
What Kinds of Knowledge are Needed for Genuine Understanding?∗

Lenhart Schubert
University of Rochester

schubert@cs.rochester.edu

Abstract

Crucial considerations in launching knowledge ac-
quisitions projects aimed at human-like under-
standing and reasoning include the choice of se-
mantic / knowledge representation (SR/KR), the
types of knowledge required and their use in un-
derstanding and inference, and approaches to ac-
quiring that knowledge. This paper argues that the
SR/KR needs to resemble language in its expres-
sivity and needs to support complex reasoning, and
outlines some of the most important knowledge re-
quirements, and some steps towards acquiring that
knowledge.

1 Introduction: NLU in historical perspective
In referring to kinds of knowledge, I’m referring to both the
form and the content of knowledge. By genuine understand-
ing I mean the kind of understanding that enables reasoning
with the content derived from language, in concert with back-
ground knowledge; I should add that my interest is in broad
understanding rather than narrow task-oriented understand-
ing where the a priori constraints on content allow the use of
heuristic rules for extracting expected types of data.

Understanding was the goal of much of the most prominent
natural language processing research from the late 1960s to
the middle 80s; and exciting progress was indeed made, en-
abling inferential question answering for brief stories of var-
ious types, including simple restaurant tales, fairy tales and
diplomatic visit reports. The chief insight was that tremen-
dous amounts of knowledge are needed for understanding and
inference, and in particular that much of the required knowl-
edge is in the form of stereotyped schemas or “scripts”. For
example, there was Roger Schank’s well-known “restaurant
script”, which enabled comprehension of simple stories such
as the following:

John had lunch at Mario’s. The hamburger he ordered
was tasteless, so he left a small tip.

The script and a variety of high-level entailment rules allowed
answering questions whose answers are not explicitly given
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in the story, such as “was John given a hamburger?”, “Did he
eat it?”, ”Where?”, and so on.

So what brought these seemingly promising developments
to a virtual halt over the following decades? Basically, the
problem was lack of scalability. Several factors contributed to
this limitation. First of all, parsing was quite inaccurate. For
example, there was (and remains) the infamous prepositional
phrase (PP) attachment problem, as in

John observed a bird {with binoculars, with yellow
tail feathers, with delight, with its brood, with his
fellow birders, etc.}.

In that sentence the PP can be attached so as to modify ei-
ther the verb observed or the object, bird; in particular in the
case of binoculars, delight, and fellow birders we naturally
associate the PP with the act of observation, whereas for yel-
low tail feathers and its brood of chicks we perceive the PP
unambiguously as modifying bird.

An even greater problem, also persisting to this day, was
the knowledge acquisition bottleneck. How could we ac-
quire the myriad knowledge items needed for understanding?
These include a broad spectrum of ontological knowledge,
numerous well-known facts such as the categories of named
entities that occur frequently in text, and most of all various
kinds of general world knowledge at both the lexical level,
such as that restaurants serve meals to customers for pay, and
at the more elaborate stereotyped story level, such as is re-
quired for the simple story just illustrated.

Certain limitations that were less widely recognized were
inherent in many of the semantic representations and knowl-
edge representation used, in particular their inadequate ex-
pressivity, unanalyzed semantic semantic type structure, and
unnecessary “distance” from language. Without adequate ex-
pressivity, information is lost or distorted. Without an un-
derstanding of semantic type structure, reasoning methods
are apt to derive nonsense. And if the representation is re-
mote from language, the interplay between knowledge and
language becomes difficult to implement.

2 The ML revolution
The 80s and 90s of course saw the beginning and increasing
dominance of the machine learning (ML) revolution, made
possible by new developments in learning theory, both sta-
tistically based and neural-net based, and by the burgeoning



quantities of text that became available on the internet. Both
approaches exploit the distributional properties of language
in large data sets. For example, in the familiar sentence

Time flies like an arrow,
which has 4 or 5 possible parses and corresponding interpre-
tations, it is arguably the co-occurrence frequency of time and
flies as sentential subject and main verb respectively that fa-
vors the intuitively natural interpretation, whereas time flies as
a noun-noun combination analogous to fruit flies or as an im-
perative verb plus object is virtually unheard of in discourse.

The ML community can certainly point to many notewor-
thy and important successes, particularly in areas were rela-
tively shallow methods suffice and where a certain level of
error (from, say, 5% to 40%, depending on the area of ap-
plication and how you measure error rates) are acceptable.
These applications include greatly improved speech recog-
nition, learning of probabilistic grammars, machine transla-
tion, document retrieval, factoid and rule learning from tex-
tual data, and so forth. Research towards the goal of gen-
uine, broad understanding and commonsense reasoning ben-
efited peripherally from these advances, yet achievement of
the goals remains well out of reach.

The key challenges that remain, as argued below, are (a)
designing a semantic representation / knowledge representa-
tion (SR/KR) that is commensurate with natural language,
(b) acquisition of the requisite tens of millions, perhaps even
hundreds of millions, of pattern-like, schema-like and axiom-
like knowledge items, and (c) effective, scalable soft and firm
inference methods.

3 Representational requirements for
understanding and reasoning

We cannot depend on machine learning to yield an SR/KR
commensurate with natural language for various reasons. The
most important is that machine learning cannot invent a mean-
ingful representational framework; it can only learn what you
provide examples of or build into latent variables:

- if you annotate data with class labels, ML can produce
class labels;

- if you annotate sentences with parse trees, ML can pro-
duce parse trees;

- if you annotate sentences with translations, ML can pro-
duce translations (and latent syntax transduction rules, if
we provide a syntactic framework for these);

- if you annotate English db queries with answers, ML
can produce answers via formal queries (if the syntax of
those queries has been supplied);

- if you annotate sentences with “abstract meaning repre-
sentations”, ML can produce AMRs; etc.

We also cannot depend on ML to lead directly to human-
like reasoning: Reasoning requires knowledge in an inter-
pretable, modular form, whose knowledge items or modules
can be deployed in a broad spectrum of topic areas, in mis-
cellaneous combinations with one another. The notion pro-
pounded by some prominent researchers that ML has made

symbolic language understanding and reasoning methods ob-
solete should be dispelled by considering simple examples
such as the following:

When Randy learned that his cancer was terminal,
he decided to stop receiving chemotherapy and enrol
in a hospice program designed to provide palliative care.
Why did Randy decide this?

I don’t believe that this lies within the near-term reach of any
current NLU system (without resort to targeted knowledge
precoding), nor do I think that any current ML techniques,
including “deep learning” can begin to crack it. Let’s first
consider what we, as readers, can infer about Randy’s situa-
tion. After all, changing one small word, learned, to another,
such as dreamed, would greatly alter our understanding of the
actual situation. At least the following knowledge items seem
essential:

- When you learn something, you then know it; (so Randy
knew he had terminal cancer);

- When someone knows that something is the case, it is
indeed the case; (so Randy had terminal cancer).

- Patients with a terminal illness usually die within a few
months; (thus Randy was destined to die within a few
months);

- Chemotherapy is intended to combat cancer and prolong
life, but results in suffering and weakness;

- No medical treatment will significantly prolong a termi-
nal cancer patient’s life;

- Chemotherapy is a medical treatment;
- Stopping something entails (presupposes) that it was go-

ing on; (so Randy had been receiving chemotherapy, and
therefore had endured suffering);

- Receiving palliative care reduces pain and discomfort;
- Enrolling in a program to provide certain services will

lead to receiving those services; (so Randy would re-
ceive palliative care);

- If Randy continued receiving chemotherapy, he would
endure further suffering without significant life exten-
sion, while palliative care would make him feel better;

- People act to optimize expected rewards and minimize
suffering.

So if Randy knew all of the above, his choice of palliative care
instead of chemotherapy is explained. But how did he know
all this?

- Commonsense inferences that “jump out” at us also
“jump out” at others (who possess the same premise
knowledge): simulative inference (see a formalization
in Kaplan & Schubert 2000).

- All the items above are common knowledge (especially
to cancer patients), so the indicated inferences were just
as obvious to Randy as they are to us.

Thus Randy knew about the likely consequences of con-
tinued chemotherapy vs. those of palliative care, and so un-
der the presumption of optimization of expected outcomes,



Randy’s choice is explained. (Again, we’re also presuppos-
ing a lot of lexical and paraphrase knowledge: terminal ill-
ness, dying, medical treatment, palliative care, optimize, life
extension, suffering, etc.)

If we are to capture such knowledge, we need to at least
be able to express it internally in an inference-enabling form.
Here are some noteworthy expressive devices encountered in
the example:

- Predication, of course (Randy learned something, he re-
ceived chemotherapy, and so on)

- Temporally related events (getting cancer, receiving
chemotherapy, etc., and their implicit consequences)

- Causal relations (chemotherapy causes suffering, possi-
ble life prolongation)

- Conjunction and disjunction (Randy could choose con-
tinued chemotherapy or palliative care)

- Negation (No treatment can save a terminal patient’s
life)

- Quantification (most patients with metastatic cancer re-
ceive chemotherapy; almost everyone knows this)

These devices already suggest the need for at least the ex-
pressive power of first-order logic (FOL), indeed somewhat
more, since the above quantifiers are nonclassical. And there
are still more demands on expressivity:

- Genericity – almost all the general knowledge listed has
the character of applying in “typical” cases, but allowing
for exceptions;

- Patterns of events and behavior (the potential courses of
events if you get cancer; patterns of interaction between
doctors and patients); descriptions of such patterns can
be thought of as generic passages (Carlson & Spejewski
1997);

- Modal/mental notions (learning, knowing, expecting,
deciding, inferring, intending, ...)

- Counterfactuals (deciding against something because of
the adverse consequences it would have);

- Uncertainty (Randy’s life expectancy);
- Predicate modification (terminal cancer, palliative care,

continuing/stopping receiving chemotherapy, feel bet-
ter);

- Sentence modification (probably, palliative care will
ease Randy’s suffering);

- Predicate reification (receiving chemotherapy, suffering,
palliative care)

- Sentence reification (Randy learned that his cancer was
terminal).

Are any of these devices peculiar to English? Of course
not – they are available in all languages. Some reasons for
viewing language as a mirror of mind, i.e., for assuming that
the expressive devices we find in human languages reflect in-
nate, language-like semantic types—a “mentalese” cognitive
framework—are the following.1

1Note that innate “mentalese” semantic types need not entail any
linguistic universals in the grammatical sense. For example, there

- Full language and thought are conjectured to have arisen
concurrently and rather recently–perhaps some 300,000-
50,000 years ago (e.g., Ian Tattersall, Derek Bickerton,
Philip Lieberman, and many others);

- Humans occupy the “cognitive niche” (Pinker) because
they can learn, store, manipulate for inference, and
communicate symbolically encoded thoughts – seman-
tic / knowledge representations.

- Richard Montague showed that there is a tight, highly
systematic relationship between linguistic structure and
meaning (compositional semantics).

- The simplest explanation for how it is possible for lan-
guage understanding and knowledge-based inference to
function synergistically is that our internal SR/KR is it-
self language-like.

Many sorts of SR/KR have been suggested over the years,
and all are in certain respects language-like. However, many
are either expressively inadequate in terms of the semantic
categories mentioned above, or inferentially inadequate, be-
cause of restricted expressivity or lack of a theory of semantic
types that could guide formulation of inference rules. Since
I attempted a fairly comprehensive summary and critique in
(Schubert 2015), I won’t repeat myself here, except to point
to the enumeration of approaches below. The criticism indi-
cated in the listing should be viewed as “caricatures” rather
than unqualified assessments.
FOL, DRT (e.g., Allen, Jurafsky & Martin, Kamp, Heim, Bos, ...);

[expressively inadequate]
Semantic nets (wide spectrum: Shapiro, Sowa, ConceptNet, ...);

[any notation can be cast as a SN]
Description logics (CLASSIC, LOOM, OWL-DL, KAON, SROIQ,

...); [expressively inadequate]
Conceptual meaning representations (Schank’s CD, Jackendoff,

FrameNet, ...); [expressively/inferentially inadequate]
Thematic role representations (e.g., Palmer, Gildea, & Xue ’10);

[expressively/inferentially inadequate]
Abstract meaning representation (AMR) (Banarescu et al. ’13);

[inferentially inadequate]
Hobbs’ “flat” representation (Hobbs ’06); [conflates distinct types]
Structured English (e.g., MacCartney & Manning ’09, Dagan et al.

’08, ...); [ambiguous, inferentially inadequate]
Montague Grammar (English as logic) (e.g., Dowty ’79, Chierchia

& McConnellGinet ’00); [unnecessarily complex, higher-order]
Extensional Montague fragments (e.g., McAllester & Divan ’92,

Artzi & Zettlemoyer ’13); [expressively inadequate]
DCS trees (Liang et al. ’11); [expressively inadequate]
Situation semantics (Reichenbach ’47, Barwise & Perry ’83);

[abstruse, inferentially inadequate]
Episodic Logic (EL); [remedies many of these flaws; still brittle,

lacks adequate KB]

may be no universal principles constraining the placement of quan-
tifiers or modifiers–as long as there are systematic clues, be they
syntactic or semantic, as to what phrases quantify or modify what
other phrases; and propositional attitudes need not necessarily be
expressed through explicit recursion, but might be expressed via se-
quenced sentences.



4 Episodic Logic and EPILOG

Episodic Logic (EL) (e.g., Hwang & Schubert 1994, Schu-
bert & Hwang 2000, Schubert 2013) is a Montague-inspired,
language-like, first-order, situational, intensional SR/KR with
a small number of types. The types include those of FOL, but
also nonstandard quantifiers with restrictors, predicate and
sentence modifiers, predicate and sentence reification opera-
tors, quoted expressions, and operators allowing characteriza-
tion of episodes (events, situations, etc.) by sentences. Thus
EL allows for most of the semantic phenomena found in natu-
ral languages, including reference to all sorts of concrete and
abstract individuals, and temporal or causal relations between
complex events. Logical forms (LFs) are obtained compo-
sitionally from phrase structure trees, and are subsequently
normalized (e.g., Schubert 2014); the following are two ex-
amples of the transduction from NL to EL.

John donated blood to the Red Cross.
[John1 <past donate.v> (K blood.n) Red Cross] {initial LF}
(some e: [e before Now3]

(some x: [x blood.n]
[[John1 donate.v x Red Cross1] ** e] {scoped LF}

Skolemize, split:
[E1.sk before Now3], [Blood1.sk blood.n],
[[John1 donate.v Blood1.sk Red Cross1] ** E1.sk ]

Very few people still debate the fact that the earth is heating up
{Final representation}: [Fact4.sk fact.n], [Fact4.sk =

(that (some e0: [e0 at-about Now0]
[(The z [z earth.n] [z heat up.v]) ** e0]))],

((fquan (very.adv few.a)) x: [x (plur person.n)]
(still.adv (l v [v debate.v Fact4.sk])))

Currently this transduction is quite error-prone for sen-
tences of any complexity, primarily because we start with
Treebank parses that are often erroneous as well as under-
specified from a semantic perspective (e.g., not distinguishing
SBAR constituents that are relative clauses from ones that are
adverbials or clausal nominals).

EPILOG is the inference engine for EL, and has existed in
various forms and precursors for around 25 years (e.g., see
Schubert & Hwang 2000). It consists of a core reasoner ca-
pable of goal-driven and input-driven inference, and is as-
sisted by “general-purpose specialists” via a uniform inter-
face. EPILOG 1 used specialists for taxonomies, partonomies,
time, equality, arithmetic, and seven others, while in the cur-
rent version, EPILOG 2, specialist integration remains incom-
plete.2 EPILOG’s inference methods include a very general
form of embedded resolution that doesn’t require clause form,
as well as several natural deduction rules, such as assumption
of the antecedent in proving a conditional.

It is often argued–speciously–that expressivity needs to be
kept modest to assure efficient inference. But EPILOG 2 was
shown to hold its own against highly optimized FOL engines
on large FOL problems, despite its language-like richness
(Morbini & Schubert ’09). The problems that remain are
that inference is brittle, in the sense that there is no provision

2Development of complex AI systems by an academic PI collab-
orating with a few grad students tends to proceed in fits and starts!

for bridging knowledge gaps with assumption-making; un-
certainty handling is heuristic rather than well-founded; and,
of course, its KB remains inadequate for general understand-
ing and commonsense reasoning: It is a rocket engine waiting
for an adequate supply of fuel.

The following are some examples of EPILOG inference.
First, here is an example of an inference based on the non-
standard (but quite common) quantifier most. (The example
is based loosely on James Allen’s and George Ferguson’s col-
lection of human-human “Monroe domain” dialogues con-
cerned with urban emergency response.)

Given: Most front loaders are currently in use;
Background knowledge:
Whatever equipment is in use is unavailable;
Front loaders are equipment.
Conclusion: Most front loaders are currently unavailable.
Expressed in EL:

(most x: [x front-loader] [[x in-use] @ Now3]);
(all x: [x equipment]

(all e [[[x in-use] @ e] => [(not [x available]) @ e]]));
(all x: [x front-loader] [x equipment])

Conclusion by EPILOG:
(most x: [x front-loader] [(not [x available]) @ Now3])

The next example illustrates reasoning involving attitudes
(using English glosses of EL formulas for space reasons):

Given:
Alice found out that Mark Twain is the same as Samuel Clemens.
Background knowledge (with “you” meaning anyone):
When you find out something, you don’t know it to be true at the
start (of the finding-out event) but know it to be true at the end.
Whatever you know to be true is true.
Conclusions:
- Alice didn’t know (before finding out) that Mark Twain is the

same as Samual Clemens;
- Alice knew afterwards that Mark Twain is the same as Samuel

Clemens;
- Mark Twain is the same as Samuel Clemens.

EPILOG’s method of embedded inference resembles Nat-
ural Logic (NLog) but is more general. An example beyond
the scope of NLog, again from Allen and Ferguson’s Mon-
roe domain (with the question shown explicitly but with the
relevant facts left as English glosses–details can be found in
(Schubert 2013)):

Given: The small crane, which is on Clinton Ave, is not in use.
Background knowledge:
Whatever equipment is not in use is available.
Every available crane can be used to hoist rubble onto a truck.
All cranes are equipment.
Question: Can the small crane be used to hoist rubble from the

collapsed building on Penfield Rd onto a truck?
Formal query (as actually posed, without “prettified” syntax):

(q (p ’(the x (x ((attr small) crane))
(some r ((r rubble) and

(the s ((s (attr collapsed building)) and
(s on Penfield-Rd))

(r from s)))
((that (some y (y person)

(some z (z truck)
(y (adv-a (for-purpose



(Ka (adv-a (onto z)
(hoist r))))

(use x)))))) possible)))))

EPILOG answered affirmatively in a fraction of a second.

5 Types of knowledge required
Assuming that EL, or some similar SR/KR, will be adequate
for capturing knowledge that can be communicated in the
form of sentences, as well as for combinatory reasoning that
draws on a factual KB, let’s consider some of the kinds of
knowledge the examples we have seen call for.
Patterns of predication and modification: We saw how
occurrence frequencies might account for disambiguation of
Time flies like an arrow, and the same idea could be applied
to PP attachment in sentences such as the one about seeing
a bird with binoculars/yellow tail feathers. However, if we
limit ourselves to the word level, the number of combinations
that would have to be inventoried–and learned–would be as-
tronomical. A more plausible approach is to learn patterns
of predication / modification, abstracted from various occur-
rences. For example, the variants John saw a warbler {with
yellow feathers, with his opera glasses} instantiate much the
same patterns as the earlier examples, namely ones like like
person see bird, see with viewing-instrument, bird with feath-
ers (or even bird with animal-body-part). From a ML point
of view, these patterns would be features whose instantiation
in text will favor the phrases that instantiate them.
Patterns of actions/events and relationships: For expand-
ing and connecting sentences in a text into a semantically co-
herent discourse, for instance in the case of Schank’s restau-
rant stories or the terminal cancer story, we need schemas or
patterns that extend beyond mere patterns of predication and
modification. However, in contrast with many historically
proposed schemas, the propositional parts of the schemas
should allow for the full expressivity of language. The fol-
lowing is a sketch of a schema for visiting a foreign country
for pleasure (for clarity, some predicates have been written as
English phrases):
Dyn-schema [Person x visits foreign-country y] (episode e):
Init-conds: [x loc-at u:<some (place in (home-country-of y))>] e1
Co-conds: [x have v:<some (travel paraphernalia for y)>] e2
Steps: [x travel from u to w:<some (place in y)>] e3

[x do some activities in y] e4
[x travel from z:<some (place in y)> to u] e5

Effects: [x obtain g:<some (gratification-from e4)>] e6
Constraints: [e = (join-of e3 e4 e5 e6)], [e1 starts e],

[e2 same-time e], [e3 consec e4 e5], [e6 during e4]

Similarly, we can imagine patterns of events experienced by
cancer patients–diagnosis, surgery, chemotherapy, and so on.
Also readers confronted with discourse about various ob-
ject types think instantly of corresponding “object utility”
patterns–what can you do with an apple? a pen? a car?
The availability of corresponding schemas would lead im-
mediately to tentative extrapolations for such sentences as
John picked up {a pen, an apple, a rental car}. Similarly,
schemas capturing “behavioral dispositions”– about circum-
stances where a dog will bark, a radar trap will lead to a ci-
tation, a fragile object will break, and so on. An important

characteristic of schemas (of the type advocated by Marvin
Minsky, Roger Schank and others) is that schema-based in-
ferences have a “match and extrapolate” (or abductive) char-
acter, rather than a logical one: If certain parts are matched,
the corresponding instantiations of other parts become plau-
sible hypotheses.
Lexical and paraphrase knowledge: Just to reiterate the
flavor of this type of knowledge, here are some examples be-
yond those already mentioned: Dogs are land mammals; pens
are writing instruments; trees are plants with a tall wooden
trunk and a leafy branched crown; to kill is to render dead; to
walk is to advance on foot; managing to do x entails doing x;
x sells y to z <=> z buys y from z; make good money <=>
earn well <=> be well compensated <=> pull in the bucks.
Conditional / generic world knowledge: Though much in-
teresting work exists on generic and habitual sentences
as “standalone” declaratives, they seem closely related to
schemas, as characterized above. Consider for example the
following generic claims: If you drop an object, it will hit
whatever is directly beneath it; most dogs are someone’s pet;
dogs are generally friendly; chemotherapy tends to cause nau-
sea and hair loss; etc. We surely possess tens of millions of
such knowledge items; but they seem to evoke larger patterns
of events and relationships, and as such are perhaps abstrac-
tions from, or summaries of, these larger schematic patterns.
Specialist knowledge: As mentioned earlier, EPILOG infer-
ence is supported by a number of specialists, and this seems
essential for human-like facility in understanding and think-
ing about taxonomies, partonomies, temporal relations, arith-
metic & scales, geometric / imagistic representations, sets,
symbolic expressions (incl. language), and a few other perva-
sive sorts of entities and relations. Quantitatively, taxonomic
and partonomic knowledge are undoubtedly very substan-
tial, but the largest challenge may be the acquisition of ge-
ometric / imagistic representations of the objects, scenes and
events in the everyday world.

6 Some attempts to address the “Knowledge
Acquisition Bottleneck

Nowadays we have access to an abundance of textual “knowl-
edge”, but regimenting this “knowledge” into a broad range
of accurate pattern-like, schema-like, and axiom-like knowl-
edge modules usable for understanding and reasoning re-
mains a largely unsolved problem. Some believe that only
an embodied learning approach can resolve the impasse, but I
remain optimistic that some bootstrapping approach to learn-
ing from text, most likely beginning with several types of core
knowledge, can reach the goal sooner.

I will elaborate slightly on the following past, present and
planned efforts at the University of Rochester towards knowl-
edge acquisition:

- KNEXT - knowledge extraction from text, aimed at general
factoids (essentially, patterns of predication expressed as EL
formulas) that could be used to guide a parser;

- “Sharpening” and abstracting of KNEXT factoids into quan-
tified generalizations (Lore, successor to KNEXT);

- knowledge engineering (partially automated), especially for



frequent and “primitive” verbs, several VerbNet classes,
implicatives, and attitudinal verbs;

- WordNet gloss interpretation (in progress);
- graphics-based object/scene representation & inference;
- schema engineering, to assess syntactic/semantic require-

ments.

6.1 KNEXT – General knowledge extraction from
text

General knowledge extraction using KNEXT begins with a
Treebank-style parse. The parse tree is compositionally inter-
preted into EL using some 80 interpretive rules; these match
regular expressions to the sequence of immediate constituents
of a phrase, proceeding through the phrase structure tree in
bottom-up, left-to-right fashion. At the same time a set of
generalized factoids is derived; modifiers are used for factoid
construction at the level at which they occur, but are dropped
from the LFs at higher levels. Names are generalized to types
such as person, actor, or company, and noun phrases are ab-
stracted to the types corresponding to the head noun group.
Various filters are applied to remove incoherent or otherwise
undesirable factoids. For details see, e.g., (Van Durme &
Schubert 2008), and references therein.

Roughly 200 million distinct factoids have been obtained
in this way.3 Examples are (after automatic verbalization
of the formulas) A person may write a book, A computer
may crash, A person may forget a password, Trees may have
leaves, etc. In evaluations, about 80% are judged to be rea-
sonable general claims. Unfortunately, the 20% error rate is
still too high for use of the factoids for effective parser guid-
ance. We hope to curate the factoids via crowd-sourcing.

In their raw form, the factoids are also incapable of sup-
porting inferences, apart from extremely weak ones such as
that Dana may have hair, given the factoid that A person
may have hair and that Dana is a person. However, about
6 million “sharpened” quantificational factoids have been de-
rived from the original set, using tree transduction patterns,
and semantic information from WordNet, VerbNet, and other
sources (Gordon & Schubert 2010).4 The following shows an
example of the effect of sharpening, and two inferences based
on sharpened formulas.
E.g., A person may have hair –>

All or most persons permanently have some hair as part –>
(all-or-most x: [x person]

(some e: [(x . e) permanent]
(some y: [y hair]

[[x have-as-part y] ** e])))

Sample inferences:
E.g., Dana is a person –>

Probably, Dana permanently has some hair as part; i.e.,
(probably

(some e: [(Dana . e) permanent]
(some y: [y hair]

[[Dana has-as-part y] ** e])))

E.g., ACME is a company (+ sharpened axiom not shown here) –>

3See the browser at cs.rochester.edu/research/knext/browse/
4The Lore browser is at cs.rochester.edu/research/lore/browse/

Probably, ACME occasionally announces a product; i.e.,
(probably

(occasional e
(some y: [y product]

[[ACME announce y] ** e])))

These sorts of inferences seem capable of elaborating the
properties of a given entity or situation; however, they fall
short of providing a basis for understanding and reasoning.

6.2 Accumulating Lexical Knowledge: Primitives,
VerbNet, WordNet, etc.

Our knowledge engineering efforts in this area were ini-
tially focused on axiomatizing around 150 “primitive” ver-
bal concepts (such as (move, grasp, see, learn, make, ask-of,
convey-info-to, want-tbt, ...), chosen for their occurrence fre-
quency, utility in axiomatizing other verbs, and precedents in
the literature. We also derived some 250 verb axioms from
15 VerbNet classes by providing a small number of axiom
schemas for each class, where each schema contained predi-
cate or modifier parameters that could be instantiated to pro-
vide verb-specific axioms. We paid particular attention to
state-change verbs like break, repair, melt, etc., since these
are particularly important in narrative understanding. Our ax-
ioms provide much more specific information than the seman-
tic annotations in VerbNet itself. In a separate project we also
created meta-axioms covering around 250 implicative and at-
titudinal verbs such as manage (to), neglect (to), force (some-
one) (to), learn (that), know (that), etc. These can yield im-
mediate factive and antifactive inferences that are crucial in
discourse understanding.

An often-exploited source of informal lexical semantic in-
formation is the WordNet nominal hierarchy. We derived for-
malized axioms (some 77,000) for the majority of WN noun
senses. Our work exploits the mass/count distinction and var-
ious other features of nouns (inferred from WordNet itself,
VerbNet classes, and other sources) to correctly formalize the
relation between hyponym-hypernym pairs that could easily
be misanalyzed. For example, for the pair <seawater, water>
the correct relation is that all seawater is water, whereas for
the pair <gold, noble metal> it would be incorrect to say that
all gold is a noble metal; rather, it is the abstract kind, gold,
that is an instance of a noble metal. Details of our lexical
knowledge acquisition work can be found in (Stratos et al.
2011, Gordon & Schubert 2013, Schubert 2013) and refer-
ences therein.

The coverage of our lexical axioms still remains too sparse
to contribute decisively to any practical comprehension or
reasoning tasks (which in any case depends as well on other
kinds of knowledge, particularly schematic knowledge). We
are currently working on fully interpreting verb-sense glosses
in WordNet, which should take us another small step forward.
A simple example is that from sense 2 of the verb slam, with
gloss to strike violently and other associated information, we
can derive an axiom to the effect that if [x slam2.v y] char-
acterizes event e, then [x violently strike1.v y] also character-
izes e, and x is probably a person and y is probably a thing
(in sense 12, i.e., any physical entity). However, dictionary
definitions are often only weakly informative, since they may
be quasi-circular (e.g., admire is glossed as feel admiration



for), may not apply to all synset members, and typically fail
to provide major entailments (e.g., that dying results in being
dead!)

Another recently initiated project is graphics-based scene
modeling in first-reader stories. In one such story, we are told
that Frank and Rosy see a nest in an apple tree. They wonder
whether there are eggs in the nest and climb up the tree to find
out. But to make sense of this, we need to understand why
they wouldn’t see the eggs while standing on the ground. The
reason lies in visual occlusion of the eggs by the nest itself!
This occlusion relation would be difficult to infer without a
“visualization”; many such examples can be given, and this
prompted our graphics-based approach (Bigelow et al. 2015).

The most recent project seeks to arrive at a generally ade-
quate syntax for dynamic and relational schemas, along the
lines indicated by the earlier sketch of a foreign holiday
schema. In light of the earlier remarks about machine learn-
ing, we think this preparatory work is essential for eventual
schema learning by reading, in a way that is less dependent
on statistical co-occurrences in oceans of text, and more like
the way children may learn about unfamiliar things and places
from basic readers for their age group.

7 Concluding comments

Achieving broad, genuine language understanding and com-
monsense reasoning by machines will require both a clear
conception of representational requirements, and major ad-
vances in capturing and encoding knowledge in those repre-
sentations.

I have argued that we require a language-like propositional
representation that is equally well-adapted to the semantic
content of language and the content of general, commonsense
world knowledge. The development of EL and the EPILOG
inference engine indicate that such a representation can be
designed and implemented. But though we have some un-
derstanding of reasoning in this framework (modulo well-
founded uncertain inference), we are still grappling with the
knowledge acquisition bottleneck.

Beyond a propositional representation, we also need “soft”
knowledge consisting of millions of patterns of predication
and modification that can be used to guide syntactic and se-
mantic choices in the understanding process. And perhaps the
most critical challenge is the acquisition of vast numbers of
schemas (including imagistic ones) that delineate the stereo-
typed patterns of events and relationships in the world and
that we recognize instantly in both linguistically and percep-
tually conveyed information.

Naturally, our efforts to acquire knowledge bases of high
quality and adequate quantity will need to be coupled with
efforts to gain a better grasp of the varieties of inference in-
volved in human thinking – whether pattern-based, logical,
schema-based, analogical, etc. This will in turn inform our
understanding of knowledge representation requirements and
perhaps show a way of breaking through the knowledge ac-
quisition bottleneck.
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