
Midterm Exam

CSC 173

12 October 2000

Directions

This exam has 13 questions, some of which have subparts. Each question indicates its point
value. The total is 100 points. Questions 5 and 13 are optional; they are not part of the
100 points, but will count for extra credit. Please show your work here on the exam, in the
space given. (Do not write on the backs or in the margins.) Blue books are available if you
need scratch paper, but the proctor will collect only the exams.

I have tried to make the questions as clear and self-explanatory as possible. If you do
not understand what a question is asking, make some reasonable assumption and write that
assumption down next to your answer. The proctor has been instructed not to try to answer
any questions during the exam.

You will have the entire class period to work. Good luck!

Questions 1 through 5 make use of the database in figure 1 (p. 2).

1. Suppose you are building an index for the ROUTE relation, and that flight number
(FN) is the key.

(a) (3 points) What data structure would you use to implement your index? (You
don’t have to show code or a diagram: just give a descriptive name.)

Use a hash table keyed on flight number.

(b) (3 points) Suppose you knew that flight numbers were consecutive integers from
100 to 999 (they aren’t in the database shown). Would this change your answer?
How?

If the flight numbers are dense, use a characteristic array.

2. Consider the following query: “Which cities have arrivals by jet?”

(a) (4 points) Translate this query into relational algebra.

πTC(σTP=jet(PLANE �� ROUTE))

1

ROUTE

scheduled scheduled
flight from to distance departure arrival

number city city in miles time time plane
(FN) (FC) (TC) (DI) (SD) (SA) (PM)
1384 ROC BOS 325 0650 0810 F101
1205 BOS ROC 325 1730 1900 F101
110 BOS LAX 3250 0900 1040 L1011
398 LAX SFO 240 1120 1210 757
124 SFO BOS 3180 1400 2310 L1011
448 BOS DCA 340 0700 0830 737
540 DCA BOS 340 1900 2030 737

FLIGHT

actual actual
flight number of departure arrival

number date passengers time time
(FN) (DT) (NP) (AD) (AA)
1384 2000-10-09 40 0650 0800
1384 2000-10-10 12 0730 0842
1384 2000-10-11 30 0700 0815
1205 2000-10-09 42 1735 1900
1205 2000-10-10 8 1730 1855
1205 2000-10-11 20 1810 1932
110 2000-10-10 403 0940 1115
110 2000-10-11 365 0905 1035
398 2000-10-09 148 1150 1220
398 2000-10-10 95 1125 1210
124 2000-10-09 150 1500 2350
124 2000-10-10 414 1410 2310

PLANE

model capacity type
(PM) (CA) (TP)
737 120 jet
747 460 jet
757 200 jet

L1011 440 jet
F101 45 prop

Figure 1: Simple database for questions 1 through 5. Departure and arrival times use a 24-hr
(international/military) clock. Capacity (CA) in the PLANE relation indicates maximum
number of passengers.

2

(b) (4 points) Give the result of this query when executed on the database of figure 1.

LAX
SFO
BOS
DCA

3. Consider the following relational algebra query:

πFN,DT (σNP/CA<.5 ∧ AA−SA>30((ROUTE �� FLIGHT) �� PLANE))

(a) (4 points) Translate this query into plain English.

Which flights were less than half full, but arrived more than 30 minutes late?

(b) (4 points) Give the result of executing this query on the database of figure 1.

1384 2000-10-10
1205 2000-10-11
124 2000-10-09

4. (12 points) Show the result of pushing selection and projection operations as far
inward as possible (i.e. moving them inside as many joins as possible) in the query
of the previous question. Your answer should take the form of a modified relational
algebra query.

πFN,DT (σNP/CA<.5(πFN,DT,PM,NP{σAA−SA>30[πFN,SA,PM (ROUTE)

�� πFN,DT,NP,AA(FLIGHT)]} �� πPM,CA(PLANE)))

5. (Extra credit; up to 15 points) Which of the projection pushes in the previous question
are likely to be profitable in a database of realistic size (assuming no change in scheme)?
Which are not? Why? Under what circumstances?

It is reasonable to assume that there is an index for ROUTE keyed on FN, an index
for FLIGHT keyed by (FN, DT) pairs, and an index for PLANE keyed on PM.

The ROUTE �� FLIGHT join is likely to iterate over all elements of FLIGHT and
use the index to look things up in ROUTE. It therefore does not make sense to push
a projection of ROUTE inside this join. It does make sense, however, to push the
projection of FLIGHT inside, since we’ll be iterating over all tuples in that relation
anyway.

Similarly, it probably does not make sense to push the projection of PLANE inside the
second join, since we would use the index to avoid looking up all plane models, but it
does make sense to do the projection of the results of the first join, since we’re iterating
over all tuples.

These observations suggest implementing

πFN,DT (σNP/CA<.5(πFN,DT,PM,NP{σAA−SA>30 [ROUTE

�� πFN,DT,NP,AA(FLIGHT)]} �� PLANE))

3

6. Suppose you were using a relation to represent the transition function of a finite au-
tomaton.

(a) (3 points) What would be the scheme of the relation?

state, input char, new state

(b) (3 points) If the automaton were deterministic, which field(s) (attribute(s)) would
constitute a key for the relation?

the pair (state, input char)

(c) (4 points) If the automaton were non-deterministic, which field(s) would consti-
tute a key?

the entire scheme (nothing less)

7. (6 points) Why is it hard to decide which indices to build for a given relation? Why
not create one for every combination of fields on which the user might want to perform
a lookup operation?

Insert and delete operations are slower when we have to maintain a bunch of indices.
Extra indices also take space. We have to strike a balance.

8. (8 points) Briefly state the distinction between an abstract data type and a data
structure.

An abstract data type describes a collection of data in terms of what operations it
supports and how the results of the operations are related to one another.

A data structure determines how the data is organized in memory and, consequently,
how fast the various operations can be performed.

9. (8 points) The following function contains an error that may cause its program to
terminate abruptly with a run-time error. What is the bug? How would you fix it?

typedef struct node {

char * s;

struct node * next;

} node;

void delete_list(node *l) {

while (l) {

free(l);

free(l->s);

l = l->next;

}

}

Function delete list uses *l after freeing it. One solution is to replace the body of
the loop with the following:

4

node * t = l->next;

free(l->s);

free(l);

l = t;

10. (6 points) Briefly explain why it is easier to create a computer program corresponding
to a DFA than it is to create one corresponding to an NFA.

Because the DFA has only one choice in any given situation: you don’t have to keep
track of multiple possible “guesses”.

11. Consider the following regular expression: (1 01 001)* (ε 0 00)

(a) (5 points) Describe in English the language generated by this expression.

The set of all binary strings with no more than two consecutive zeros.

(b) (5 points) Give a DFA that accepts the same language. Note that your machine
will need to consume its entire input before accepting or rejecting. Hint: start
from scratch; don’t try to apply the algorithms to create an NFA and turn it into
a DFA.

0

1 1 0,1
1

0 0

START

12. Consider the following NFA:

Λ

Λ Λ Λ Λ

Λ

START

a b c d

b a d c

As usual, Λ represents all characters in the input alphabet.

(a) (5 points) Give a regular expression that generates the language accepted by this
NFA. Λ* (aΛ*b bΛ*a cΛ*d dΛ*c) Λ*

(b) (5 points) Describe this language in English.

The set of all strings containing an a and a b, or a c and a d.

5

(c) (8 points) Describe a DFA that accepts this language. What is the minimum
number of states such a DFA must have? What do the states represent? Hint:
start from scratch; don’t try to apply the algorithms to create and minimize a
DFA, starting from an NFA. Note that I am not asking you to draw a picture of
the machine or to enumerate all the transitions.

The minimum DFA has 10 states: a start state, a single final state, and eight
other states. Four of these indicate that the DFA has seen an a, a b, a c, or a
d, but none of the other interesting letters. The remaining four indicate that the
DFA has seen an a and a c, a b and a c, an a and a d, or a b and a d, but none
of the matching characters.

13. (Extra credit, up to 20 points) Consider the following toy:

L1

L3

L2

A B

C D

Marbles are dropped, one at a time, into opening A or B. Each marble is deflected by
one or two of the levers shown, falling to the left or right depending on the direction in
which the lever tilts. As a side effect, a lever that deflects a marble switches direction
immediately afterward. The question arises: if we drop marbles into openings A and
B in some order, which opening will the last marble come out of?

To answer the question, we can model the toy as a finite state machine. Let us say
that a marble dropped into A corresponds to an “input character” of A, and a marble
dropped into B corresponds to an “input character” of B. The toy “accepts” its input
if the last marble comes out of D; otherwise it rejects.

Describe a DFA that correctly captures this model (you probably don’t want to draw
a picture).

We can define 16 states, each of which is labeled by a 4-tuple < L1L2L3X >, where
the first three elements indicate whether levers 1, 2, and 3, respectively, tilt to the left
or the right, and the fourth element indicates whether the last marble came out of C
or D. We can chart the transition function as follows. The first column indicates the
current state. The second and third columns indicate where we go on an A or a B,
respectively. All states ending in D are final. LLLC is the start state.

6

A B

start LLLC RLLC LRRC
LLRC RLRC LRLD
LRLC RRLC LLLD
LRRC RRRC LLRD
RLLC LLRC RRRC
RLRC LLLD RRLD
RRLC LRRC RLLD
RRRC LRLD RLRD

A B

LLLD RLLC LRRC final
LLRD RLRC LRLD final
LRLD RRLC LLLD final
LRRD RRRC LLRD final
RLLD LLRC RRRC final
RLRD LLLD RRLD final
RRLD LRRC RLLD final
RRRD LRLD RLRD final

Three states—LRLC, LRRD, and RRRD—are unreachable. The minimal machine has
13 states.

7

