
Notes for CSC 254, 8 and 13 Nov. 2023

===============================
A smorgasbord of types

scalar types -- one or two-dimensional
 discrete -- one-dimensional and countable
 integer, boolean, char, enumeration, subrange
 rational
 real
 complex

composite types
 records/structs/tuples
 variants/unions
 arrays
 strings
 sets
 pointers
 lists
 files

 mappings // common in scripting languages

--
Records
 usually laid out contiguously
 possible holes for alignment reasons
 permits copying but not comparison with simple block operations

 example:

 struct element {
 char name[2];
 int atomic_number;
 double atomic_weight;
 bool metallic;
 }

 layout on a 32-bit machine:

A few languages allow the programmer to specify that a record is packed, meaning
there are no (internal) holds, but fields may be unaligned.
 less space, but significant run-time access penalty

Smart compilers may re-arrange fields to minimize holes
 largest first or smallest first
 latter maximizes # of fields with a small offset from the beginning

C compilers promise not to rearrange

4 bytes/32 bits

name

metallic

atomic_number

atomic_weight

name

metallic

atomic_

atomic_weight

number

4 bytes/32 bits

name metallic

atomic_number

atomic_weight

4 bytes/32 bits

Unions (variant records)
 overlay space
 w/ tag: discriminated union (as in OCaml or Rust)
 w/out tag: nondiscriminated union (as in C)
 cause problems for type checking -- you don’t know what is there
 ability to change tag and then access fields hardly any better (as in Pascal)

- modern languages typically require assignment of entire variant (w/ tag),
 as in OCaml, Rust, or Ada

Several languages (including Algol68, Ada, and ML) require access to variant
portions of a record to be confined to a “conformity clause” (e.g., OCaml’s match)
that ensures type safety.

If structs and unions are independent, declarations can be quite ugly, as in this legacy C:

 struct employee {
 ...
 union {
 struct { // hourly employee
 double hourly_pay;
 ...
 } S1;
 struct { // salaried employee
 double annual_salary;
 ...
 } S2;
 } U1;
 };
 ...
 this_employee.U1.S1.hourly_pay // yuk!

Pascal unified records and variants:

 type employee = record
 ...
 case boolean of (* hourly? *)
 true:
 hourly_pay : real;
 ...
 false:
 annual_salary: real;
 ...

 end;
 ...
 this_employee.hourly_pay // better

Recent versions of C and C++ achieve a similar effect with anonymous structs and
unions. Strike out the S1, S2, U1 names above.

Note that the problem of uninitialized variables is more general than variant records.
Some languages say variables start out with certain values (e.g. 0 for globals [but not
locals!] in C). Many just say it’s erroneous to use an uninitialized variable. A few
actually try to prevent you from accessing one. In general, the only ways to do this
are (1) restrict the language, e.g., as Java and C# do to ensure definite assignment;
(2) initialize variables automatically with a special “uninitialized” value and check most
references at run time.

==
Arrays

Two layout strategies for arrays:
 contiguous elements
 column major -- basically used only in Fortran
 probably an historical accident
 row major -- used by everybody else; makes array [a..b, c..d]
 the same as array [a..b] of array [c..d].

Row-major order Column-major order

row pointers
 an option in C; only option in Java and some scripting languages
 allows rows to be put anywhere -- nice for big arrays on
 legacy machines with segmentation problems
 avoids multiplication -- nice for legacy machines with slow multiply
 nice for matrices whose rows are of different lengths
 e.g. an array of strings
 requires extra space for the pointers

--
Descriptors (dope vectors) required when bounds not known at compile time.

When bounds are known, much of the arithmetic can be done at compile time.
 Given
 A : array [L1..U1] of array [L2..U2]
 of array [L3..U3] of glarch;
 Let
 D1 = U1-L1+1
 D2 = U2-L2+1
 D3 = U3-L3+1
 Let
 S3 = sizeof glarch
 S2 = D3 * S3
 S1 = D2 * S2
 The address of A[i][j][k] is
 (i - L1) * S1
 + (j - L2) * S2
 + (k - L3) * S3 + address of A

 We could compute all that at run time, but we can make do with fewer subtractions:

S u n d a y

M o n d a y

T

T

u

u r

e s d a y

d a y

d a y

d a y

W e d n e s

d a yS a t u r

sh

F ir

S u n d a y

M o n d a y

T

T

u

u r

e s d a y

d a y

d a y

d a y

W e d n e s

d a yS a t u r

sh

F ir

 == (i * S1) + (j * S2) + (k * S3)
 + address of A
 - [(L1 * S1) + (L2 * S2) + (L3 * S3)]

 The stuff in square brackets is a compile-time constant that depends
 only on the type of A. We can combine easily with records:

 Another example: Suppose A is a messy local variable.
 The address of A[i].B[3][j] is
 i * S1
 - L1 * S1
 + B’s field offset
 + (3-L2) * S2
 + j * S3
 - L3 * S3
 + fp
 + A’s offset in frame

 Some languages assume that all array indexing starts at zero.
 A few assume it starts at one.
 This is not a performance issue: the lower bound can be factored
 out at compile time.

Lifetime (how long object exists)
 and shape (bounds and possibly dimensions)
common options:
 global lifetime, static shape
 globals in C
 local lifetime, static shape
 subroutine locals in many classic imperative languages,
 including historical C
 local lifetime, shape bound at elaboration
 subroutine locals in Ada or modern C
 arbitrary lifetime, shape bound at elaboration
 Java arrays
 arbitrary lifetime, dynamic shape
 most scripting languages, APL, Icon

 The first two categories are just familiar global and local variables.
 With dynamic shape you need dope vectors
 The fourth and fifth categories have to be allocated off a heap.
 The third category can still be put in a subroutine’s stack frame;
 Dope vector and a pointer go at a fixed offset from the FP;
 the data itself is higher up in the frame
 This divides the frame into fixed-size and variable-sized parts;
 also requires a frame pointer.

Note that deallocating a fully dynamic array on subroutine exit requires
 some extra code -- doesn’t happen automatically via pop of stack frame.
 Cf: C++ destructors, Rust drop

-- Ada:

procedure foo(size : integer) is

M : array (1..size, 1..size)

 of long_float;

...

begin

 ...

end foo;

// C99:

void foo(int size) {

 double M[size][size];

 ...

}

M

sp

Temporaries

Pointer to M

Dope vector

Bookkeeping

Return address

Arguments
and returns

fp

Local
variables

Variable-size
part of the frame

Fixed-size part
of the frame

--
Slices (Fortran 90, APL, MATLAB, others)

 matrix(3:6, 4:7) columns 3-6, rows 4-7
 matrix(6:, 5) columns 6-end, row 5
 matrix(:4, 2:8:2) columns 1-4, every other row from 2-8
 matrix(:, /2, 5, 9/) all columns, rows 2, 5, and 9

 can assign into each other as if they were smaller arrays.

--
Vectors

Supported by container libraries in many languages.
Built into a few — esp. scripting languages.

Basically just arrays that automatically resize when you run off the end.

May also support operations like push_back (which extends the underlying
array) or delete (which removes an element and moves all remaining
elements down to fill the gap).

--
Strings

Basically arrays of characters.
But often special-cased, to give them flexibility (e.g., dynamic sizing)
 and operators not available for arrays in general.

It’s easier to provide these things for strings than for arrays in general
because strings are one-dimensional and non-circular (meaning you can
garbage-collect them with reference counts; more later). Some languages
make them all constant: you can create new strings, but not modify old ones.

--
Sets & mappings

You learned about a lot of possible implementations in 172.
Bit vectors are what usually get built into compiled programming languages.
Things like intersection, union, membership, etc. can be implemented
 efficiently with bitwise logical instructions.

Scripting languages typically use hash tables. May use trees or skip lists for fast
enumeration and range queries.

==
Pointers and recursive types

pointers serve two purposes:
 efficient (and sometimes intuitive) access to elaborated objects (as in C)
 dynamic creation of linked data structures, in conjunction with
 a heap storage manager

Note that pointers are not the same thing as addresses. Pointers are
an abstraction. Addresses are an implementation. Pointers are not always
implemented as addresses:
 - machines with segments
 - error checks (e.g. locks and keys -- see below)
 - swizzling
 - cursors
 - C++ overloading of *, -> (e.g., for smart pointers)

Many languages restrict pointers to accessing things in the heap: the only way to get a
pointer is by calling new. Others (e.g., C) allow you to create a pointer to any existing
object.

Pointers are used with a value model of variables. They aren’t needed with a reference
model.

Good implementations of languages with a reference model of variables represent
primitive (immutable) types the same way you would for a language with a value model
of variables -- you think of your variable x as a reference to “the” 3 (the Platonic ideal),
but the compiler implements it as a box with a copy of “the” 3 in it.

 y := x

Problems:
 syntax of pointer dereferencing

new(my_ptr);

135942 135942

135942

0

135942

135942

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

135942

135942

ptr2

my_ptr

ptr2

(Potentially
reused)

 typically explicit, as in C
 a few languages dereference automatically, depending on context

Ada, for example, does implicit dereferencing for record field references,
and has special syntax to name the entire referenced object

 type foo is record ...
 type fp is access foo
 f : xp := new foo;
 ...
 y := f.field1; -- implicit dereference
 g : foo := f.all; -- whole object

 dangling pointers due to
 explicit deallocation of heap objects
 only in languages that have explicit deallocation
 implicit deallocation of elaborated objects
 only in languages that let you create pointers to these
 two implementation mechanisms to catch:

 locks and keys

require an additional
offset field for pointers
to elaborated objects

new(my_ptr);

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

ptr2

my_ptr

ptr2

RIP
(Potentially

reused)

 tombstones

tombstones themselves live a long time, but can be garbage collected using
reference counts; more later

--
Garbage collection

Many languages leave it up to the programmer to design without
 garbage creation. This is very hard.

C++ increasingly regularizing automatic collection via smart
 pointers. Rust supports manual reclamation via ownership
 and borrowing, but this significantly complicates the creation
 of linked structures.

Increasingly, languages arrange for automatic garbage collection
 objects are reclaimed when the runtime can prove they are no
 longer accessible. (Note: this is not the same as no longer
 needed -- may be overly conservative.)

Two common implementations: reference counting and tracing

stooges := nil;

stooges 2 "larry"

stooges

1 "moe"

1 "curly"

1 "larry" 1 "moe"

1 "curly"

Stack Heap

reference counting

works great for strings; does not work for circular structures

Does work for tombstones, though you have to make sure that when you delete a
struct containing pointers (or allow it to go out of scope) the compiler decrements
the reference counts of the tombstones for those pointers. Key observation is that
tombstones are used with explicit object deletion: ref. counts fail to reclaim
tombstone only when user fails to reclaim object.

tracing
 generally requires strong typing
 (but see conservative collection below)
 used routinely in Java, C#, Scala, Swift, Kotlin, Go,
 Lisp, ML/OCaml/Haskell, scripting languages, ...

 variants
 mark-and-sweep
 takes time proportional to total heap size
 (would prefer proportional to amount of garbage collected,
 but we don’t know how to do that)
 can use pointer reversal for space-efficient tracing

 stop-and-copy
 takes time proportional to amount of space currently in use
 performs compaction, to cure external fragmentation
 might be expected to double space requirements, but
 doesn’t really, given virtual memory

 generational (used in most production systems)
 avoids, heuristically, wasting time on memory that
 is unlikely to be unused
 has to be able to fall back to previous techniques
 requires “write barriers” in program code to track
 old-to-new pointers
 (we also need write barriers -- for different reasons --
 with reference counts)

Conservative approximation possible in almost any language:

 Assume any pointer-sized aligned value is a pointer if its bit
 pattern is the address of (the beginning of) a block in the heap.

 Limitations:
 pointers to interior of objects not generally supported
 pointers must not be hidden (stored in any way other
 than a full-word aligned address)
 can leak storage when the address of an unneeded block
 happens to match the bit pattern of some non-pointer
 object.

hybrids also possible: e.g., reference count most of the time,
 do a mark-and-sweep once in a while to catch circular structures.

--
C pointers and arrays

The basic idea: an array variable is (in most respects) treated like a pointer to the array’s
first element; subscripting is defined in terms of pointer arithmetic:

 E1[E2] == (*((E1)+(E2))) = (*((E2)+(E1))) !

 So given
 int n, *p;
 You can say not only
 n = p[3];
 but also
 n = 3[p]; // surprise!

Subscripting scales to the size of array elements in C precisely because pointer
arithmetic does.

When is an array not a pointer?

 (a) in a variable definition, where the array allocates space

 (b) in a sizeof, where the array represents the whole thing

 double A[10];
 double *p = A;
 sizeof(A) == 80 // the whole array
 sizeof(A[0]) == 8 // one element
 sizeof(p) == 4 // a pointer (on a 32-bit machine)

Variable definitions:
 int *a[n] // n-element array of row pointers
 int a[n][m] // 2-D array

Beware the difference between definitions, which allocate space, and declarations,
which merely introduce names.

Since function prototypes (headers) are just declarations, and don’t allocate space, and
since arrays are passed as pointers, the following parameter declarations are equivalent:
 int *a == int a[] // pointer to int
 int **a == int *a[] // pointer to pointer to int

Note that these equivalences do not hold for definitions.

Compiler has to be able to tell the size of the things to which you point. So the following
aren’t valid, even as parameter declarations:

 int a[][] // bad
 int (*a)[] // bad

But a[][10] is ok, even as a parameter, and the compiler will do the right thing.
(*a)[10] is equivalent as a parameter.

You can pass contiguous arrays to subroutines, but you have to specify the size of all
inner dimensions:

 int a[][10] // ok (as declaration, not definition)
 int (*a)[10] // "; does the same thing
 int a[10][10] // also ok, but first 10 is unnecessary

C declaration rule: read right as far as you can (subject to parentheses), then left, then
out a level and repeat.

 int *a[n] // n-element array of pointers to integers
 int (*a)[n] // pointer to n-element array of integers

 int (*f)(int *) // pointer to function taking pointer to
 // integer as argument, and returning integer

Choice between pointer arithmetic & subscripts is largely a matter of taste. Pointer
arithmetic used to be faster with stupid compilers. With modern compilers it’s often
the other way around, particularly given the tendency of aliases to inhibit optimization.

Cf. choice between row-pointer and contiguous layout: tradeoff has reversed with time.

