the development set. Fortunately, the semantic
parser uses keywords to mark ambiguous attach-
ments or phrases, so that in many cases, axioms
that are not fully parsed can be identified and ig-
nored, rather than using an incorrectly parsed ax-
iom.

WSD and incorrect scoping of semantic types
are also major sources of errors. The challenge of
WSD was minimized by the subset of hand-tagged
word senses in WordNet. We may be able to re-
duce such errors in the future by merging together
redundant or overly specific word senses. Incor-
rect scoping of semantic types is particularly prob-
lematic when the semantic type is specified in the
gloss itself, as the type constraint needed to move
across scopes. Our system performed well on co-
ordinator scoping. We correctly scoped 23 of the
27 instances of coordinators in the dataset. Co-
ordinators are generally a great source of error in
parsers and this result is evidence of the effective-
ness of our coordinator handling mechanism. In
all four instances, the disjunctions were extracted
from the gloss correctly, but were not reintroduced
into the axiom. As such, this error did not make
these axioms incorrect, rather incomplete.

7 Future Work and Conclusions

There are many attractive directions for future
work. The scope of this project can be broadened
to include nouns, adjectives, and adverbs, as re-
quired for any system that actually tackles the nat-
ural language understanding problem. There are
also many ways to refine and deepen the gloss
interpretation process. The parses may be im-
proved by looking through the hypernym graph
and borrowing results from parses of parents (gen-
eralizations) of words. We can also incorporate
techniques from Allen et al. (2011; 2013) and
Mostafazadeh & Allen (2015) to integrate results
from related sets of glosses. The high-level TRIPS
ontology could be used to improve robustness in
the face of inconsistencies in WordNet and inter-
pretation errors. Also, more sophisticated WSD

techniques, such as those from the SENSEVAL-
3 task on WSD (Litkowski, 2004), could be used
to improve semantic precision, and argument co-
herence could be improved using techniques from
Mostafazadeh & Allen (Mostafazadeh and Allen,
2015). Another possible avenue is concurrent use
of information from multiple dictionaries, such as
Wiktionary, VerbNet, and WordNet, to construct
more complete and reliable axioms, in particular
with respect to argument structure and types.

We argued that the semantic representations
used in previous approaches to extracting lexi-
cal axioms from dictionaries are insufficient for
achieving a natural language understanding sys-
tem. We presented an approach to extracting lex-
ical axioms of verbs from WordNet into EL, an
expressive semantic representation that overcomes
the shortcomings of the representations used in the
past. We also presented a generalized smatch scor-
ing metric, EL-smatch, which we used to evalu-
ate our system. The evaluation shows that our ap-
proach constructs precise verb axioms from Word-
Net. Furthermore, we demonstrate that the gen-
erated axioms perform competitively against the
state of the art in a verb entailment task. We aim
to apply these axioms to more comprehensive lan-
guage understanding tasks and commonsense rea-
soning tests when we have sufficient coverage of
the lexicon.
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Nancy Ide and Jean Véronis. 1993. Knowledge extrac-
tion from machine-readable dictionaries: An evalu-
ation. In EAMT Workshop, volume 898 of Lecture
Notes in Computer Science, pages 19–34. Springer.

Ken Litkowski. 2004. Senseval-3 task: Word sense
disambiguation of WordNet glosses. In Rada Mi-
halcea and Phil Edmonds, editors, Senseval-3: Third
International Workshop on the Evaluation of Sys-
tems for the Semantic Analysis of Text, pages 13–
16, Barcelona, Spain, July. Association for Compu-
tational Linguistics.

George A. Miller. 1995. WordNet: A lexical
database for english. Communications of the ACM,
38(11):39–41, November.

Dan Moldovan and Vasile Rus. 2001. Logic form
transformation of WordNet and its applicability to
question answering. In Proceedings of 39th Annual
Meeting of the Association for Computational Lin-
guistics, pages 402–409, Toulouse, France, July. As-
sociation for Computational Linguistics.

Fabrizio Morbini and Lenhart K. Schubert. 2009.
Evaluation of EPILOG: a reasoner for Episodic
Logic. In Proceedings of the Ninth International
Symposium on Logical Formalizations of Common-
sense Reasoning.

Nasrin Mostafazadeh and James F. Allen. 2015.
Learning semantically rich event inference rules us-
ing definition of verbs. In Computational Linguis-
tics and Intelligent Text Processing - 16th Inter-
national Conference, CICLing Proceedings, Part I,
volume 9041 of Lecture Notes in Computer Science,
pages 402–416, Cairo, Egypt, April. Springer.

Ian Niles and Adam Pease. 2001. Towards a stan-
dard upper ontology. In Proceedings of the Interna-
tional Conference on Formal Ontology in Informa-
tion Systems - Volume 2001, FOIS ’01, pages 2–9,
New York, NY, USA. ACM.



Jansen Orfan and James Allen. 2015. Learning new re-
lations from concept ontologies derived from defini-
tions. In Proceedings of the AAAI 2015 Spring Sym-
posium Series on Logical Formalizations of Com-
monsense Reasoning.

W3C OWL Working Group. 2004. OWL Web
Ontology Language Guide. W3C Recommenda-
tion. Available at https://www.w3.org/TR/
2004/REC-owl-guide-20040210.

Adam Purtee and Lenhart Schubert. 2012. TTT: A
tree transduction language for syntactic and seman-
tic processing. In Proceedings of the Workshop on
Applications of Tree Automata Techniques in Natu-
ral Language Processing, ATANLP ’12, pages 21–
30, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. Iwańska and Stuart C.
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