
Shared Memory Models

Michael L. Scott
University of Rochester

Programming Models and Requirements Session
Workshop on Communication and Middleware

for Parallel Programming Models
Held in conjunction with IPDPS

April 2002

Thanks to
Sandhya Dwarkadas, Leonidas Kontothanassis, Rob Stets,

Umit Rencuzogullari, Nicolaos Hardavellas, Galen Hunt,
Luke Chen, and Chunqiang Tang

URCS 4/14/02 2

S-DSM Motivation

� Shared memory an attractive programming model
» Familiar to users of SMPs and multi-threaded languages

» Arguably simpler than message passing, esp. for non-
performance-critical code

» Has the potential to out-perform inspector-executor code for
irregular access patterns, esp. with compiler support

� Outline
» Brief history

» Current state of the art

» Obstacles to better performance

» Wish list for communication architectures

» Plug for InterWeave

URCS 4/14/02 3

A Brief History of the Field

» 1986 Ivy
» 1989 Shiva

» 1990 Munin

» 1992 LRC (TreadMarks)

» 1993 Sh. Regions, Midway

» 1994 AURC (Shrimp)
» 1995 CRL

» 1996 Shasta

» 1997 Cashmere

» 1998 HLRC

» 2000 InterWeave

The original idea (Kai Li)

Relaxed memory model,
optimized protocols

Software-only protocols

� Leverage special HW
 (User-level messages,
 multiprocessor nodes)

URCS 4/14/02 4

S-DSM for SANs

� Relaxed memory model: multi-writer release
consistency, data-race-free applications

� “Moderately lazy” protocol with home nodes:
propagate updates and write notices at release time

� Page-size coherence granularity
(false sharing not a major issue)

� VM-based write detection
� Multiprocessor nodes
� User-level network interface
� Exemplars: Cashmere, HLRC/GeNIMA

URCS 4/14/02 5

The Bad News

� The key ideas seem to have been discovered;
the rate of innovation is way down

� Program committees aren’t looking for papers
� No massively parallel apps
� No major OS vendor packages S-DSM

(TreadMarks the only commercially-available system;
optimized for high latency messages)

� High-end users (who might tolerate research code)
still stick to MPI

URCS 4/14/02 6

The Good News

� Speedups for well-written apps are quite good
� Widespread use awaits production-quality systems
� Performance may improve with compiler support and

better communication architectures
� The ideas are valuable in a wider domain; hence

InterWeave (see plug at end)

URCS 4/14/02 7

Cashmere Speedups

0

5

10

15

20

25

30

35

Barnes LU CLU WaterSp WaterNSq EM3D Ilink TVD Gauss SOR TSP

8x4 Alpha system

URCS 4/14/02 8

Cashmere and MPI

0

5

10

15

20

25

30

EP IS SOR

MPI
CSM

8x4 Alpha
system

� Lu et al report similar results for TreadMarks & PVM

URCS 4/14/02 9

Obstacles to Better Speedup

�False sharing (not as serious as once thought)
�Write detection overhead (twins, diffs, faults)
�Maximum one-page message size
� All “pull”-based — no “push” (opposite of most HW)

� 2, 3, and 4 amenable to compiler support
� 2, 4, and maybe 3 to protocol improvements
� 2 and 4 to hardware support

URCS 4/14/02 10

Communication Features

� Low latency
� Fast interrupts
� Remote writes
� Reliable delivery, total order
� Broadcast
� Remote reads, RMW (e.g. CAS)
� Very large address space, shadow page tables
� Fine-grain protection [UWisc], HW write detection

[Bianchini], true HW coherence

� crucial
� useful

� probably impractical

� stay tuned

URCS 4/14/02 11

Cashmere Protocol Variants

� “Memory Channel” Cashmere
» shared data propagation (diffs)*
» meta-data propagation (directory, write notices)

» synchronization mechanisms (locks, barriers)

 * Remotely-accessible shared data space is limited

� “Explicit messages” Cashmere
» diffs, write notices, locks, barriers: use plain messages

» directory: maintain master entry only at the home

» hide ack latency by pipelining diffs, write notices

URCS 4/14/02 12

Free Home Node Migration

� Reduce twin/diff overhead by migrating home node to
the active writer
» migration is not possible when using remote write to

propagate data

� Send migration request as part of each write fault
» home will grant migration request if it is not actively writing

the page
» old node will forward any incoming requests to new home

� Migration very effectively reduces twin/diff operations

URCS 4/14/02 13

0
20
40
60
80
100
120
140
160
180
200

User Protocol Wait Message

Relative Performance
Left, middle, right bars:
MC Features, Explicit Msgs, Explicit Msgs Migration

32 processors

URCS 4/14/02 14

Adaptive Broadcast

� Augment Cashmere with special broadcast buffers
(don’t map shared memory directly)

� Use for widely-shared data
» multiple requests for page in a single synchronization interval

� Little performance improvement (<13%) on 8 nodes
� Sometimes significant improvement (up to 51%) on 32

(emulated) nodes

URCS 4/14/02 15

Relative Performance

0
20
40
60
80
100
120

User Protocol Message/Wait Broadcast

Left, right bars: Cashmere, Cashmere-ADB

32 Nodes (emulated)

URCS 4/14/02 16

What Goes in the
Network Address Space?

� Message buffers only
» Address space need not be huge

» Free home migration possible

� Application data
» Makes home node migration expensive
» Would benedit from remote reads

and from very large network address space

» Requires pinning or dynamic virtual mappings

� Jury is still out; merits further study

URCS 4/14/02 17

Summary

� S-DSM a qualified success: familiar, simple, good for
irregular apps or for SMP / CC-NUMA interoperability

� Significant opportunities for new communication
architectures
» Fast interrupts
» Broadcast (used with discretion)

» Remote reads, atomic ops

» Very large network address space, dynamic virtual mappings

� Shows promise for geographically distributed systems:
InterWeave

URCS 4/14/02 18

InterWeave Motivation

� Convenient support for “satellite” nodes
» remote visualization and steering (Astrophysics, ICF)

» client-server division of labor (datamining)

� True distributed apps
» intelligent environments (AI group)

� Speedup probably not feasible; convenience the
principal goal

URCS 4/14/02 19

InterWeave Overview

� Sharing of persistent versioned segments (heaps),
named by URLs

� User-specified relaxed coherence; reader-writer locks
� Hash-based consistency
� Full support for language and machine heterogeneity,

using IDL and pointer swizzling
� Cashmere functions as a single InterWeave node
� Fully compatible with RPC/RMI; supports true

reference parameters

URCS 4/14/02 20

InterWeave Status

� Prototype running on Alpha/Tru64, Sun/Solaris,
x86/Linux and Win2K (soon to be on Power-4/AIX);

� C, C++, Java, Fortran
� Funding from NSF & DOE/LLE
� Applications:

» Astroflow (stellar simulation)

» Barnes-Hut visualization

» incremental sequence mining

» distributed calendar

more info at
http://www.cs.rochester.edu/research/interweave

� In the works:
» distributed multi-player

game (MazeWars)

» distributed object
recognition (Smart
Medical Home)

URCS 4/14/02 22

The Price-Performance Curve

 S-DSM may
maximize “bang for
the buck” for
shared-memory
parallel computing

S-DSM CC-NUMA
Memory Channel / VIA,

Shrimp, S-COMA, Typhoon,
Hamlyn / Scheduled Transfer,
PCI-SCI, T3E, Mercury, etc.

$

URCS 4/14/02 23

The Fundamental Caveat

� Performance is maximized by unlimited programmer
time coupled with a programming model that directly
models the underlying hardware.

� S-DSM will not displace MPI at the National Labs
anytime soon.

� Cf. the 1960s battle over compilation

URCS 4/14/02 24

Papers at Leading Conferences

Anybody see a trend?

0

2

4

6

8

10

12

1987 1989 1991 1993 1995 1997 1999

SOSP
ASPLOS
ISCA
OSDI

URCS 4/14/02 25

Microbenchmarks

� AlphaServer 4100 cluster: 32 procs, 8 nodes
» Alpha 21164A 600 MHz

» Memory Channel II SAN

� Round-trip null message latency: 15 µsecs

MC features
(µsecs)

Explicit messages
(µsecs)

Diff 31-129 70-245
Lock Acquire 10 33
Barrier (32 procs) 29 53

URCS 4/14/02 26

Segment Creation

� Communicates with server to create segment
(checking access rights)

� Allocates local cached copy (not necessarily
contiguous)

� Can follow pointers to other segments

IW_handle_t h = IW_create_segment (URL);
IW_wl_acquire (h);
my_type* p = (my_type *) IW_malloc (h, my_type_desc);
*p = ...
IW_wl_release (h);

URCS 4/14/02 27

Coherence

� Relaxed reader-writer locks
» Writer grabs current version (does not exclude readers)

» Reader checks to see if current cached copy (if any) is
“recent enough”

� Multiple notions of “recent enough”
» e.g. immediate, polled, temporal, delta, diff-based
» from Beehive [Singla97], InterAct [LCR ’98]

� Cache whole segments; server need only keep most
recent version, in machine-independent form

� Diff-based updates (both ways) based on block time
stamps

URCS 4/14/02 28

Consistency

� Need to respect happens-before
� Invalidate cached version of A that is older than

version on which newly-obtained version of B
depends

� Ideally want to know entire object history
� Can approximate using hashing

» slot i of vector contains timestamp of most recent antecedent
hashing to i

» invalidate A if B.vec[hash(A)] is newer

URCS 4/14/02 29

InterWeave Related Work

� Distributed objects
» Language-specific (Emerald/Amber/VDOM, Argus, Ada,

ORCA, numerous Java systems)

» Language-neutral (PerDiS, Legion, Globe, DCOM, CORBA,
Fresco)

� Distributed state (Khazana, Active Harmony, Linda)

� Metacomputing (GLOBUS/GRID, Legion, WebOS)

� Heterogeneity, swizzling (RPC, LOOM, Java pickling)

� Multiple consistency models (Friedman et al., Agrawal et
al., Alonso et al., Ramachandran et al., web caching work)

� Transactions, persistence (Feeley et al., Thor)

