
A Laboratory Manual for the SPARC

Arthur B. Maccabe
Jeff Vandyke

Department of Computer Science
The University of New Mexico

Albuquerque, NM 87131

Copyright c1993, 1994, 1995, 1996

Permission is granted to make copies for classroom use

January 16, 1996

Introduction
This laboratory manual was developed to provide a “hands on” introduction to the

SPARC architecture. The labs are based on ISEM, an instructional SPARC emulator devel-
oped at the University of New Mexico.

The ISEM package is available via anonymous ftp. To obtain a copy ftp to cs.unm.edu
and cd to pub/ISEM. The README file in this directory should provide you with the
information needed to obtain a working copy for your environment. ISEM currently runs
on most Unix boxes., There are plans to port ISEM to the DOS/Windows environment as
well as the Mac. If you have any difficulty getting a copy of ISEM or would like more
information regarding the status of the ports, send email to isem@cs.unm.edu.

In addition to an instruction set emulator for the SPARC, the ISEM package includes
emulations for several devices (a character mapped display, a bitmapped display, a UART,
etc.), an assembler, and a linker. The assember is a slightly modified version of the GNU
assembler (gas version 2.1.1). The primary modification is the addition of several synthetic
operations to support loads and stores from/to arbitrary locations in memory. These oper-
ations are described in the first few laboratory write ups.

The lab maunal is complete in that it covers all of the SPARC operations and instruction
formats. As such, students should not require individual copies of The SPARC Architec-
ture Manual. However, we have found it useful to have copies of the SPARC Architecture
Manual available to students on a reference basis.

This lab manual has been designed to accompany Computer Systems: Architecture, Orga-
nization, and Programming by Maccabe (Richard D. Irwin, 1993). However, the manual does
not directly reference the text and, as such, could be used with other text books.

Laboratory 1
Using ISEM (the Instructional
SPARC Emulator)

1.1 Goal

To describe the translation of assembly language programs and introduce basic features of
ISEM, the instructional SPARC emulator.

1.2 Objectives

After completing this lab, you will be able to:

� Assemble and link SPARC programs,
� Load SPARC programs,
� Run SPARC programs,
� Examine/modify memory locations, and
� Examine/modify registers.

1.3 Discussion

In this lab we describe the translation process and introduce the basic features of ISEM.
We begin by describing the translation process: the steps used to translate an assembly
language program into an executable program. After describing the translation process,
we describe how you can execute and test executable programs using ISEM.

The first thing you need is a simple SPARC program. Figure 1.1 illustrates a simple
SPARC program. We will use this program in the remainder of this lab.

Activity 1.1 Using a text editor, enter the program shown in Figure 1.1 into a file called foo.s.

1.3.1 Assembling and Linking Programs

Once you have a SPARC program, you will need to assemble and link your program be-
fore you can run it using ISEM. The assembler translates assembly language programs into
object program. The linker transforms object programs into executable programs that you can
execute using ISEM

To assemble a SPARC program, you need to specify the file that holds the assembly
language program and the file that will hold the resulting object program. Assembly com-
mands start with the name of the assembler, isem-as, followed by (optional) listing speci-
fications, followed by an output file specification, followed by the name of the source file.

1

2 Lab 1. Using ISEM (the Instructional SPARC Emulator)

.data ! variables
x: .word 0x42 ! initialize x to 0x42
y: .word 0x20 ! initialize y to 0x20
z: .word 0 ! initialize z to 0

.text ! instructions
start:

set x, %r2 ! &x --> %r2
ld [%r2], %r2 ! x --> %r2
set y, %r3 ! &y --> %r3
ld [%r3], %r3 ! y --> %r3
add %r2, %r2, %r2 ! r2 + r2 --> %r2
add %r2, %r3, %r2 ! r2 + r3 --> %r2
set z, %r3 ! &z --> %r3
st %r2, [%r3] ! r2 --> x

end: ta 0

Figure 1.1 A sample SPARC program implementing z = 2x+ y

Hexadecimal ISEM reports all of its results in hexadecimal. To simplify your interaction
with ISEM, we will use hexadecimal notation in our programs. The program shown in
Figure 1.1 uses the hexadecimal constants: 0x42 and 0x20.

We will use the listing specification “�als” (to generate a source listing and a list of sym-
bols). The output specification consists of a -o followed by the name of the output file.
Figure 1.2 illustrates the interaction that results when you assemble the program in foo.s.

Activity 1.2 Assemble the program in foo.s, placing the object code in the file foo.o.

The linker is called isem-ld. Linker commands start with the name of the linker, isem-ld,
followed by an output specification, followed by the name of the file containing the object
program.

Activity 1.3 Link the object code in foo.o, placing the executable program in the file foo.

1.3.2 Testing Your Program

Once you have assembled and linked your assembly language program, you can execute
your program using ISEM. To start ISEM, you need to issue the ISEM command, “isem”.

When you start ISEM, you will see an introductory message followed by the ISEM
prompt (“ISEM>”). When you see this prompt, you can issue an ISEM command. Fig-
ure 1.3 illustrates the interaction you should expect to see when you start up ISEM.

The load command

The load command is used to load executable programs into the ISEM environment. The
load command consists of the name of the command (load) followed by the name of a file
containing an executable program.

Figure 1.4 illustrates the ISEM load command. In examining this interaction, note that
ISEM tells you where it loaded the program text (instructions) and data (variables). ISEM

Lab 1. Using ISEM (the Instructional SPARC Emulator) 3

% isem-as �als �o foo.o foo.s
SPARC GAS foo.s page 1

1 .data ! variables
2 0030 00000042 x: .word 0x42 ! initialize x

to 0x42
3 0034 00000020 y: .word 0x20 ! initialize y

to 0x20
4 0038 00000000 z: .word 0 ! initialize z

to 0
5
6 .text ! instructions
7 start:
8 0000 05000000 set x, %r2 ! &x --> %r2
8 8410A000
9 0008 C4008000 ld [%r2], %r2 ! x --> %r2

10 000c 07000000 set y, %r3 ! &y --> %r3
10 8610E000
11 0014 C600C000 ld [%r3], %r3 ! y --> %r3
12 0018 84008002 add %r2, %r2, %r2 ! r2 + r2 -->

%r2
13 001c 84008003 add %r2, %r3, %r2 ! r2 + r3 -->

%r2
14 0020 07000000 set z, %r3 ! &z --> %r3
14 8610E000
15 0028 C420C000 st %r2, [%r3] ! r2 --> x
16 002c 91D02000 ta 0
17 end:

SPARC GAS foo.s page 2

DEFINED SYMBOLS
foo.s:2 2:00000030 x
foo.s:3 2:00000034 y
foo.s:4 2:00000038 z
foo.s:7 1:00000000 start
foo.s:17 1:00000030 end

UNDEFINED SYMBOLS

Figure 1.2 Illustrating the isem-as command.

File Names Traditionally, file name suffixes indicate the type of program stored in a
file. Files that contain assembly language programs have a suffix of “.s”. Files that contain
object programs have a suffix of “.o”. Files that contain executable programs do not usually
have a suffix.

In the preceding paragraphs, we used the files foo.s (for the assembly language pro-
gram), foo.o (for the object program), and foo (for the executable program).

also tells you the current value of the program counter (PC) and the next program counter
(nPC). Finally, ISEM shows you the next instruction that it will execute (i.e., the instruction
pointed to by the PC).

4 Lab 1. Using ISEM (the Instructional SPARC Emulator)

% isem

Instructional SPARC Emulator
Copyright 1993 - Computer Science Department

University of New Mexico

ISEM comes with ABSOLUTELY NO WARRANTY

ISEM Ver 1.00a : Mon Nov 1 20:25:01 MST 1993

Figure 1.3 Illustrating the isem command.
ISEM> load foo
Loading File: foo
2000 bytes loaded into Text region at address 8:0
2000 bytes loaded into Data region at address a:2000

PC: 08:00000020 nPC: 00000024 PSR: 0000003e N:0 Z:0 V:0
C:0

start : sethi 0x8, %g2

Figure 1.4 Illustrating the load command.

Activity 1.4 Start ISEM and load the file foo.

Note that the instruction (sethi 0x8, %g2) doesn’t look like the first instruction in the
sample program (set x, %r2). We will discuss the reason for this when we consider synthetic
operations in Lab 9. For now, it is sufficient to know that set instruction may be implemented
using two instructions: a sethi instruction followed by an or instruction.

The trace command

You can execute your program, one instruction at a time, using the trace command. The
trace command executes a single instruction and reports the values stored in the registers,
followed by the next instruction to be executed.

Figure 1.5 illustrates three successive executions of the trace command. Note that reg-
ister 2 (first row, third column) now has the value 0x00000042—the value used in the ini-
tialization of x.

To complete the execution of the sample program, you need to issue nine more trace
commands (a total of twelve trace commands). As you issue trace commands, note how
the values in registers 2 and 3 change. When you have executed all of the instructions in
the sample program, ISEM will print the message “Program exited normally.” Figure 1.6
illustrates the execution of the last two trace commands.

Activity 1.5 Execute the sample program by issuing twelve trace commands.

The dump command

The trace command is useful because it lets you see how each instruction affects the reg-
isters when it is executed. You can also examine the contents of memory using the dump
command. You can issue a dump command any time you see the ISEM> prompt.

To use the dump command, you need to specify the range of memory values that you
want to examine. A range of memory locations is specified using two memory addresses

Lab 1. Using ISEM (the Instructional SPARC Emulator) 5

ISEM> trace
----0--- ----1--- ----2--- ----3--- ----4--- ----5--- ----6---

----7---
G 00000000 00000000 00002000 00000000 00000000 00000000 00000000

00000000
O 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
L 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
I 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
PC: 08:00000024 nPC: 00000028 PSR: 0000003e N:0 Z:0 V:0

C:0

start+04 : or %g2, 0x60, %g2

ISEM> trace
----0--- ----1--- ----2--- ----3--- ----4--- ----5--- ----6---

----7---
G 00000000 00000000 00002060 00000000 00000000 00000000 00000000

00000000
O 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
L 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
I 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
PC: 08:00000028 nPC: 0000002c PSR: 0000003e N:0 Z:0 V:0

C:0

start+08 : ld [%g2], %g2

ISEM> trace
----0--- ----1--- ----2--- ----3--- ----4--- ----5--- ----6---

----7---
G 00000000 00000000 00000042 00000000 00000000 00000000 00000000

00000000
O 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
L 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
I 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
PC: 08:0000002c nPC: 00000030 PSR: 0000003e N:0 Z:0 V:0

C:0

start+0c : sethi 0x8, %g3

Figure 1.5 Illustrating the trace command.

separated by a comma. Memory addresses can be specified using an integer value or the
name of a label. For example, to see the final value stored in the memory location associated
with the label “z” you could use the range “z, z”.

Figure 1.7 illustrates the dump command. The dump command reports memory values
in pairs of hexadecimal digits. Each word of memory is 32 bits and, as such, requires four

6 Lab 1. Using ISEM (the Instructional SPARC Emulator)

ISEM> trace
----0--- ----1--- ----2--- ----3--- ----4--- ----5--- ----6---

----7---
G 00000000 00000000 000000a4 00002068 00000000 00000000 00000000

00000000
O 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
L 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
I 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000
PC: 08:0000004c nPC: 00000050 PSR: 0000003e N:0 Z:0 V:0

C:0

start+2c : ta [%g0 + 0x0]

ISEM> trace
Program exited normally.

----0--- ----1--- ----2--- ----3--- ----4--- ----5--- ----6---
----7---

G 00000000 00000000 000000a4 00002068 00000000 00000000 00000000
00000000

O 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

L 00000000 0000004c 00000050 00000000 00000000 00000000 00000000
00000000

I 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

PC: 09:00000800 nPC: 00000804 PSR: 0000009d N:0 Z:0 V:0
C:0

end+7b0 : jmpl [%l2], %g0

Figure 1.6 Completing execution of the sample program.

pairs of hexadecimal digits. In examining Figure 1.7, note that “z” holds the value 0xa4
(the final value in register %r2).

ISEM> dump z,z
0a:00002068 00 00 00 a4 00 00 00 00

Figure 1.7 Illustrating the dump command.

Activity 1.6 Use the dump command to examine the values stored in the memory locations x, y, and z.

Memory Addresses When you are interacting with ISEM, memory addresses can be
specified using integer constants or the labels defined in an assembly language program.

The symb command

Because memory addresses can be specified using the labels defined in an executable pro-
gram, you may be interested in knowing which labels have defined values. After you

Lab 1. Using ISEM (the Instructional SPARC Emulator) 7

have loaded an executable program, you can use the symb command to display the values
defined by the program. Figure 1.8 illustrates the symb command.

ISEM> symb
Symbol List

end : 00000050
start : 00000020

x : 00002060
y : 00002064
z : 00002068

Figure 1.8 Illustrating the symb command.

Activity 1.7 Use the symb command to examine the labels defined by the sample program.

The edit command

The edit command sets the values stored in memory locations. Each edit command requires
two arguments, the memory location to edit and the value to store in the memory location.
For example, you could use the command “edit x 0x20” to set the value of the memory
location labeled “x” to the value 0x20.

Activity 1.8 Use the edit command to change the values associated with x and y.

The reg command

You can use the reg command to set the values in the registers. The reg command can
have zero, one or two arguments. The first argument (if present) must be the name of a
SPARC register. The second argument (if present) must be a value. With zero arguments
the reg command prints the contents of all of the SPARC registers. With one argument
the reg command prints the value of the specified register. With three arguments the reg
command sets the register specified by the first argument to the value specified by the
second argument.

Table 1.1 summarizes the names of the SPARC registers. For now, you only need to be
familiar with the integer registers and the program counters. We will consider the remain-
ing registers in later labs.

Table 1.1 SPARC Registers

Group name Register names
Integer registers %r0–%r31
Program counters %pc, %npc
Multiply/divide register %y
Floating point registers %f0–%f31
Floating point queue %fq
Floating point status register %fsr
Processor status register %psr
Window invalid mask %wim
Trap base register %tbr

Activity 1.9 Use the reg command to examine the values of the registers.

8 Lab 1. Using ISEM (the Instructional SPARC Emulator)

For example, the command “reg %pc start” resets the PC to the start of the program.
You can use this command when you want to rerun the sample program.

The run command

You can use the run command to execute your program, starting with the instruction
pointed to by the PC. This command does not take any arguments and executes instruc-
tions until it encounters a breakpoint, an illegal instruction, or a program termination in-
struction (ta 0).

Activity 1.10 Use the reg command to reset the value of %pc. Then use the run command to rerun the
sample program.

Figure 1.9 illustrates the run command. This interaction starts by setting the %pc and
then issuing the run command. Note that the run command produces an error message.
In this case, the run command stopped executing program instructions because it encoun-
tered an illegal instruction. Whenever you load a program, ISEM makes sure that there is
an illegal instruction following the last instruction in your program.

ISEM> reg %pc start
Register: %pc = 20

ISEM> run
Program exited normally.

Figure 1.9 Illustrating the reg and run commands.

The break command

You can use the break command to set breakpoints (the run command terminates when
it encounters a breakpoint). To set a breakpoint, you can issue a break command with
a single argument, the address of the breakpoint. After you have set a breakpoint, the
run command will stop executing your program just after it executes the instruction at the
specified address.

Figure 1.10 illustrates the use of the break command. In this case, the breakpoint stops
the program 20 bytes after the start label—just before the “add %r2, %r2, %r2” instruction.
Note that ISEM reports the breakpoint address in hexadecimal.

ISEM> reg %pc start
Register: %pc = 20

ISEM> break start+20

ISEM> run
Breakpoint encountered at start+14

Figure 1.10 Illustrating the break command.

The help command

The help command may be the most important command provided by ISEM. The help
command takes a single, optional argument. When it is supplied, the argument is the
name of the item that you would like more information about. Without any arguments,
the help command tells you the items that help knows about.

Lab 1. Using ISEM (the Instructional SPARC Emulator) 9

The quit command

When you are done interacting with ISEM, you can issue the quit command.

1.3.3 Memory regions

The ISEM/SPARC architecture provides two separate regions of memory: one for text
(code) and another for data. This means that there are two memory locations with the
address 100, one in the program memory and another in the data memory. ISEM is reason-
ably intelligent about when it uses each of these memories. ISEM always fetches instruc-
tions from the program memory and the load and store operations always refer to the data
memory. In addition, the load command always loads programs into the program memory
and the dump and edit commands use the data memory by default.

1.4 Summary

In this lab we have described the steps in the translation process and introduced that basic
functions provided by ISEM.

The ISEM assembler, isem-as, translates an assembly language program into object
code. The linker, isem-ld, translates an object code program into an executable program.
Figure 1.11 summarizes the steps uses to translate an assembly language program into an
executable program.

foo.s'

&

$

%
assembly

code
-

isem-as �als �o foo.o foo.s

foo.o'

&

$

%
object
code

-

isem-ld �o foo foo.o

foo'

&

$

%
executable

code

Figure 1.11 Translation steps

When you have an executable program, you can use ISEM to execute and test your
program. Figure 1.12 illustrates the basic components of ISEM and shows the commands
that manipulate these components. Table 1.2 summarizes the ISEM commands that we
have discussed in this lab.

1.5 Review Questions

1. What is the name of the tool that translates an assembly language program into object
code? What is the name of the tool that translates object code into an executable
program?

2. What does the trace command do?
3. What does the dump command do?
4. What does the symb command do?
5. What does the edit command do?
6. What does the reg command do?
7. What does the run command do?
8. What is a breakpoint? Explain how to set a breakpoint in ISEM.

10 Lab 1. Using ISEM (the Instructional SPARC Emulator)

Symbol
table

Memory

Data
Text

(code)

Registers

%pc

%r31
%r30

...

%r3
%r2

%r1 (reserved)
%r0 (zero)

load

C
C
C
C
C
C
CCO

�
�
�
��

��
��

��
��

��
�1

?
symb

?
dump

6

edit

6
?

reg

Figure 1.12 The components of ISEM

Table 1.2 The commands of ISEM
Syntax Meaning
break address Set an execution breakpoint.
dump [address [, address]] Display the contents of memory
edit address value Set the contents of a memory location.
help [topic] Provide information about an isem topic or command.
load filename Load an executable program.
quit Exit ISEM.
symb Display the symbol table.
reg [register [, value]] Display or set the contents of a register.
run Execute instructions to a breakpoint or illegal instruction.
trace Execute the next instruction.

Notes:
Items in square brackets (“[” . . . “]”) are optional.
address a memory address (may be a label or number

value an integer value (0x. . . means hexadecimal notation)
filename the name of a file
register the name of a register

1.6 Exercises

1. After you have successfully assembled the sample program, perform the following
modifications to the second line of the program (x: .word 0x42). In each case, you
should start with the original sample program and you should write down the error
message (if any) produced by the assembler.

a. remove the “:” following “x”,
b. remove the “.” preceding “word”.

2. After you have successfully assembled the sample program, perform the following
modifications to the eleventh line of the program (ld [%r3], %r3). In each case, you
should start with the original sample program and you should write down the error

Lab 1. Using ISEM (the Instructional SPARC Emulator) 11

message (if any) produced by the assembler.

a. remove the “[” and “]” surrounding first “%r3”,
b. remove the “%” preceding the first “r3”.

3. Load the sample program into ISEM, run it, and then issue the following ISEM com-
mands. In each case, describe the output produced by ISEM and explain why ISEM
produced the results that it produced (you may need to use the help command to get
further information about the commands).

a. dump x,z
b. dump z,x
c. dump z
d. dump x
e. dump start,end

4. In examining Figure 1.4, note that the value of the PC is given as “08:00000020”. What
does the “08:” mean?

5. In examining Figure 1.7, note that the address for z is given as “0a:00002068”. What
does the “0a:” mean?

12 Lab 1. Using ISEM (the Instructional SPARC Emulator)

Laboratory 2
Assembly Language Programming

2.1 Goal

To introduce the fundamentals of assembly language programming.

2.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� The .text and .data assembler directives,
� The .word assembler directive,
� The integer registers (%r0–%r31),
� The (synthetic) set operation,
� The load and store operations,
� The signed integer addition and subtraction operations, and
� The (synthetic) mov operation.

2.3 Discussion

In this lab we introduce the fundamentals of SPARC assembly language programming. In
particular, we consider basic assembler directives, register naming conventions, the (syn-
thetic) load and store operations, the integer addition and subtraction operations, and the
(synthetic) register copy and register set operations. We begin by considering the structure
of assembly language programs.

2.3.1 Assembly language

Assembly language programs are line-oriented. That is, the assembler translates an as-
sembly language program one line at a time. The assembler recognizes four types of lines:
empty lines, label definition lines, directive lines, and instruction lines.

� A line that only has spaces or tabs (i.e., white space) is an empty line. Empty lines are
ignored by the assembler.

� A label definition line consists of a label definition. A label definition consists of an
identifier followed by a colon (“:”). As in most programming languages, an identifier
must start with a letter (or an underscore) and may be followed by any number of
letters, underscores, and digits.

� A directive line consists of an optional label definition, followed by the name of an
assembler directive, followed by the arguments for the directive. In this lab we will
consider three assembler directives: .data, .word, and .text.

13

14 Lab 2. Assembly Language Programming

� An instruction line consists of an optional label definition, followed by the name of
an operation, followed by the operands. In this lab we will consider five operations:
load, store, set, add, and sub.

Every line can conclude with a comment. Comments begin with the character “!”.
Whenever it encounters a “!”, the assembler ignores the “!” and the remaining characters
on the line.

Activity 2.1 Consider the SPARC program presented in Figure 1.1. For each nonempty line in the program,
identify any labels defined and identify any assembler directives and assembly language instructions.

2.3.2 Directives

In this lab we introduce three directives: .data, .text, and .word. The first two (.data and
.text) are used to separate variable declarations and assembly language instructions. The
.word directive is used to allocate and initialize space for a variable.

Each group of variable declarations should be preceded by a .data directive. Each
group of assembly language instructions should be preceded by a .text directive. Using
these directives, you could mix variable declarations and assembly language instructions;
however, for the present, your assembly language programs should consist of a group of
variable declarations followed by a group of assembly language instructions.

A variable declaration starts with a label definition (the name of the variable), followed
by a .word directive, followed by the initial value for the variable. The assembler supports
a fairly flexible syntax for specifying the initial value. For now, we will use simple inte-
ger values to initialize our variables. By default, the assembler assumes that numbers are
expressed using decimal notation. You can use hexadecimal notation if you use the “0x”
prefix. Example 2.1 illustrates a group of variable declarations.

Example 2.1 Give directives to allocate space for three variables, x, y, and z. You should initialize these
variables to decimal 23, hexadecimal 3fce, and decimal 42, respectively.

.data ! start a group of variable declarations
x: .word 23 ! int x = 23;
y: .word 0x3fce ! int y = 0x3fce;
z: .word 42 ! int z = 42;

2.3.3 Labels

In an assembly language program, a label is simply a name for an address. For example,
given the declarations shown in Example 2.1, “x” is a name for the address of a memory
location that was initialized to 23. On the SPARC an address is a 32-bit value. As such,
labels are 32-bit values when they are used in assembly language programs.

2.3.4 Integer registers

The SPARC integer unit provides thirty-two general purpose registers. Each integer reg-
ister holds 32-bits. The integer registers are called %r0 through %r31. In addition to the
names %r0 through %r31, the integer registers have alternate names (aliases) as shown in
Table 2.1.

The letter used in each group of aliases (g, o, l, or i) denotes the name for the group of
registers. The group names are related to procedure calling conventions. We will discuss

Lab 2. Assembly Language Programming 15

Table 2.1 Aliases for the integer registers

Integer registers Alternate names Group name
%r0–%r7 %g0–%g7 Global registers
%r8–%r15 %o0–%o7 Output registers
%r16–%r23 %l0–%l7 Local registers
%r24–%r31 %i0–%i7 Input registers

the meanings of these group names when we consider register windows in Lab 11. In the
meantime, we will use the %r names in our assembly language programs. As you may
have noted, ISEM uses the alternate names when it reports the contents of the registers
and when it shows the next instruction to execute.

Register Names Register names on the SPARC always start with a percent sign (”%”).
For example, the integer registers are named %r0 through %r31.

2.3.5 %r0

The value stored in %r0 is always zero and cannot be altered. If an instruction specifies
%r0 is used as the destination, the result is simply discarded. It is not an error to execute
an instruction that specifies %r0 as the destination for the result; however, the contents of
%r0 will not be altered when this instruction is executed.

%r0 Register %r0 always holds the value zero. The value stored in this register cannot
be altered.

2.3.6 The set operation

The set operation can be used to load a 32-bit signed integer constant into a register. Every
set instruction has two operands: the 32-bit value followed by the destination register.
Table 2.2 summarizes the set operation.

Table 2.2 The set operation

Operation Assembler syntax Operation implemented
register set set siconst32, rd reg[rd] = siconst32
Notes:

siconst32 a 32-bit signed integer constant (can be specified by a label)
rd the destination register

Destination last In SPARC assembly language instructions, the destination is specified
as the last operand.

16 Lab 2. Assembly Language Programming

Example 2.2 Using set instructions, write code that will load the value 0x42 into register %r2 and the
address of x (from Example 2.1) into register %r3.

set 0x42, %r2
set x, %r3

2.3.7 The load and store operations

The SPARC is based on the load/store architecture. This means that registers are used
as the operands for all data manipulation operations. The operands for these operations
cannot be in memory locations. Table 2.3 summarizes simple versions of the load and store
operations. (We will cover these operations in more detail in later labs.)

Table 2.3 The load and store operations

Operation Assembler syntax Operation implemented
load word ld [rs], rd reg[rd] = memory[reg[rs]]
store word st rs, [rd] memory[reg[rd]] = reg[rs]

Notes:
rd the destination register
rs the source register

Source and destination registers When we introduce assembly language syntax, the
names rs and rd are used to denote source and destination registers, respectively. When an
instruction uses multiple source registers, we use subscripts to distinguish these registers.

2.3.8 The addition and subtraction operations

The SPARC uses 2’s complement representation for signed integer values. Signed additions
and subtractions are performed using 32-bit arithmetic (the source and destination values
are 32 bits).

Table 2.4 summarizes the signed addition and subtraction operations provided by the
SPARC. The SPARC provides two instruction formats for each of the arithmetic opera-
tions. Both formats use three explicit operands—two source operands, and a destination
operand. In the first format both of the source operands are in registers. In the second
format, one of the source operands is in a register while the other is a small constant value.
This constant value may be negative or positive; however, its 2’s complement representa-
tion must fit in 13 bits. Example 2.3 presents a SPARC assembly language program that
illustrates variable declarations and the operations (load, store, add, and sub) that we have
described in this lab.

Integer Constants We use the name siconstn to denote a signed integer constant in as-
sembly language syntax. The subscript indicates, n, the number of bits used in the 2’s
complement representation of this value.

Lab 2. Assembly Language Programming 17

Table 2.4 The addition and subtraction operations

Operation Assembler syntax Operation implemented
integer addition add rs1,rs2, rd reg[rd] = reg[rs1] + reg[rs2]

add rs, siconst13, rd reg[rd] = reg[rs] + siconst13
integer subtraction sub rs1, rs2, rd reg[rd] = reg[rs1] � reg[rs2]

sub rs, siconst13, rd reg[rd] = reg[rs] � siconst13
Note:

siconst13 a 13-bit (2’s complement) signed integer constant.

2.3.9 Program termination

Programs to be run in the ISEM environment should terminate their execution by executing
the instruction “ta 0”. Whenever this instruction is executed, ISEM will stop executing
instructions and print the message “Program exited normally”.

Example 2.3 Write a SPARC assembly language program to evaluate the statement a = (a+ b)� (c� d).

.data
a: .word 0x42
b: .word 0x43
c: .word 0x44
d: .word 0x45

.text
start: set a, %r1

ld [%r1], %r2 ! a --> %r2
set b, %r1
ld [%r1], %r3 ! b --> %r3
set c, %r1
ld [%r1], %r4 ! c --> %r4
set d, %r1
ld [%r1], %r5 ! d --> %r5

add %r2, %r3, %r2 ! a+ b --> %r2
sub %r4, %r5, %r3 ! c� d --> %r3
sub %r2, %r3, %r2 ! (a+ b)� (c� d) --> %r2
set a, %r1
st %r2, [%r1] ! (a+ b)� (c� d) --> a

end: ta 0

Activity 2.2 Using a text editor, enter the program shown in Example 2.3 into a file, assemble it, link it, and
test it using isem.

2.3.10 The mov operation

We conclude this lab by considering another (synthetic) operation: mov. The mov opera-
tion is used to copy the value stored in one register to another register. This operation can
also be used to load a small integer value into a register. Table 2.5 summarizes the mov
operations.

18 Lab 2. Assembly Language Programming

Table 2.5 The register copy and register set operations

Operation Assembler syntax Operation implemented
register copy mov rs, rd reg[rd] = reg[rs]
load constant mov siconst13, rd reg[rd] = signextend(siconst13)

Because you can always use the set operation to load a 13-bit value to an integer register,
the second version of the mov operation is redundant for integer registers. However, as we
will discuss, this version of the mov operation is used to load the other state registers on
the SPARC.

2.4 Summary

In this lab we have introduced the basics of SPARC assembly language programming. We
began by considering the structure of an assembly language program. We then considered
the names and uses of the integer registers. We then introduced three assembler directives:
.text, .data, and .word. The first two (.text and .data) are used to identify sections of an as-
sembly language program. The last two (.data and .word) are used to declare and initialize
variables. We will consider additional assembler directives in later labs. We concluded the
lab by introducing six assembly language operations: set, load, store, add, sub, and mov.

Figure 2.1 provides a graphical illustration for several of the operations that we have
introduced in this lab. In particular, this figure illustrates the data paths used in the load,
store, addition, and subtraction operations.

Memory

data

text

-load

� store Integer
registers

(%r0–%r31)

��
��

��*
ifetch

Instruction Register

?

siconst13

6

6

? ?

@
@

�
�add/sub

�

Figure 2.1 Illustrating the load, store, add, and subtract operations

The set and mov operations are synthetic (or pseudo) operations. That is, these oper-
ations are not really SPARC operations. Instead, the assembler translates these operations
into one or more SPARC operations when it assembles your program. We will consider
synthetic operations in Lab 9

2.5 Review Questions

1. Explain the difference between a directive, an operation, and an instruction. Give an
example of each.

Lab 2. Assembly Language Programming 19

2. How are the integer registers named on the SPARC?
3. How many integer registers are there on the SPARC?
4. For each of the integer registers that have special attributes, explain the special at-

tributes.
5. What does siconst13 mean when used to specify assembly language syntax?
6. The subtraction operation has two source operands. Which operand is subtracted

from the other?
7. Describe when you would use the set operation.

2.6 Exercises

1. Suppose that the SPARC did not provide a (synthetic) register copy operation, explain
how you could emulate this operation.

2. For each of the following statements, write, assemble, and test a SPARC assembly
language fragment that implements the statement. Be certain to declare and initialize
all variables in your assembly language programs.

a. a = c+ d.
b. a = (c+ d)� (c+ b+ d� e).
c. a = (d� 13) + (a+ 23).
d. a = d+ 9832.
e. a = 87765� c.

20 Lab 2. Assembly Language Programming

Laboratory 3
Implementing Control Structures

3.1 Goal

To cover the implementation of control structures using the SPARC instruction set.

3.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� The condition code register,
� Operations that set the condition code register,
� The conditional and unconditional branching operations of the SPARC, and
� Conditional nullification.

3.3 Discussion

In this lab we introduce a subset of the SPARC branching operations. In particular, we
introduce the operations that provide conditional and unconditional branching based on
the bits in a condition code register.

We begin by considering the bits in the condition code register of a SPARC processor.
After introducing these bits, we consider the operations that affect the bits in the condition
code register. We then consider the conditional and unconditional branching operations
that use the bits in the condition code register to control branching. Next, we introduce
nullification (annulment) in the branching operations of the SPARC. We conclude by con-
sidering several examples to illustrate the SPARC operations and by introducing the com-
pare operation provided by the SPARC.

3.3.1 The condition code register

The condition code register on the SPARC has four bits: Z (Zero), N (Negative), C (Carry),
and V (oVerflow). The standard arithmetic operations (e.g., addition and subtraction) do
not update the bits in the condition code register. Instead, there are special operations that
update the condition code register. Table 3.1 summarizes a collection of operations that
update the bits in the condition code register. The names for these operations have a suffix
of “cc” to indicate that they update the bits in the condition code register.

In most cases, the effect that an operation has on the condition codes is just what you
would expect. Most of these operations set the Z bit when the result of the operation is
zero, and clear this bit when the result is nonzero. Similarly, most of these operations set
the N bit when the result of the operation is negative, and clear this bit when the result
is nonnegative. The V bit is usually set when the (signed integer) result of the operation

21

22 Lab 3. Implementing Control Structures

Table 3.1 Updating the condition code register

Operation Operation name
Signed integer addition addcc
Signed integer subtraction subcc

cannot be stored in 32 bits, and cleared when the result can be stored in 32 bits. Finally, the
C bit is set when the operation generates a carry out of the most significant bit, and cleared
otherwise.

In most contexts, you will be most interested in the N and Z bits of the condition code
register and we will emphasize these bits in the remainder of this lab. We will consider the
remaining bits in the condition code register (the C and V bits) at greater length in Lab 13.

3.3.2 Branching operations

The SPARC provides 16 basic branching operations. These operations are summarized in
Table 3.2. Note that the first two operations, ba (branch always) and bn (branch never), are
unconditional—the operation specifies whether the branch is taken. The remaining oper-
ations are conditional branching operations. When these operations are used, the branch
is only taken when the specified condition in met. In last column of Table 3.2 we use a
boolean expression involving the bits of the condition code register to specify the condi-
tion. The condition is satisfied if the boolean expression results in the value 1; otherwise
(if the expression results in 0), the condition is not satisfied and the processor continues
with sequential execution of instructions. The target specified in an assembly language
instruction is a label defined by the program.

Table 3.2 Branching operations on the SPARC
Operation Assembler syntax Branch condition
Branch always ba target 1 (always)
Branch never bn target 0 (never)
Branch not equal bne target not Z
Branch equal be target Z
Branch greater bg target not (Z or (N xor V))
Branch less or equal ble target Z or (N xor V)
Branch greater or equal bge target not (N xor V)
Branch less bl target N xor V
Branch greater, unsigned bgu target not (C or Z)
Branch less or equal, unsigned bleu target C or Z
Branch carry clear bcc target not C
Branch carry set bcs target C
Branch positive bpos target not N
Branch negative bneg target N
Branch overflow clear bvc target not V
Branch overflow set bvs target V

In addition to the operation names defined in Table 10, the SPARC defines several syn-
onyms for these operations. These synonyms are summarized in Table 3.3.

Like most RISC machines, the SPARC uses a branch delay slot. By default, the in-
struction following a branch instruction is executed whenever the branch instruction is

Lab 3. Implementing Control Structures 23

Table 3.3 Synonyms for branching operations
Operation Operation name Synonym for
Branch nonzero bnz bne
Branch zero bz be
Branch greater or equal, unsigned bgeu bcc
Branch less, unsigned blu bcs

executed.
SPARC assemblers provide a special (synthetic) operation, nop, for situations when it is

not convenient to put a useful instruction in the delay slot of a branch instruction. In as-
sembly language a nop instruction has no operands (i.e., a nop instruction is fully specified
by the name of the operation). When a nop instruction is executed, it does not alter any
of the registers or values stored in memory. However, the use of nop instructions causes
the processor to execute more instructions and, as such, increases the time required to ex-
ecute the program. Example 3.1 illustrates the conditional and unconditional branching
operations.

Example 3.1 Translate the following C code fragment into SPARC assembly language.
int temp;
int x = 0;
int y = 0x9;
int z = 0x42;

temp = y;
while(temp > 0) f

x = x + z;
temp = temp - 1;

g

To simplify the translation, we fill the branch delay slots with nop instructions.
.data

x: .word 0
y: .word 0x9
z: .word 0x42

.text
start: set y, %r1

ld [%r1], %r2 ! we’ll use %r2 for temp
set z, %r1
ld [%r1], %r3 ! we’ll use %r3 for z
mov %r0, %r4 ! we’ll use %r4 for x

add %r2, 1, %r2 ! set up for decrement
ba test ! test the loop condition
nop ! BRANCH DELAY SLOT

top: add %r4, %r3, %r4 ! x + z --> x
test: subcc %r2, 1, %r2 ! temp - 1 --> temp

bg top ! temp > 0 ?
nop ! BRANCH DELAY SLOT

set x, %r1
st %r4, [%r1] ! store x

end: ta 0

24 Lab 3. Implementing Control Structures

Activity 3.1 After each trace command, ISEM reports the values of the bit in the condition code register.
Type the program shown Example 3.1 into a file, assemble it, link it, and load it into ISEM. Trace the program
execution, noting how each instruction affects the bits in the SPARC condition code register.

The SPARC keeps track of the instructions to execute using two program counters: PC,
and nPC. The first program counter, PC, holds the address of the next instruction to exe-
cute. The second program counter, nPC, holds the next value for PC. Usually, the SPARC
updates the program counters at the end of each instruction execution by assigning the
current value of nPC to PC, and adding 4 to the value of nPC. When it executes a branch-
ing operation, the SPARC assigns the current value of nPC to PC and then updates the
value of nPC. If the branch is taken, nPC is assigned the value of the target specified in the
instruction; otherwise, nPC is incremented by 4. The branch delay slot arises because the
PC is assigned the old value of nPC (before nPC is assigned the target of the branch).

Activity 3.2 After each trace command, ISEM reports the values of PC and nPC. Run the program shown
in Example 3.1 noting the changes to PC and nPC.

3.3.3 Nullification

Every branching instruction can specify that the affect of the instruction in the branch de-
lay slot is to be nullified (annulled in SPARC terminology) if the branch specified by the
conditional branching instruction is not taken. In assembly language, this conditional nul-
lification is specified by appending a suffix of “,a” to the name of the branching operation.
Example 3.2 illustrates conditional nullification.

Example 3.2 Rewrite the code fragment shown in Example 3.1 so that the code has meaningful instructions
in the branch delay slots.

.data
x: .word 0
y: .word 0x9
z: .word 0x42

.text
start: set y, %r1

ld [%r1], %r2 ! we’ll use %r2 for temp
set z, %r1
ld [%r1], %r3 ! we’ll use %r3 for z
mov %r0, %r4 ! we’ll use %r4 for x

add %r2, 1, %r2 ! set up for decrement
top: subcc %r2, 1, %r2 ! temp - 1 --> temp

bg,a top ! temp > 0 ?
add %r4, %r3, %r4 ! x + z --> x

set x, %r1
st %r4, [%r1] ! store x

end: ta 0

Lab 3. Implementing Control Structures 25

3.3.4 The (synthetic) integer comparison operation

Assemblers for the SPARC provide a synthetic integer comparison operation. You can use
this operation when the data manipulation operations do not establish the needed values
in the condition code register. Table 3.4 summarizes the integer comparison operation. This
operation can be used to compare the contents of two registers or to compare the contents
of a register with a small integer constant.

Table 3.4 Signed integer comparison

Operation Assembler syntax Operation implemented
integer comparison cmp sr1, sr2 reg[sr1] � reg[sr2]

cmp sr, siconst13 reg[dr] = reg[sr] � siconst13

3.3.5 Delayed control-transfer couples

When a branch instruction is in the delay slot of another branch instruction, the pair of
branch instructions is called a “delayed control-transfer couple”. If you use a delayed
control-transfer couple on the SPARC, the first branch operation should be an uncondi-
tional branch; otherwise, the sequence of instructions executed when the delayed control-
transfer couple is executed is not defined. We will consider delayed control-transfer cou-
ples in greater depth when we consider traps and exceptions in Lab 16.

3.4 Summary

In this lab we have introduced the condition code register, the basic branching operations,
and the integer comparison operation. The branching operations include two uncondi-
tional branch operations (ba and bn) and a host of conditional branching operations. The
SPARC branching operations have a branch delay slot. That is, the instruction follow-
ing a branch instruction is executed whenever the branch instruction is executed. The
SPARC provides conditional annulment of the instruction in the branch delay slot. When
the branch operation specifies annulment (using the operator suffix “,a”), the affects of the
instruction are canceled (note, the instruction is executed, but the execution has no affect).

3.5 Review Questions

1. What are the bits in the condition code register.
2. Name two operations that affect the bits in the condition code register and explain

how they affect these bits.
3. What are the two program counters on the SPARC. Explain how these program coun-

ters are used.
4. Is the affect of the instruction in the delay slot of an annulled branch canceled when

the branch is take or when the branch is not taken? Explain why the designers of the
SPARC chose the this version of nullification.

26 Lab 3. Implementing Control Structures

3.6 Exercises

1. Suppose that your assembler did not provide an integer comparison operation. Ex-
plain how you could implement this operation using the other SPARC operations
that we have considered in this and previous labs.

2. Consider the SPARC code presented in Example 3.2. Currently, the loop is executed
“y” times. If “y” is larger than “z” it would be better to execute the loop “z” times.
Rewrite the code shown in Example 3.2 to take advantage of this observation.

3. Write a SPARC program that has four variables: x � 0, y > 0, z, and w. Your program
should assign the quotient of x=y to z and the remainder to w. (You should write this
code using the operations presented in this and previous labs. Do not use the SPARC
integer multiplication or division operations.

4. Write a SPARC program that will compute the greatest common divisor of a and b

and assign this value to c.

Laboratory 4
Multiplication and Division

4.1 Goal

To cover the SPARC operations related to multiplication and division.

4.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� The signed and unsigned multiplication and division operations,

4.3 Discussion

In this lab we consider the SPARC operations related to integer multiplication and division.
We begin by considering the signed integer multiplication and division operations.

4.3.1 The multiplication and division operations

The integer multiplication operations multiply two 32-bit source values and produce a 64-
bit result. The most significant 32 bits of the result are stored in the Y register (%y) and the
remaining 32 bits are stored in one of the integer registers. Figure 4.1 illustrates the use of
the Y register during a multiplication operation.

The integer division operations divide a 32-bit value into a 64-bit value and produce
a 32-bit result. The Y register provides the most significant 32 bits of the 64-bit dividend.
One of the source values provides the least significant 32 bits, while the other provides
the 32 bit divisor. A implementation of the SPARC may optionally store the remainder in
the Y register. ISEM does not store the remainder in the Y register, so we will adopt this
convention in our presentation. Figure 4.2 illustrates the use of the Y register during the
division operation.

Table 4.1 summarizes the assembly language syntax for the integer multiplication and
division operations provided by the SPARC. Like the addition and subtraction operations,
the multiplication and division operations have two assembly language formats: one that
uses registers for both source operands and another that uses a register and a small constant
value for the source operands.

Table 4.2 summarizes the names for the signed and unsigned integer multiplication and
division operations. Note that each operation has two SPARC operations: one that affects
bits in the condition code register (e.g., smulcc), and another that does not (e.g., smul).
Example 4.1 illustrates the use of these operations.

27

28 Lab 4. Multiplication and Division

Y register

Instruction register
iconst13

?

? ?

Integer
registers

(%r0–%r31)

6

6

@
@@

�
��smul/umul

most significant
32 bits

6

-least significant
32 bits

Figure 4.1 Integer multiplication

Y register

Instruction register
iconst13

?

?

least significant
32 bits

?

most significant
32 bits

?

Integer
registers

(%r0–%r31)

6

6

@
@@

�
��sdiv/udiv

-quotient

Figure 4.2 Integer division

Table 4.1 Assembly language formats for the integer multiplication and division operations

Operation Assembler syntax Operation implemented
integer multiplication mul-op rs1,rs2, rd f%y, reg[rd]g = reg[rs1] � reg[rs2]

mul-op rs, iconst13, rd f%y, reg[rd]g = reg[rs] � iconst13
integer division div-op rs1, rs2, rd reg[rd] = f%y, reg[rs1]g = reg[rs2]

div-op rs, iconst13, rd reg[rd] = f%y, reg[rs]g = iconst13

Notes:

� iconst13 denotes an integer constant. This constant is signed when it used with a signed
operation (e.g., smul) and unsigned when it is used with an unsigned operation (e.g., umul).
The value must be represented in 13 bits.

� fx, yg denotes a 64-bit value (or storage location) constructed from two 32-bit values x and
y. The first of these values, x, is the most significant.

Lab 4. Multiplication and Division 29

Table 4.2 The signed and unsigned integer multiplication and division operations

Operation Operation names
signed integer multiplication smul smulcc
unsigned integer multiplication umul umulcc
signed integer division sdiv sdivcc
unsigned integer division udiv udivcc

Example 4.1 Write a SPARC program to evaluate the statement a = (a � b)=c. In writing this code you
should assume that a, b, and c are signed integer values and that all results can be represented in 32 bits.

.data
a: .word 0x42
b: .word 0x43
c: .word 0x44

.text
start: set a, %r1

ld [%r1], %r2
set b, %r1
ld [%r1], %r3
set c, %r1
ld [%r1], %r4

smul %r2, %r3, %r2 ! a* b --> %y, %r2
sdiv %r2, %r4, %r2 ! %y, %r2 / c --> %r2

set a, %r1
st %r2, [%r1] ! %r2 --> a

end: ta 0

The signed and unsigned operations are distinguished by the way they interpret their
operands. The signed operations interpret their source operands as signed integers and
produce signed integer results. The unsigned operations interpret their source operands
as unsigned integers and produce unsigned integer results.

4.3.2 Updating the condition code bits

The operations that have names ending in “cc” update the bits in the condition code reg-
ister. The integer multiplication operations (smulcc and umulcc) always clear the V (over-
flow) and C (carry) bits of the condition code register. In addition, these operations update
the N (negative) and Z (zero) bits of the condition code register. Although the multiplica-
tion operations produce a 64-bit result, updates to the N and Z flags are only based on the
least significant 32 bits of the result. Like the multiplication operations, the division opera-
tions (sdivcc and udivcc) also clear the C bit in the condition code register. In addition, the
division operations update the N, Z, and V bits in the condition code register based on the
value of the 32-bit result.

30 Lab 4. Multiplication and Division

4.3.3 Examining and setting the Y register

Note that the code presented in Example 4.1 does not need to examine or set the value in
the Y register. The multiplication sets the Y register and the division uses the value set by
the multiplication. In many other cases you will need to examine or set the contents of
the Y register. In particular, you may need to examine the contents of the Y register after
a multiplication or set the contents of the Y register before a division. You can use the
(synthetic) mov operation introduced in Lab 2 to copy the contents of the Y register to an
integer register or vice versa. You can also use the mov operation to set the contents of the
Y register. Table 4.3 summarizes the mov operation as it applies to the Y register. The first
format copies the contents of the Y register to an integer register. The second format copies
the contents of an integer register to the Y register. The third instruction format stores a
small integer constant into the Y register.

Table 4.3 The mov operation applied to the Y register.

Operation Assembler syntax Operation implemented
register copy mov %y, rd reg[rd] = reg[%y]

mov rs, %y reg[%y] = reg[rs]
register set mov siconst13, %y reg[%y] = iconst13

When you store a value into the Y register (using a mov instruction), it takes three
instruction cycles before the Y register is actually updated. This means that you need to
make sure there are at least three instructions between an instruction that uses the Y register
as a destination and an instruction that uses the value stored in the Y register.

Writing to the Y register Remember, always make sure that there are at least three in-
structions between any instruction that writes to the %y register and an instruction that
uses the value in the %y register.

Example 4.2 Write a SPARC assembly language fragment to evaluate the statement a = (a+ b)=c. Again,
you should assume that a, b, and c are signed integers and that all results can be represented in 32 bits.

.data
a: .word 0x42
b: .word 0x43
c: .word 0x44

.text
start: mov %r0, %y ! clear the Y register -- THERE MUST BE

AT
! LEAST 3 INSTRUCTIONS BETWEEN THE MOV

AND
! SDIV INSTRUCTIONS

set a, %r1
ld [%r1], %r2
set b, %r1
ld [%r1], %r3
set c, %r1
ld [%r1], %r4

Lab 4. Multiplication and Division 31

add %r2, %r3, %r2 ! a + b --> %r2
sdiv %r2, %r4, %r2 ! %r2 / c --> %r2

set a, %r1
st %r2, [%r1] ! %r2 --> a

end: ta 0

4.3.4 The multiply step operation

Prior to Version 8 the SPARC did not have integer multiplication or division operations.
These operations had to be performed using more primitive operations. To simplify integer
multiplication, earlier versions of the SPARC provided a multiply step operation, “mulscc”.
We will consider this operation in Lab 13 when take a closer look at integer arithmetic on
the SPARC.

4.4 Summary

In this lab we have covered the integer multiplication and division operations provided
by the SPARC. As with the other arithmetic operation (add and sub), there are versions of
the multiplication and division operations that update the condition code bits and other
multiplication and division operations that do not alter the condition code bits.

All of the multiplication and division operations operations use a special purpose reg-
ister, the Y register (%y). You can use the mov operation to examine and set the contents of
the Y register.

4.5 Review Questions

1. How is the Y register used in the integer multiplication operations?
2. How is the Y register used in the integer division operations?

4.6 Exercises

32 Lab 4. Multiplication and Division

Laboratory 5
Bit Manipulation and Character
I/O

5.1 Goal

To cover the bit manipulation operations provided by the SPARC and the character I/O
traps provided by ISEM.

5.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� The bitwise operations,
� The shift operations, and
� The character I/O traps provided by ISEM.

5.3 Discussion

In this lab we introduce the bit manipulation operations of the SPARC. In particular, we
consider the logical operations and, or, and xor. In addition, we consider the synthetic
operation not. We follow this with a discussion of the shift operations sll, srl, and sra. The
lab ends with a short discussion of the character I/O facilities provided by ISEM.

5.3.1 Bitwise operations

Table 5.1 summarizes the bitwise operations of the SPARC. Like the other data manipula-
tion operations (e.g., add, sub, smul, sdiv, etc.), there are two instruction formats for each
of the bitwise operations. Both formats use three explicit operands—two source operands
and a destination operand. In the first format, both of the source operands are in regis-
ters. In the second format, one of the source operands is in a register, the other is a small
constant value. This constant may be positive or negative; however its 2’s complement
representation must fit in 13 bits—the SPARC does sign extend this value. Examples 5.1
and 5.2 illustrate uses of the bitwise operations.

Example 5.1 Write a SPARC program to evaluate the statement: a = (a&b) ^ (cjd).

.data
a: .word 0x42
b: .word 0x43
c: .word 0x44
d: .word 0x45

33

34 Lab 5. Bit Manipulation and Character I/O

Table 5.1 Bitwise operations

Operation Assembler syntax Operation implemented
and and rs1, rs2, rd reg[rd] = reg[rs1] & reg[rs2]

and rs1, siconst13, rd reg[rd] = reg[rs1] & siconst13
or or rs1, rs2, rd reg[rd] = reg[rs1] j reg[rs2]

or rs1, siconst13, rd reg[rd] = reg[rs1] j siconst13
exclusive or xor rs1, rs2, rd reg[rd] = reg[rs1] ^ reg[rs2]

xor rs1, siconst13, rd reg[rd] = reg[rs1] ^ siconst13
and not andn rs1, rs2, rd reg[rd] = reg[rs1] & �reg[rs2]

andn rs1, siconst13, rd reg[rd] = reg[rs1] & �siconst13
or not orn rs1, rs2, rd reg[rd] = reg[rs1] j �reg[rs2]

orn rs1, siconst13, rd reg[rd] = reg[rs1] j �siconst13
exclusive nor xnor rs1, rs2, rd reg[rd] = reg[rs1] ^ �reg[rs2]

xnor rs1, siconst13, rd reg[rd] = reg[rs1] ^ �siconst13

.text
start: set a, %r1

ld [%r1], %r2 ! a --> %r2
set b, %r1
ld [%r1], %r3 ! b --> %r3
set c, %r1
ld [%r1], %r4 ! c --> %r4
set d, %r1
ld [%r1], %r5 ! d --> %r5

and %r2, %r3, %r2 ! a & b --> %r2
or %r4, %r5, %r4, ! c j d --> %r4
xor %r2, %r4, %r2 ! %r2 ^ %r4 --> r2

set a, %r1
st %r2, [%r1] ! %r2 --> a

end: ta 0

Example 5.2 Write a SPARC program to clear bits 5 through 12 of the word n (bit 0 is the least significant
bit).

.data
n: .word 0xaaaaaaaa

.text
start: set n, %r1

ld [%r1], %r2 ! n --> %r2

andn %r2, 0x1fe0, %r2 ! %r2 & �0x1fe0 --> %r2

st %r2, [%r1] ! %r2 --> n
end: ta 0

In this case, the mask (0x1fe0) can be represented using 12 bits and, as such, we can use an andn
instruction with an immediate value.

Activity 5.1 Write a SPARC program to clear bits 5 through 13 of the word n.

Lab 5. Bit Manipulation and Character I/O 35

5.3.2 Condition codes

Like the other data manipulation operations, there are separate bitwise operations that
update the condition code register after they perform the specified operation. Table 5.2
summarizes the collection of bitwise operations that set the condition codes. The names for
these operations have a suffix of “cc” to indicate that they update the bits in the condition
code register.

Table 5.2 Bitwise operations—condition code versions

Operation Operation name
and andcc
or orcc
exclusive or xorcc
and not andncc
or not orncc
exclusive nor xnorcc

In all cases, the V and C flags are cleared.
If the result is zero, the Z flag is set, otherwise Z is cleared.
The N flag is set to the most significant bit in the result.

5.3.3 Synthetic operation not

Bitwise inversion is provided by a synthetic operation. Table 5.3 summarizes this opera-
tion. Bitwise inversion does not affect the bits in the condition code register.

Table 5.3 Bitwise inversion
Operation Assembler syntax Operation implemented
not not rs, rd reg[rd] = �reg[rs]

not rd reg[rd] = �reg[rd]

5.3.4 Shift operations

Table 5.4 summarizes the shift operations of the SPARC. The SPARC provides two instruc-
tion formats for each of the shift operations. The shift operations provide a mechanism for
moving every bit in a value to the left or right by a specified number of positions. The shift
operations do not affect the bits in the condition code register.

Table 5.4 The shift operations

Operation Assembler syntax Operation implemented
left shift logical sll rs1, rs2, rd reg[rd] = reg[rs1] << reg[rs2]

sll rs1, siconst13, rd reg[rd] = reg[rs1] << siconst13
right shift logical srl rs1, rs2, rd reg[rd] = reg[rs1] >> reg[rs2]

srl rs1, siconst13, rd reg[rd] = reg[rs1] >> siconst13
right shift arithmetic sra rs1, rs2, rd reg[rd] = reg[rs1]31 j reg[rs1] >> reg[rs2]

sra rs1, siconst13, rd reg[rd] = reg[rs1]31 j reg[rs1] >> siconst13

36 Lab 5. Bit Manipulation and Character I/O

As shown in Table 5.4, the shift operations have two source operands. The first operand
specifies the value to be shifted. This value must be stored in an integer register. The sec-
ond source operand specifies the amount of the shift. This operand may be stored in an
integer register or it may be a small constant value. The processor only uses the least signif-
icant 5 bits of the second source operand (and ignores the remaining bits of this operand).
Example 5.3 illustrates the shift operations.

Example 5.3 Write a SPARC program to count the number of bits that are set (i.e., 1) in the memory location
n (a variable). The result should be stored in %r2. In writing this code, you may use any of the remaining
registers as temporaries.

.data
n: .word 0xaaaaaaaa

.text
start: set n, %r1

ld [%r1], %r3
clr %r2 ! clear the result

loop: andcc %r3, 1, %r0 ! check the lowest bit
be cont ! skip if zero
nop ! (delay slot)
inc %r2 ! increment the 1’s count

cont: srl %r3, 1, %r3 ! shift data right, creating a new low
bit

cmp %r3, 0 ! if %r3 == 0, we’re done
bne loop
nop

end: ta 0

5.3.5 Character data and character I/O in ISEM

When you use isem-as, character values are delimited using single quotes. For example,
’B’ denotes the value associated with the letter B. When it encounters a character value,
isem-as converts the character value into its ASCII representation. As such, writing ’B’ in
an assembly language program is equivalent to writing 0x42 (or 66). You should use the
notation that best expresses the intent of your code.

ISEM provides the user with a primitive form of character input/output using the trap
mechanism. We will discuss the trap mechanism in detail in Lab 16. For now, we note
that the following instructions can be used to get and put characters from the standard I/O
devices.

ta 1 ! %r8 --> putchar
ta 2 ! getchar --> %r8

The first of these instructions prints the character in the least significant byte of register
%r8 (= %o0) to standard output and the second reads a character from standard input and
places the result in the least significant byte of %r8, clearing the most significant 24 bits of
this register. Example 5.4 illustrates the use of these I/O instructions.

Example 5.4 Write a SPARC/ISEM program that reads a one digit number, adds five to the number and
prints the result.

.text
start: ta 2 ! digit --> %r8

Lab 5. Bit Manipulation and Character I/O 37

sub %r8, ’0’, %r8 ! convert from digit to number
add %r8, 5, %r8 ! add 5
cmp %r8, 9 ! is the result greater than 9?
ble one_dg
nop

mov %r8, %r7 ! copy %r8 into %r7
set ’1’, %r8 ! the most significant digit must be ’1’
ta 1 ! ’1’ --> putchar
mov %r7, %r8 ! restore %r8
sub %r8, 10, %r8

one_dg: ! %r8 holds a number less than 10
add %r8, ’0’, %r8 ! convert number to digit
ta 1 ! print the least significant digit

ta 0

5.4 Summary

In this lab we have introduced the bitwise and shift operations provided by the SPARC. In
addition, we have introduced the notation used for character data and primitive mecha-
nisms for character input and output. Example 5.5 illustrates all of these operations.

Example 5.5 Write a SPARC/ISEM program to print the binary representation of the unsigned integer in
memory location n. In writing the code, you may use any of the registers as temporaries.

.data
n: .word 0xaaaaaaaa

.text
start: set n, %r1

ld [%r1], %r2
set 1 << 31, %r3 ! initialize the mask to start

! with the most significant bit
set 32, %r4 ! number of bits to print

loop: andcc %r2, %r3, %g0 ! check for one
be print ! branch on zero
set ’0’, %r8 ! (delay slot)

set ’1’, %r8 ! must have been a one

print: ta 1 ! print %r8

deccc %r4 ! decrement count
bg loop ! continue until count == 0
srl %r3, 1, %r3 ! shift mask right (bd)

end: ta 0

38 Lab 5. Bit Manipulation and Character I/O

5.5 Exercises

1. Write a SPARC program that compares the memory contents of the word pointed to
by register %r2 to the contents of register %r3 on a bit-by-bit basis. For all bits i, if
the value of bit i of [%r2] is smaller than the value of bit i of %r3, set bit i of %r3 to 1;
otherwise, set bit i of %r3 to 0.

2. Write a SPARC program that distinguishes ASCII-coded hexadecimal digits from
other bytes and which converts valid digit codes to the corresponding hexadecimal
value. Only valid digit codes are to be converted. Leave invalid characters unal-
tered. Suppose that register %r2 holds the character on program entry, and that %r2

holds the result on program exit. Use register %r3 to report on validity. If valid, %r3

must equal 0; if invalid, %r3 must equal 1.

Valid Digits, Their Codes and Values

Digit Digit Hex
Code Value

’0’ 0x30 0x0
...

...
...

’9’ 0x39 0x9
’a’,’A’ 0x61,0x41 0xa

...
...

...
’f’,’F’ 0x66,0x46 0xf

3. Write a SPARC program to print the hexadecimal representation of an unsigned inte-
ger. The unsigned integer should be named n and declared in the data segment. Your
program should finish by printing a newline.

Laboratory 6
Assembler Directives, Assembler
Expressions, and Addressing
Modes

6.1 Goal

To cover several assembler directives and assembler expressions provided by the GNU
assembler (gas) and the SPARC addressing modes.

6.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� The assembler directives provided by the GNU assembler,
� Assemble expressions,
� The SPARC addressing modes in load and store instructions, and
� And use the SETHI instruction.

6.3 Discussion

In this lab we introduce three new assembler directives: a directive to allocate space, a
directive to define symbolic constants, and a directive to include header files. After we
describing these directives, we discuss assembler expressions and introduce the distinc-
tion between relocatable values and absolute values. We conclude this lab by discussing the
memory addressing modes provided by the SPARC and the SETHI instruction.

6.3.1 Assembler directives

In Lab 2 we introduced three assembler directives: .data, .text, and .word. In this Lab, we
introduce three more directives: .skip, .set, and .include. The .skip directive is used to allocate
space. The .set directive is used to define a symbolic constant. The .include directive is used
to include source (header) files.

You can use the .skip directive to allocate space in the current assembler segment (data
or text). This directive takes one or two arguments. The first argument specifies the number
of bytes to skip in the current assembler segment. The second argument specifies the value
to be deposited in the skipped bytes. If the second argument is omitted, it is assumed to be
zero.

You can define symbolic constants using the .set directive. This directive takes two ar-
guments. The first argument is the name of the symbol to be defined. The second argument

39

40 Lab 6. Assembler Directives, Assembler Expressions, and Addressing Modes

is an expression that defines the value of the symbol. This directive can be written using
standard directive syntax (e.g., .set symbol, expression), or it can be written using the infix
‘=’ operator (e.g., symbol = expression).

In many cases, you will want to collect a group of definitions for symbolic constants into
a header file that can be included in several different programs or modules. (By including
the same file in each of the programs or modules, you can be sure that all of the programs
and modules use the same values for the symbolic constants.) The .include directive sup-
ports this style of programming. This directive takes a single argument, a string that gives
the name of the file to include. The code from the included file logically replaces the .include
directive. When the assembler is finished processing the included file, it resumes after the
.include directive in the original file.

Table 6.1 summarizes the directives that we have introduced in this section.

Table 6.1 Assembler directives
Operation Assembler syntax
Allocate space .skip n
Symbolic constant .set symbol, expression

symbol = expression
Include file .include ”filename”

6.3.2 Assembler Expressions

The .set and .skip directives use assembler expressions. In addition, you can use assembler
expressions whenever you use a constant value in an assembly language instruction. Ta-
ble 6.2 summarizes the operators that you can use constructing expressions. The operands
can be expressions (using parentheses to override precedence), symbols (defined as labels
or using the .set directive), or numbers.

Table 6.2 Assembler expressions

Operator Operation Precedence
� Unary minus highest
+ Unary plus
� Multiplication high middle
= Division
<< Left shift
>> Right shift
j Bitwise inclusive or low middle
& Bitwise and
ˆ Bitwise exclusive or
! Bitwise and not
+ Addition lowest
� Binary subtraction

When considering assembler expressions, it is useful to distinguish between relocatable
values and absolute values. Labels are the simplest examples of relocatable values. They
are relocatable because their final values depend on where your program is loaded into
memory. Numbers are the simplest examples of absolute values. Absolute values do not
depend on where your program is loaded into memory.

Lab 6. Assembler Directives, Assembler Expressions, and Addressing Modes 41

You can use absolute values with any of the operators. If all of the operands for an
operator are absolute values, the expression using the operator is an absolute value.

You can only use relocatable values in expressions using the binary addition and sub-
traction operators. When you use binary addition, at most one operand can be a relocatable
value, the other operand must be an absolute value. If one operand is relocatable, the value
of the expression is relocatable.

When you use binary subtraction, you cannot subtract a relocatable value from an ab-
solute value. When subtract an absolute value from a relocatable value, the result is a relo-
catable value. When you subtract two relocatable values, the two values must be defined
in the same assembler segment (e.g., text or data), and the result is an absolute value.

6.3.3 Addressing modes

The SPARC supports two addressing modes: register indirect with index and register in-
direct with displacement. In the first mode, the effective address is calculated by adding
the contents two integer registers. This addressing mode is commonly used to access an
array element: one of the registers holds the base address of the array, the other holds the
(scaled) index of the element.

In the second mode, the effective address is calculated by adding a 13-bit signed integer
constant to a register. This addressing mode can be used with pointers to structures: the
register holds the address of the structure and the integer constant specifies the offset of
the member (field) being accessed. Register indirect with displacement addressing is also
commonly used when accessing items on the runtime stack (e.g., parameters and local
variables). We consider access to the runtime stack in Lab 12 when we consider standard
procedure calling conventions for the SPARC.

Table 6.3 summarizes the addressing modes supported by SPARC assemblers. In ad-
dition to the two basic addressing modes, SPARC assemblers recognize register indirect
addressing and a limited form of direct memory addressing. Direct memory addresses
are limited to values that can be expressed in 13-bits when sign-extended (i.e., very small
addresses and very large addresses).

Table 6.3 Assembler address specifications

Addressing mode Assembler syntax Implementation Effective address
register indirect with index [r1+r2] basic mode reg[r1]+reg[r2]
register indirect with displacement [r1+siconst13] basic mode reg[r1]+siconst13

[siconst13+r1] siconst13+reg[r1]
[r1�siconst13] reg[r1]�siconst13

register indirect [r] [r+%r0] reg[r]
direct memory [siconst13] [%r0+siconst13] siconst13

Addressing modes can only be used with the load and store instructions. Table 6.4
summarizes the load word and store word operations.

6.3.4 The SETHI instruction

We conclude this discussion by introducing another SPARC instruction, sethi, and the %hi
and %lo operators provided by SPARC assemblers. The sethi instruction takes two argu-
ments: a 22-bit constant and a destination register. This instruction sets the most significant
22 bits of the destination register and clears the least significant 10 bits of this register.

42 Lab 6. Assembler Directives, Assembler Expressions, and Addressing Modes

Table 6.4 The SPARC ld and st operations

Operation Assembler syntax Operation implemented
load word ld address, rd reg[rd] = memory[eff addr(address)]
store word st rs, address memory[eff addr(address)] = reg[rs]

Notes:
address an address specification (see Table 6.3)

eff addr(x) the result of the effective address calculation

Example 6.1 Show how you would load a 32-bit, bignum, into %r2 without using the set instruction.

.set bignum, 0x87654321
sethi bignum>>10, %r2
or %r2, bignum&0x3ff, %r2
ta 0

Note the use of the expression “bignum>>10” to extract the most significant 22 bits
of bignum and the expression “bignum&0x3ff” to extract the least significant 10 bits of
bignum. To make your code more readable, SPARC assemblers provide two special opera-
tors: %hi(x) yields the most significant 22 bits of x, while %lo(x) yields the least significant
10 bits of x. Note that these operators are written using function call notation.

Example 6.2 Rewrite the code fragment given in Example 6.1, using the %hi and %lo operators.

.set bignum, 0x87654321
sethi %hi(bignum), %r2
or %r2, %lo(bignum), %r2
ta 0

Example 6.3 Write an assembly language fragment to sum up the elements in the array. Give directives to
declare an array of 20 words and an additional word to hold the sum.

.data
arr: .skip 20*4 ! allocate an array of 20 words
sum: .word 0 ! allocate a word to hold the sum

.text
start: set arr, %r2 ! %r2 is the base address

mov %r0, %r3 ! %r3 is the index value
mov %r0, %r4 ! %r4 is the running sum
set 20, %r5 ! %r5 is the number of elems to add

loop: ld [%r2+%r3], %r6 ! fetch the next element
add %r4, %r6, %r4 ! add it to the running sum
subcc %r5, 1, %r5 ! one fewer element
bne loop ! if %r5 > 0 get next element
add %r3, 4, %r3 ! increment the index (DELAY SLOT)

sethi %hi(sum), %r1 ! store the result in sum
st %r4, [%r1+%lo(sum)]

end: ta 0

Lab 6. Assembler Directives, Assembler Expressions, and Addressing Modes 43

Note that the code in Example 6.3 stores the result into sum using a sethi instruction
followed by a st instruction. In previous examples we have used a set instruction followed
by a st instruction to accomplish the same task. However, the set instruction is actually a
synthetic instruction and the assembler implements this instruction using a sethi instruc-
tion followed by an or instruction (as we showed in Example 6.1). As such, our earlier
code actually requires three instruction for every (load or) store. Using the sethi instruction
directly, we can avoid an unnecessary instruction.

6.4 Summary

6.5 Review Questions

6.6 Exercises

1. The %hi operator yields the most significant 22 bits while %lo operator yields the
least significant 10 bits of a 32-bit value. Considering that the SPARC uses 13-bit
signed integers in lots of contexts, it might seem that it would be better to have the
%hi and %lo operators yield 19 and 13 bits respectively. What problems would this
cause?

2. Write a SPARC assembly language program to count the number of ones in a bit
string. The bit string should be named BitString and the length (in bits) of the bit
string should be named Length. The result should be stored as a word named Count.
Note: there is no limit on the number of bits in the bit string.

3. Given an array,A, and the number of elements in the array, n, write a SPARC program
to sort the array. You may use any method you like to sort the array.

44 Lab 6. Assembler Directives, Assembler Expressions, and Addressing Modes

Laboratory 7
Operand Sizes and Unsigned
Values

7.1 Goal

To complete our coverage of the load and store instructions provided by the SPARC and to
cover a collection of useful synthetic operations.

7.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� Byte, halfword, word, and double word operands,
� The assembler directives .byte, .hword, .quad, and .align,
� Signed and unsigned operands, and
� The (synthetic) operations clear, negate, increment, and decrement.

7.3 Discussion

In this lab we introduce the assembler directives and operations associated with differ-
ent sized operands and unsigned operands. We begin by considering the operand sizes
supported by the SPARC. Then we consider assembler directives used to allocate different
amounts of memory. Next, we consider the load and store operations for different sized op-
erations. The we consider the load operations for unsigned operands. Finally, we conclude
by considering a small collection of useful synthetic operations.

7.3.1 Operand sizes

On the SPARC, all data manipulation operations (e.g., integer addition and integer subtrac-
tion) manipulate 32-bit values. However, the data transfer operations (e.g., load and store)
can transfer different sized values between the memory and the integer registers. Table 7.1
summarizes the operand sizes supported by the SPARC load and store operations.

Assembler directives

The .word directive introduced in Lab 2 allocates and initializes memory in 32-bit (word)
units. Table 7.2 summarizes the assembler directives for allocating and initializing different
sized units of memory. The name of the directive used to allocate and initialize a 64 bit
doubleword, “.quad”, is historical. The name dates to a time when words were 16 bits.
Quad is short for quad-word, that is, four 16-bit words.

45

46 Lab 7. Operand Sizes and Unsigned Values

Table 7.1 Operand sizes for the data transfer operations

Name Size
byte 8 bits

halfword 16 bits
word 32 bits

double word 64 bits

Table 7.2 Directives for allocating and initializing memory

Directive Size
.byte 8 bits

.hword 16 bits
.word 32 bits
.quad 64 bits

The SPARC load and store operations require that halfword values be aligned on even
addresses (i.e., halfword alignment) and that word and double word values be aligned on
addresses that are a multiple of four (i.e., word aligned). You can use the .align directive to
make sure that your variables are aligned as needed. This directive takes a two arguments,
a number and an optional pad value. When the assembler encounters an align directive,
it makes sure that the next address in the current assembler segment is a multiple of the
first argument. For example, the directive “.align 8” will ensure that the next address is
a multiple of 8. To ensure that the next address meets the alignment requirements, the
assembler emits “pad” bytes. If the second argument is supplied, the assembler uses this
value when it emits pad bytes; otherwise, the assembler emits zeros. Example 7.1 illustrates
the size and alignment directives.

Example 7.1 Consider the following C declarations. Assuming that a character is one byte, a short integer is
two bytes, and an integer is four bytes, give assembler directives to allocate and initialize the memory specified
by these directives.

short int short1 = 22;
char ch1 = ’a’;
short int short2 = 33;
char ch2 = ’A’;
int int1 = 0;

.data

.align 2 ! halfword align
short1: .hword 22 ! allocate and initialize a halfword
ch1: .byte ’a’ ! allocate and initialize a byte

.align 2 ! halfword align
short2: .hword 33 ! allocate and initialize a second halfword
ch2: .byte ’A’ ! allocate and initialize a second byte

.align 4 ! word align
int1: .word 0 ! allocate and initialize a word

The load and store operations

The size of the operand for a load or store operation is specified using a suffix: “d” for dou-
bleword, “h” for halfword, or “b” byte. The operation names are summarized in Table 7.3.

Lab 7. Operand Sizes and Unsigned Values 47

Table 7.3 The load and store operations

Size Load Store Notes
byte ldb stb

halfword ldh sth the address must be halfword aligned
word ld st the address must be word aligned

doubleword ldd std the address must be word aligned and the
register must be an even number

The load operations take two operands: the (source) memory address followed by the
(destination) register. Similarly, the store operations take two operands: the (source) regis-
ter followed by the (destination) memory address.

The load byte, halfword, and word operations set all 32 bits of the destination register.
The load byte operation (ldb) fetches an 8-bit value, sign extends this value to 32 bits,
and loads the resulting value into destination register. The load halfword operation (ldh)
fetches a 16-bit value and sign extends this value to 32 bits. The load word operation (load)
fetches a 32-bit value and load this value into the destination register. The load doubleword
operation fetches two 32-bit values and loads them into consecutive registers—starting
with the register specified in the instruction (e.g., %r2 and %r3).

The store byte operation (stb) stores the least significant 8 bits of the source register
to the destination memory location. The store halfword operation (sth) stores the least
significant 16 bits of the source register into the destination memory location. The store
word operation (st) stores the contents of a register to the destination memory address. The
store doubleword operation (stored) stores the contents two consecutive registers (starting
with the register specified in the instruction).

The memory addresses used with the operations that load and store halfwords must
be even (i.e., halfword aligned). The memory addresses used with the operations that
load and store words and doublewords must be multiples of four (i.e., word aligned). The
register used with the operations that load and store doublewords must be even (e.g., %r2
but not %r3). When these operations are used, the most significant 32 bits are stored in the
even register.

Table 7.4 The load and store instructions
Operation Instruction syntax Operation implemented
load byte ldb address, rd reg[rd] = signextend(memory[address]8)
load halfword ldh address, rd reg[rd] = signextend(memory[address]16)
load word ld address, rd reg[rd] = memory[address]32
load doubleword ldd address, rd reg[rd] = memory[address]32

reg[rd+1] = memory[address+4]32
store byte stb rs, address memory[address]8 = reg[rs]8
store halfword sth rs, address memory[address]16 = reg[rs]16
store word st rs, address memory[address]32 = reg[rs]32
store doubleword std rs, address memory[address]32 = reg[rs]32

memory[address+4]32 = reg[rs+1]32

Example 7.2 Rewrite the code presented in Example 6.3 using an array of 20 bytes (i.e., chars) instead of
words. (You should still store the sum in a word.)

.data

48 Lab 7. Operand Sizes and Unsigned Values

arr: .skip 20 ! allocate an array of 20 bytes
sum: .word 0 ! allocate a word to hold the sum

.text
start: set arr, %r2 ! %r2 is the base address

mov %r0, %r3 ! %r3 is the index value
mov %r0, %r4 ! %r4 is the running sum
set 20, %r5 ! %r5 is the number of elems to add

loop: ldb [%r2+%r3], %r6 ! fetch the next element
add %r4, %r6, %r4 ! add it to the running sum
subcc %r5, 1, %r5 ! one fewer element
bne loop ! if %r5 > 0 get next element
add %r3, 4, %r3 ! increment the index (DELAY SLOT)

sethi %hi(sum), %r1 ! store the result in sum
st %r4, [%r1+%lo(sum)]

end: ta 0

7.3.2 Unsigned operands

The SPARC instruction set also provides a load unsigned byte operation (loadub) and a
load unsigned halfword operation (loaduh). In contrast to the standard load operations
(loadb and loadh), these operations do not sign extend their values. They always set the
most significant bits to zero.

Table 7.5 The unsigned load operations

Operation Instruction syntax Operation implemented
load unsigned byte ldub address, rd reg[rd] = zerofill(memory[address]8)
load unsigned halfword lduh address, rd reg[rd] = zerofill(memory[address]16)

7.3.3 Useful (synthetic) operations

We conclude this lab by considering a collection of useful operations. In particular, we con-
sider the (synthetic) operations clear, negate, increment, and decrement. These operations
are summarized in Table 7.6.

Example 7.3 Rewrite the code presented in Example 6.3 using the operations defined in Table 7.6.

.data
arr: .skip 20*4 ! allocate an array of 20 words
sum: .word 0 ! allocate a word to hold the sum

.text
start: set arr, %r2 ! %r2 is the base address

clr %r3 ! %r3 is the index value
clr %r4 ! %r4 is the running sum
set 20, %r5 ! %r5 is the number of elems to add

loop: ld [%r2+%r3], %r6 ! fetch the next element
add %r4, %r6, %r4 ! add it to the running sum

Lab 7. Operand Sizes and Unsigned Values 49

Table 7.6 Some useful operations

Operation Instruction syntax Operation implemented
clear register clr rd reg[rd = 0
clear memory word clr address memory[address]32 = 0
clear memory halfword clrh address memory[address]16 = 0
clear memory byte clrb address memory[address]8 = 0
negate register neg rd reg[rd] = �reg[rd]

neg rs,rd reg[rd] = �reg[rs]
increment register inc rd reg[rd] = reg[rd] + 1

inc siconst13, rd reg[rd] = reg[rd] + siconst13
increment register, set cc inccc rd reg[rd] = reg[rd] + 1

inccc siconst13, rd reg[rd] = reg[rd] + siconst13
decrement register dec rd reg[rd] = reg[rd] � 1

dec siconst13, rd reg[rd] = reg[rd] � siconst13
decrement register, set cc deccc rd reg[rd] = reg[rd] � 1

deccc siconst13, rd reg[rd] = reg[rd] � siconst13

deccc %r5 ! one fewer element
bne loop ! if %r5 > 0 get next element
inc 4, %r3 ! increment the index (DELAY SLOT)

sethi %hi(sum), %r1 ! store the result in sum
st %r4, [%r1+%lo(sum)]

end: ta 0

7.4 Summary

7.5 Review Questions

1. Explain why the SPARC does not provide unsigned store operations.

7.6 Exercises

1. Suppose that the SPARC did not have a load unsigned byte operation, explain how
you could implement this operation using the load byte operation (recall, this op-
eration always sign extends the value being loaded). Note, the Intel i860 processor
provides a load byte operation but does not provide a load unsigned byte operation.

50 Lab 7. Operand Sizes and Unsigned Values

Laboratory 8
The ISEM Graphics Accelerator

8.1 Goal

To cover uses of the graphics accelerator device provided by ISEM. (Currently, this device
is only available in the X11 environment.)

8.2 Objectives

After completing this lab, you will be able to write assembly language programs that use:

� the graphics accelerator.

8.3 Discussion

In the previous labs, we have focused on assembly language programming, presenting
SPARC instructions and assembler directives. Now, it’s time for some fun! In this lab
we present the ISEM graphics accelerator device, gx. In addition to showing you how a
simple device works, this lab will give you an opportunity to review the assembly language
constructs covered in the previous labs.

When you open the gx device, it creates a black and white graphics window. By issu-
ing gx commands, you can instruct the gx device to draw lines, fill rectangles, and copy
rectangles in the window. The visible gx display is 512 � 512 pixels. Individual pixels in
the visible region are addressed by an (x; y) pair. The pixel in the upper left corner of the
display is addressed by the pair (0; 0). The pixel in the lower right corner is addressed by
the pair (511; 511).

In addition to the visible pixels, the gx device provides a 512x64 rectangle of pixels
that are not displayed. These pixels are commonly used with the blt operation (described
later in this lab). They are addressed using the pixel addresses (0; 512) through (511; 575).
Figure 8.1 illustrates the pixel addresses provided by the gx device.

The gx device is a “memory mapped” device. This means that the gx device regis-
ters are mapped into memory locations and can be accessed using the standard load and
store operations. (The SPARC architecture doesn’t provide any special I/O instructions, so
all devices must be memory mapped when they are used with a SPARC.) The gx device
has 256 registers: a status register, a command register, and 254 argument registers. Each
register is one word (four bytes, 32 bits) wide.

The status register is mapped into memory location 0x100000. Storing a value into this
location has no affect; however, when you load a register using this memory location, you
will actually read the status register of the gx device. The value of the status register is 0
when the gx device hasn’t been (opened and) displayed. This register has the value 1 when
the device has been opened and mapped onto the display. The gx command register is

51

52 Lab 8. The ISEM Graphics Accelerator

6

?

512

-�
512

Visible
(displayed)

6

?

512

�
��

(0,512)

�
��

(0,0)

�
�	

(511,575)

�
�	

(511,511)

6

?

64
Hidden

(not displayed)

Figure 8.1 The gx display

mapped to memory location 0x100004 while the argument registers are mapped to memory
locations 0x100008–0x1007fe. Figure 8.2 illustrates the mapping of gx registers into the
ISEM memory.

The gx device provides commands to draw lines, fill rectangles, and copy rectangles on
the display. Table 8.1 summarizes the commands provided by the gx device.

Before you issue any other gx commands, you must first open the device. When you
issue the open command, the gx device creates an X11 window and initializes the display
memory. The display is initially is solid white, and the drawing color is black.

After you are done using the gx device, you can explicitly close the device using the
close command. If you don’t issue a close command, the display window will be destroyed
when you exit isem, as such, closing the gx device is not critical.

You can use the color command to set the color used to draw lines and fill rectangles.
This command takes a single argument, the color. If the argument is 0, the gx device draws
lines an fills rectangles in black; otherwise, if the argument is 1, the gx device draws lines
and fills rectangles in white.

The gx op command has a single argument. This command sets the drawing function
to the value of the argument. When the gx device is initialized, the drawing function is
“copy”. That is, the gx device simply copies the drawing color (when drawing a line or

Lab 8. The ISEM Graphics Accelerator 53

ISEM
memory

gx
device

0x100000
0x100004
0x100008
0x10000c
0x100010

0x1007fe

status
command

arg 1
arg 2
arg 3

...

arg 254

-
-
-
-

�

-

Figure 8.2 The gx register/memory map

Table 8.1 Commands provided by the graphics accelerator

Command
value

Command
name Arguments Operation performed

0 open open the device
1 close close the device
2 color n set the drawing color (n = 0 for black, n =

1 for white)
3 gx op n set the “drawing function” (see Table 8.2)
4 line x1 y1 x2 y2 draw a line from pixel (x1; y1) to (x2; y2)

5 fill x y w h fill the rectangle with upper left corner
(x; y), width w, and height h

6 blt x1 y1 w h x2 y2 copy the rectangle with upper left corner
(x1; y1), width w, and height h to the rect-
angle with upper left corner (x2; y2)

filling a rectangle) or the source pixel (when copying a rectangle) to the destination pixel.
Table 8.2 summarizes the other drawing functions provided by the gx device.

The line function draws a line from one pixel to another based on the current drawing
color and function. This command takes four arguments: two arguments to specify the the
coordinates for each pixel.

The fill command fills a rectangle based on the current drawing color and function.
This command takes four arguments: the first two arguments specify the coordinates of the
upper left corner of the rectangle, the third argument specifies the width of the rectangle,
and the fourth argument specifies the height of the rectangle.

The blt command copies (subject to the drawing function) a rectangle from one part of
the gx memory to another. This command takes six arguments: the first four arguments
specify the source rectangle, the last two specify the upper left corner of the destination
rectangle.

To issue a gx command, you first store the arguments in the gx argument registers and
then store the command into the gx command register. The order in which you perform

54 Lab 8. The ISEM Graphics Accelerator

Table 8.2 Drawing operation supported by the graphics accelerator

Name Value Drawing operation
clear 0x0 0
and 0x1 source AND destination
andReverse 0x2 source AND NOT destination
copy 0x3 source
andInverted 0x4 NOT source AND destination
noop 0x5 destination
xor 0x6 source XOR destination
or 0x7 source OR destination
nor 0x8 NOT source AND NOT destination
equiv 0x9 NOT source XOR destination
invert 0xa NOT destination
orReverse 0xb source OR NOT destination
copyInverted 0xc NOT source
orInverted 0xd NOT source OR destination
nand 0xe NOT source OR NOT destination
set 0xf 1

these stores is critical. You must load the command register after you have loaded the
argument registers. The gx device reads its argument registers as soon as you store a value
in the command register.

Symbolic constant that make devices, like the gx device, easier to use are commonly
defined in header files. Figure 8.3 presents a header file for the gx device. Example 8.1
illustrates the gx device and a use of the gx header file.

Example 8.1 Write an ISEM program that opens the gx device and draws a line from the upper left corner
to lower right corner.

.include "gx.h"

.text
main: set BX_BUFFER, %r1 ! %r1 points to gx registers

st %r0, [%r1+GX_CMD] ! open display
ld [%r1+GX_STATUS], %r2 ! load status word

wait: cmp %r2, 0
be wait ! wait until window is mapped
ld [%r1], %r2 ! load status word

! set up the command arguments
st %r0, [%r1+GX_LINE_X1] ! x1 = 0
st %r0, [%r1+GX_LINE_Y1] ! y1 = 0
mov 511, %r2
st %r2, [%r1+GX_LINE_X2] ! x2 = 511
st %r2, [%r1+GX_LINE_Y2] ! y2 = 511

! now, issue the command
mov GX_LINE, %r2
st %r2, [%r1+GX_CMD]

Lab 8. The ISEM Graphics Accelerator 55

!
! gx.h -- symbolic constants for the gx device
!
.set GX_BUFFER, 0x100000 ! start address for GX registers

.set GX_OPEN, 0 ! command numbers

.set GX_CLOSE, 1

.set GX_COLOR, 2

.set GX_OP, 3

.set GX_LINE, 4

.set GX_FILL, 5

.set GX_BLIT, 6

.set GX_STATUS, 0 ! symbolic buffer offsets

.set GX_CMD, 4

.set GX_ARG, 8

.set GX_FILL_X, 8 ! for fill

.set GX_FILL_Y, 12

.set GX_FILL_W, 16

.set GX_FILL_H, 20

.set GX_LINE_X1, 8 ! for line

.set GX_LINE_Y1, 12

.set GX_LINE_X2, 16

.set GX_LINE_Y2, 20

.set GX_BLIT_X1, 8 ! for blit

.set GX_BLIT_Y1, 12

.set GX_BLIT_W, 16

.set GX_BLIT_H, 20

.set GX_BLIT_X2, 24

.set GX_BLIT_Y2, 28

! drawing functions for the GX_OP command
.set GX_CLEAR, 0x0 ! 0
.set GX_AND, 0x1 ! source AND destination
.set GX_AND_REVERSE, 0x2 ! source AND NOT destination
.set GX_COPY, 0x3 ! source
.set GX_AND_INVERTED, 0x4 ! NOT source AND destination
.set GX_NOOP, 0x5 ! destination
.set GX_XOR, 0x6 ! source XOR destination
.set GX_OR, 0x7 ! source OR destination
.set GX_NOR, 0x8 ! NOT source AND NOT destination
.set GX_EQUIV, 0x9 ! NOT source XOR destination
.set GX_INVERT, 0xa ! NOT destination
.set GX_OR_REVERSE, 0xb ! source OR NOT destination
.set GX_COPY_INVERTED, 0xc ! NOT source
.set GX_OR_INVERTED, 0xd ! NOT source OR destination
.set GX_NAND, 0xe ! NOT source OR NOT destination

Figure 8.3 The gx header file. gx.h

56 Lab 8. The ISEM Graphics Accelerator

! all done -- the display will remain until you exit isem
end: ta 0

8.4 Summary

8.5 Review Questions

8.6 Exercises

1. A bitmap is rectangle of black and white pixels. In X11, bitmaps are stored row-by-
row in an array of bytes, i.e., consecutive memory locations. Each bit in this array
represents a pixel on the screen—1 for black and 0 for white (the inverse of the color
convention used for the gx device). Each row of the bitmap is stored in an integral
number of bytes. If the number of columns is not a multiple of 8, the last byte is
padded with zeros. The first byte of the array represents the leftmost 8 pixels in the
top row. The next byte represents the next 8 pixels in the top row or the first 8 pixels
of the next row if there are fewer than 9 columns in the bitmap. Within a byte, the
least significant bit represents the leftmost pixel.
As an example, Figure 8.4 illustrates a simple bitmap and assembly language decla-
rations for the X11 representation of this bitmap.

height: .word 8
width: .word 8
bits: .byte 0x01, 0x02, 0x04, 0x08

.byte 0x10, 0x20, 0x40, 0x80

Figure 8.4 A simple bitmap

You can use the “bitmap” program under X11 to create bitmaps and save their rep-
resentation in a file. When you save a bitmap, the bitmap program generates C dec-
larations for the bitmap. You can easily convert these declarations into assembly
language declarations.
Write a program to draw a bitmap on the gx display. The gx device does not provide
a simple way to copy bytes from standard memory to the device memory. You will
need to “draw” the bitmap into the display memory, using GX LINE commands.
Your program should draw the bitmap with its upper left corner at position (0,0) of
the display. You can test your program with the bitmap shown in Figure 8.4, but
make sure you can also display bitmaps with widths that are not a multiple of 8.
Figure 8.5 gives you another bitmap to display.

Lab 8. The ISEM Graphics Accelerator 57

width: .word 31
height: .word 13
bits: .byte 0x00, 0x00, 0x00, 0x00, 0x7e, 0xbf, 0xdf, 0x18, 0x7e

.byte 0xbf, 0xdf, 0x1d, 0x18, 0x83, 0xc1, 0x1f, 0x18, 0x83

.byte 0xc1, 0x1f, 0x18, 0xbf, 0xc7, 0x1a, 0x18, 0xbf, 0xc7

.byte 0x18, 0x18, 0xb0, 0xc1, 0x18, 0x18, 0xb0, 0xc1, 0x18

.byte 0x7e, 0xbf, 0xdf, 0x18, 0x7e, 0xbf, 0xdf, 0x18, 0x00

.byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

Figure 8.5 A simple bitmap

58 Lab 8. The ISEM Graphics Accelerator

Laboratory 9
The SPARC Instruction Formats

9.1 Goal

To cover the instruction encoding and decoding for the SPARC.

9.2 Objectives

After completing this lab, you will be able to:

� Hand assemble SPARC assembly language instructions, and
� Hand disassemble SPARC machine language instructions.

9.3 Discussion

In this lab we consider instruction encoding and decoding for the operations that we have
introduced in previous labs. In particular, we will consider encodings for instructions that
use the data manipulation and branching operations. After we introduce instruction en-
coding, we consider the translation of synthetic operations. Finally, we conclude this lab
by considering instruction decoding on the SPARC.

All SPARC instructions are encoded in a single 32-bit instruction word, there are no
extension words.

9.3.1 Encoding load and store instructions

The SPARC machine language uses two different formats for load and store instructions.
These formats are shown in Figure 9.1. The first format is used for instructions that use one
or two registers in the effective address. The second format is used for instructions that use
an integer constant in the effective address.

In the first format the 32-bit instruction is divided into seven fields. The first field (read-
ing from the left) holds the 2-bit value 11, while the fifth field (bit 13) holds the 1-bit value 0.
These bits are the same for all load and store instructions that use two source registers. The
sixth field (bits 5 through 12) holds the address space indicator, asi. For the present, we will
always set the asi field to zero. The remaining fields, rd, op3, rs1, and rs2, hold encodings
for the destination register, the operation, and the two source registers, respectively.

Registers are encoded using the 5-bit binary representation of the register number. Ta-
ble 9.1 summarizes the operation encodings for the load and store operations.

Example 9.1 Hand assemble the instruction:
ldd [%r4+%r7], %r11

59

60 Lab 9. The SPARC Instruction Formats

A. Instructions of the form: op [rs1+rs2], rd (load instructions) or
op rd, [rs1+rs2] (store instructions)

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd op3 rs1 0 asi rs2

B. Instructions of the form: op [rs1+siconst13], rd (load instructions) or
op rd, [rs1+siconst13] (store instructions)

31 30 29 25 24 19 18 14 13 12 0

11 rd op3 rs1 1 siconst13

Figure 9.1 Instruction formats for load and store instructions

Table 9.1 Operation encodings for the load and store operations

Operation op3 Operation op3

ld 000000 st 000100
ldub 000001 stb 000101
lduh 000010 sth 000110
ldd 000011 std 000111
ldsb 001001
ldsh 001010

Because this instruction uses two registers in the address specification, it is encoded using the first
format shown in Figure 9.1. As such, we must determine the values for the rd, op3, rs1, and rs2 fields.
The following table summarizes these encodings:

Field Symbolic value Encoded value
rd %r11 01011
op3 ldd 000011
rs1 %r4 00100
rs2 %r7 00111

These encodings lead to the following machine instruction:
31 30 29 25 24 19 18 14 13 12 5 4 0

11 01011 000011 00100 0 00000000 00111
That is, 1101 0110 0001 1001 0000 0000 0000 0111 in binary, or 0xD6190007.

If the assembly language instruction only uses a single register in the address specifica-
tion (e.g., register indirect addressing), the register is encoded in one of the source register
fields (i.e., sr1 or sr2) while %r0 is encoded in the other. It doesn’t matter which field holds
the register specified in the assembly language instruction and which field holds the en-
coding for %r0. However, isem-as encodes %r0 in sr2.

Example 9.2 Hand assemble the instruction:
ldub [%r23], %r19

Because this instruction uses registers in the address specification, it is encoded using the first format
shown in Figure 9.1. As such, we must determine the values for the rd, op3, rs1, and rs2 fields. The
following table summarizes these encodings:

Lab 9. The SPARC Instruction Formats 61

Field Symbolic value Encoded value
rd %r19 10011
op3 ldub 000001
rs1 %r23 10111
rs2 %r0 00000

These encodings lead to the following machine instruction:
31 30 29 25 24 19 18 14 13 12 5 4 0

11 10011 000001 10111 0 00000000 00000
That is, 1110 0110 0000 1101 1100 0000 0000 0000 in binary, or 0xE60DC000.

In the second format the 32-bit instruction is divided into six fields. As in the previous
format, the first field holds the 2-bit value 11. However, unlike the previous format, the
fifth field holds the 1-bit value 1. The remaining fields, rd, op3, rs1, and siconst13, hold
encodings for the destination register, the operation, the source register, and the constant
value, respectively. When this format is used, the integer constant is encoded using the
13-bit 2’s complement representation and stored in the siconst13 field of the instruction.

9.3.2 Encoding sethi instructions

The format used to encode sethi instructions is shown in Figure 9.2. Sethi instructions are
encoded in four fields. The first field holds the 2-bit value 00. The next field, rd, holds the
5-bit encoding of the destination register. The third field holds the 3-bit value 100. The final
filed holds the 22-bit binary encoding of the value specified in the instruction.

31 30 29 25 24 22 21 0

00 rd 100 const22

Figure 9.2 Instruction format for sethi instructions

Example 9.3 Hand assemble the instruction:
sethi %hi(0x87654321), %r2

This instruction is encoded using the format shown in Figure 9.2. As such, we need to determined
the values for the rd and const22 fields. The following table summarizes these encodings:

Field Symbolic value Encoded value
rd %r2 00010
const22 %hi(0x87654321) 1000 0111 0110 0101 0100 00

These encodings lead to the following machine instruction:
31 30 29 25 24 22 21 0
00 00010 100 1000 0111 0110 0101 0100 00

That is, 0000 0101 0010 0001 1101 1001 0101 0000 in binary, or 0x0521D950.

9.3.3 Encoding integer data manipulation instructions

Data manipulation instructions are encoded using two formats: one for instructions that
use two source registers and another for instructions that use a source register and a small
integer constant. The formats used for integer data manipulation instructions are shown
in Figure 9.3

In the first format the 32-bit instruction is divided into seven fields. The first field (read-
ing from the left) holds the 2-bit value 10, while the fifth field (bit 13) holds the 1-bit value 0.

62 Lab 9. The SPARC Instruction Formats

A. Instructions of the form: op rs1, rs2, rd
31 30 29 25 24 19 18 14 13 12 5 4 0

10 rd op3 rs1 0 unused(zero) rs2

B. Instructions of the form: op rs1, siconst13, rd

31 30 29 25 24 19 18 14 13 12 0

10 rd op3 rs1 1 siconst13

Figure 9.3 Instruction formats for data manipulation instructions

These bits are the same for all data manipulation instructions that use two source registers.
The sixth field (bits 5 through 12) is unused-the bits in this field must be zero. The remain-
ing fields, rd, op3, rs1, and rs2, hold encodings for the destination register, the operation,
and the two source registers, respectively

In the second format the 32-bit instruction is divided into six fields. As in the previous
format, the first field holds the first field holds the 2-bit value 01. However, unlike the
previous format, the fifth field holds the 1-bit value 1. The remaining fields, rd, op3, rs1,
and siconst13, hold encodings for the destination register, the operation, the source register,
and the constant value, respectively. When this format is used, the integer constant is
encoded using the 13-bit 2’s complement representation and stored in the siconst13 field of
the instruction.

Recall that a SPARC assembly language instruction begins with the name of the op-
eration, followed by the two source operands, followed by the destination operand. In
considering the translation from an assembly language instruction into machine language,
there are a few points to keep in mind:

� The operation is encoded in the op3 field.
� The first source operand must be a register and it is encoded in the rs1 field.
� The second source operand can be a register or a constant value. If it is a register, it is

encoded in the rs2 field; otherwise, it is encoded in the siconst13 field.
� The destination register is encoded in the rd field.

Table 9.2 summarizes the operation encodings for the data manipulation operations
that we have covered in the previous labs. When an instruction using one of these opera-
tions is encoded, the operator encoding is placed in the op3 field of the machine instruction.

Example 9.4 Hand Assemble the following SPARC instructions.
sub %r27, %r16, %r26

Because this instruction uses two source registers, it is encoded using the first format shown in Fig-
ure 9.3. As such, we must determine the values for the op3, rd, rs1, and rs2 fields. The following table
summarizes these encodings:

Field Symbolic value Encoded value
rd %r27 11011
op3 sub 000100
rs1 %r16 10000
rs2 %r26 11010

These encodings lead to the following machine instruction:
31 30 29 25 24 19 18 14 13 12 5 4 0
10 11011 000100 10000 0 00000000 11010

That is, 1011 0110 0010 0100 0000 0000 0001 1010 in binary, or 0xB624001A.

Lab 9. The SPARC Instruction Formats 63

Table 9.2 Operation encodings for the data manipulation operations

Operation op3 Operation op3

add 000000 addcc 010000
and 000001 andcc 010001
andn 000101 andncc 010101
or 000010 orcc 010010
orn 000110 orncc 010110
udiv 001110 udivcc 011110
umul 001010 umulcc 011010
smul 001011 smulcc 011011
sdiv 001111 sdivcc 011111
sub 000100 subcc 010100
xor 000011 xorcc 010011
xnor 000111 xnorcc 010111
sll 100101
rsl 100101
rsa 100111

Example 9.5 Hand Assemble the following SPARC instructions.
smulcc %r19, -23, %r29

Because this instruction uses one source register and a signed integer constant, it is encoded using
the second format shown in Figure 9.3. As such, we must determine the values for the op3, rd, rs1,
and siconst13 fields. The following table summarizes these encodings:

Field Symbolic value Encoded value
rd %r19 10011
op3 smulcc 011011
rs1 %r29 11101
siconst13 �23 1111 1111 0100 1

These encodings lead to the following machine instruction:
31 30 29 25 24 19 18 14 13 12 0
10 10011 011011 11101 1 1111 1111 0100 1

That is, 1010 0110 1101 1111 0111 1111 1110 1001 in binary, or 0xA6DF7FE9.

9.3.4 Encoding conditional branching instructions

The machine language format for the conditional branching operations on the SPARC is
shown in Figure 9.4. This format divides the machine instruction into five fields. The first
and fourth fields hold the fixed values 102 and 0102. The remaining fields, a, cond, and
disp22, hold the encoded values for the annul bit, the branching condition, and program
counter displacement.

31 30 29 28 25 24 22 21 0

00 a cond 010 disp22

Figure 9.4 Instruction format for conditional branch instructions

64 Lab 9. The SPARC Instruction Formats

The a field of a machine instruction is set (i.e., 1) for instructions that use the annul suffix
(“,a”). This field is clear (i.e, 0) for conditional branching instructions that do not nullify
the results of the next instruction. The cond field of a machine instruction encodes the
condition under which the branch is taken. Table 9.3 summarizes the operation encodings
for the branching operations supported by the SPARC.

Table 9.3 Operation encodings for the conditional branching operations

Operation cond Operation cond
ba 1000 bn 0000
bne (bnz) 1001 be (bz) 0001
bg 1010 ble 0010
bge 1011 bl 0011
bgu 1100 bleu 0100
bcc (bgeu) 1101 bcs (blu) 0101
bpos 1110 bneg 0110
bvc 1111 bvs 0111

To complete the encoding of an assembly language instruction that uses conditional
branching, you need to determine the value of the disp22 field. We address this issue by
considering how a processor uses this value. When the processor determines that the
branching condition is satisfied, it multiplies the value in the disp22 field by 4 and adds
it to the program counter (PC). To be more precise, the processor sign extends the 22-bit
value stored in the disp22 field to 30 bits and concatenates two zeros to construct a 32-bit
which which it adds to the PC. In effect, the disp22 field holds the distance from the target
to the destination measured in instructions.

Example 9.6 Hand Assemble the branch instruction in the following SPARC code fragment.
cmp %r2, 8
bne l1
nop
inc %r3

l1:

In this case, the target is 3 instructions from the branch instruction, so the disp22 field will be the 22-bit
binary encoding of 3.

Field Symbolic value Encoded value
a 0
cond bne 1001
disp22 l1 0000 0000 0000 0000 0000 11

These encodings lead to the following machine instruction:
31 30 29 28 25 24 22 21 0
00 0 1001 010 0000 0000 0000 0000 0000 11

That is, 0001 0010 1000 0000 0000 0000 0000 0011 in binary, or 0x12800002.

Example 9.7 Hand Assemble the branch instruction in the following SPARC code fragment.
top: add %r2, %r3, %r2

deccc %r4
bne top

In this case, the target is 2 instructions (back) from the branch instruction, so the disp22 field will be
the 22-bit binary encoding of �2.

Lab 9. The SPARC Instruction Formats 65

Field Symbolic value Encoded value
a 0
cond bne 1001
disp22 l1 1111 1111 1111 1111 1111 10

These encodings lead to the following machine instruction:
31 30 29 28 25 24 22 21 0
00 0 1001 010 1111 1111 1111 1111 1111 10

That is, 0001 0010 1011 1111 1111 1111 1111 1110 in binary, or 0x12BFFFFE.

9.3.5 Synthetic Instructions

In most cases, an assembly language instruction is simply a symbolic representation of a
machine language instruction. The SPARC architecture also defines a number of assem-
bly language instructions that do not correspond directly to SPARC machine language
instructions. These are called synthetic instructions. The assembler translates synthetic
instructions one or more machine language instructions. Using synthetic instructions can
frequently make your programs easier to read. Table 9.4 summarizes the translation pro-
vided by the assembler for most of the synthetic instructions on the SPARC.

Most of the translations shown in Table 9.4 are straightforward. However, the imple-
mentation of the set instruction merits further discussion. The assembler will always try to
use one of the first two translations if it can. That is, if the constant value can be represented
in 13 bits, the assembler will select the first translation. If the least significant 10 bits of the
constant value are 0, it will used the second translation. Otherwise, the assembler will use
the third translation. Note, if the constant value is relocatable, the assembler will always
select the third translation.

9.3.6 The read and write instructions

The Y register, introduced in Lab 4 is one of the SPARC state registers. As shown in Ta-
ble 9.4, when you use a state register as the destination in a mov instruction, it is translated
to a wr (write) instruction. Similarly, when you use a state register as the source register in
a mov instruction it is translated to a rd (read) instruction.

Write instructions are encoded using the formats shown in Figure 9.3. When the desti-
nation register is the Y register, the rd field is set to the 5-bit value 00000 and the op3 field is
set to the 6-bit value 110000.

Read instructions are encoded using the second format shown in Figure 9.3. When the
source register is the Y register, the op3 field is set to the 6-bit value 101000 and the rs1 field
is set to the 5-bit value 00000.

9.3.7 Relocatable expressions

In this lab, we have limited our discussion to the translation of instructions that use ab-
solute expressions. We will consider the translation of relocatable expressions when we
consider linking and loading in Lab 15.

9.3.8 Decoding SPARC instructions

We conclude our discussion of instruction formats by considering instruction decoding.
That is, the process by which a SPARC processor determines the instruction it is executing.

The SPARC uses a distributed opcode. The two most significant bits in an instruction
represent the primary opcode. If the primary opcode is 00, bits 22–24 of the instruction

66 Lab 9. The SPARC Instruction Formats

Table 9.4 The synthetic instructions

Synthetic instruction Implementation
bclr rs, rd andn rd, rs, rd
bclr rs, siconst13 andn rs, siconst13, rd
bset rs, rd or rd, rs, rd
bset siconst13, rd or rd, siconst13, rd
btst rs1, rs2 andcc rs1, rs2, %g0
btst rs, siconst13 andcc rs, siconst13, %g0
btog rs, rd xor rd, rs, rd
btog rs, siconst13 xor rs, siconst13, rd
clr rd or %g0, %g0, rd
clrb [address] stb %g0, [address]
clrh [address] sth %g0, [address]
clr [address] st %g0, [address]
cmp rs1, rs2 subcc rs1, rs2, %g0
cmp rs, siconst13 subcc rs, siconst13, %g0
dec rd sub rd, 1, rd
dec siconst13, rd sub rd, siconst13, rd
deccc rd subcc rd, 1, rd
deccc siconst13, rd subcc rd, siconst13, rd
inc rd add rd, 1, rd
inc siconst13, rd add rd, siconst13, rd
inccc rd addcc rd, 1, rd
inccc siconst13, rd addcc rd, siconst13, rd
mov rs, rd or %g0, rs, rd
mov siconst13, rd or %g0, siconst13, rd
mov statereg, rd rd statereg, rd
mov rs, statereg wr %g0, rs, statereg
mov siconst13, statereg wr %g0, siconst13, statereg
neg rs, rd sub %g0, rs, rd
neg rd sub %g0, rd, rd
not rd xnor rd, %g0, rd
not rs, rd xnor rs, %g0, rd
set iconst, rd or %g0, iconst, rd

—or—
sethi %hi(iconst), rd

—or—
sethi %hi(iconst), rd
or rd, %lo(iconst), rd

tst rs orcc %g0, rs, %g0

provide the secondary opcode. If the primary opcode is 01, the instruction is a call instruc-
tion and the remaining bits (bits 0–29) are a displacement for the program counter (we will
discuss the call instruction at greater length in Lab 10). Otherwise, if the primary opcode
is either 10 or 11, bits 19–24 of the instruction provide the secondary opcode. Figure 9.5
illustrates the positions of the secondary opcodes based on the primary opcode.

Once you have determined the primary and secondary opcodes, you’ll be able to to
determined the instruction and, knowing the instruction, decode the remaining fields of
the instruction. If the primary opcode is 01, the instruction is a call instruction and you can
easily complete the decoding of the instruction.

If the primary opcode is 00, the instruction is an unimplemented instruction, a condi-

Lab 9. The SPARC Instruction Formats 67

31 30 29 25 24 22 21 0

00 op2

31 30 29 0

01

31 30 29 25 24 19 18 0

10 op3

31 30 29 25 24 19 18 0

11 op3

Figure 9.5 The primary opcode ina SPARC instruction

tional branch instruction, or a sethi instruction. Table 9.5 summarizes how the 3-bit value
in op2 is used to identify the instruction.

Table 9.5 Decoding the op2 field

Value Instruction
000 The unimplemented instruction
001 illegal
010 Conditional branch—integer unit
011 illegal
100 SETHI
101 illegal
110 Conditional branch—floating point unit
111 Conditional branch—coprocessor

The data manipulation instructions are encoded with a primary opcode of 10. Table 9.6
shows how the 6-bit value in the op3 field is used to determine the instruction when the
primary opcode is 10.

Table 9.6 Decoding the op3 field when the primary opcode is 10

000xxx 001xxx 010xxx 011xxx 100xxx 101xxx 110xxx 111xxx
xxx000 add addx addcc addxcc taddcc rd wr jmpl
xxx001 and — andcc — tsubcc rd wr rett
xxx010 or umul orcc umulcc taddcctv rd wr trap
xxx011 xor smul xorcc smulcc tsubcctv rd wr flush
xxx100 sub subx subcc subxcc mulscc — FPU op save
xxx101 andn — andncc — sll — FPU op restore
xxx110 orn udiv orncc udivcc srl — CP op —
xxx111 xnor sdiv xnorcc sdivcc sra — CP op —

Instructions that access memory are encoded with a primary opcode of 11. Table 9.7
shows how the 6-bit value in the op3 field is used to determine the instruction when the
primary opcode is 11.

When you decode an instrcution that has a primary opcode of 10 or 11, you will need to
examine bit 13 to determine whether bits 0–12 of the instruction hold an immediate value

68 Lab 9. The SPARC Instruction Formats

Table 9.7 Decoding the op3 field when the primary opcode is 11

000xxx 001xxx 010xxx 011xxx 100xxx 101xxx 110xxx 111xxx
xxx000 ld — lda — ldf — ldc —
xxx001 ldub ldsb lduba ldsba ldfsr — ldcsr —
xxx010 lduh ldsh lduha ldsha — — — —
xxx011 ldd — ldda — lddf — lddc —
xxx100 st — sta — stf — stc —
xxx101 stb ldstub stba ldstuba stfsr — stcsr —
xxx110 sth — stha — stdfq — scdfq —
xxx111 std swap stda swapa stdf — scdf —

or a register. If bit 13 is 1, bits 0–12 hold an immediate value.

Example 9.8 Give an instruction that will assemble to the value 0x09012345.

In binary, this instruction is 00 00100 100 000100. . . . That is, the primary opcode is 00 and op2 is 100.
From Table 9.5, this is a sethi instruction. Using the sethi format to partition the bits yields:

31 30 29 25 24 22 21 0
00 rd = 00100 100 iconst22 = 01 0010 0011 0100 0101

Thus, the destination register is %r4, and the integer constant is 0x12345. The following instruction
will be assembled as 0x09012345.

sethi %hi(0x12345<<10), %r4

Example 9.9 Give an instruction that will assemble to the value 0x10800006.

In binary, this instruction is 00 01000 010 000000. . . . That is, the primary opcode is 00 and op2 is
010. From Table 9.5, this is a conditional branch instruction. Using the conditional branch format to
partition the bits yields:

31 30 29 28 25 24 22 21 0
00 0 cd=1000 010 disp=0000 0000 0000 0000 0001 10

Thus, the operator is “ba” and the displacement is +6 words. The following instruction will be as-
sembled as 0x10800006.

ba .+(6*4)
(When you use isem-as, ‘.’ is the address of the current instruction.

Example 9.10 Give an instruction that will assemble to the value 0x8601600E

In binary, the instruction is 10 00011 000000 0001. . . . That is, the primary opcode is 10 and op3 is
000000. From Table 9.6, this is an add instruction. Because bit 13 is 1, we use the second format in
Figure 9.3 to decode this instruction.

31 30 29 25 24 19 18 14 13 12 0
10 rd=00011 000000 rs1=00101 1 siconst13=0 0000 0000 1110

Thus, the destination is %r3, the source register is %r5, and the constant is 0xE. The following in-
struction will be assembled as 0x8601600E.

add %r5, 14, %r3

Lab 9. The SPARC Instruction Formats 69

9.4 Summary

9.5 Review Questions

9.6 Exercises

70 Lab 9. The SPARC Instruction Formats

Laboratory 10
Leaf Procedures on the SPARC

10.1 Goal

To introduce the calling conventions associated with leaf procedures on the SPARC.

10.2 Objectives

After completing this lab, you will be able to write assembly language programs that:

� Use leaf procedures,
� Use the call and link operation, and
� Use the (synthetic) return from leaf operation.

10.3 Discussion

This lab is the first of three labs that cover procedure calling conventions on the SPARC.
In this lab we consider the conventions associated with leaf procedures: procedures that
do not make calls to other procedures. In Lab 11 we consider the use of register windows
on the SPARC. In Lab 12 we complete our coverage of procedure calling conventions by
considering the standard calling conventions used by compilers.

10.3.1 Register usage

The SPARC Architecture Manual describes a class of procedures called “optimized leaf
procedures.” As we have noted, a leaf procedure is a procedure that does not call any
other procedures. Optimized refers to restrictions placed on the procedure’s use of the
registers.

Table 10.1 summarizes register uses for optimized leaf procedures. This table specifies
which registers can be modified by a leaf procedure. Registers %r8–%r13 are used for
parameters passed to the leaf procedure. The first parameter (i.e., the leftmost parameter)
should be placed in %r8, the next in %r9, and so forth. Note that %r8 is used for the first
parameter and the return value.

Beyond the registers used to pass parameters to the leaf procedure, there are a few
other conventions in Table 10.1 that are worth noting. Register %r1 can always be used as a
temporary register and the caller cannot assume that it will retain its value across a call to a
leaf procedure. We have frequently used this register in the sethi instructions used with the
load and store instructions, and you can continue to do this in leaf procedures. The stack
pointer is stored in %r14. We will discuss the use of the stack pointer when we consider
stack based calling conventions in Lab 12. For the moment, note that a leaf procedure
should not alter the value stored in register %r14. Finally, note that the return address

71

72 Lab 10. Leaf Procedures on the SPARC

Table 10.1 Register usage for optimized leaf procedures

Register(s) Use Changed by leaf procedure
%r0 zero No
%r1 temporary Yes
%r2–%r7 caller’s variables No
%r8 return value Yes
%r8–%r13 parameters Yes
%r14 stack pointer No
%r15 return address Yes
%r16–%r31 caller’s variable No

(actually, the address of the call instruction used to call the leaf procedure) is stored in
register %r15. A leaf procedure can alter this register; however, it will be difficult to return
to the point of the call if you alter the value in%r15.

An optimized leaf procedure should only alter the values stored in registers %r1 and
%r8–%r13. If the leaf procedure requires more local storage than these registers provide,
or if the parameters do not fit in these registers, the leaf procedure cannot be implemented
as an “optimized” leaf procedure. We will discuss the techniques use to implement other
types of procedures in the next two labs.

10.3.2 Calling sequence

In assembly language, a procedure is a block of instructions. The first instruction in this
block is labeled by the name of the procedure.

Table 10.2 summarizes the operations used to call and return from optimized leaf proce-
dures. Like the branching operations introduced in Lab 3, these operations have a branch
delay slot. The call and link operation saves the current value of the PC in %r15, updates
the PC, and sets the nPC to the address specified in the call. The retl operation updates
the PC and sets to nPC to the contents of %r15 plus eight. The “plus eight” is needed to
skip over the call instruction and the instruction in the delay slot of the call. Examples 10.1
and 10.2 illustrate the use of these operations.

Table 10.2 The call and retl operations

Operation Assembler syntax Operation implemented
call and link call label %r15 = PC

PC = nPC
nPC = label

return from leaf retl PC = nPC
nPC = %r15 + 8

Example 10.1 Write SPARC procedure that prints a NULL terminated string. The address of the string to
print will be passed as the first parameter (i.e., in %r8).

.text
! pr_str - print a null terminated string
!
! Parameters: %r8 - pointer to string (initially)
!

Lab 10. Leaf Procedures on the SPARC 73

! Temporaries: %r8 - the character to be printed
! %r9 - pointer to string
!

pr_str: mov %r8, %r9 ! we need %r8 for the "ta 1"
pr_lp: ldub [%r9], %r8 ! load character

cmp %r8, 0 ! check for null
be pr_dn
nop
ta 1 ! print character
ba pr_lp
inc %r9 ! increment the pointer

pr_dn: retl ! return from leaf procedure
nop ! (branch delay)

Example 10.2 Write a SPARC assembly language fragment that calls the procedure presented in Exam-
ple 10.1.

.data
str: .asciz "Hello, World!nn"

.text
main: set str, %r8 ! setup the first argument

call pr_str ! call print string
nop ! (branch delay)

end: ta 0 ! exit gracefully

10.3.3 Instruction Encodings

We have introduced two new instructions in this lab: call and retl. Figure 10.1 illustrates
the format used to encode call instructions. This instruction encoding uses two fields. The
first field holds the 2-bit value 01, the second holds a 30-bit displacement for the program
counter. This field is encoded in the same fashion as the displacement field for the condi-
tional branch instructions (see Lab 9 for more details).

31 30 29 0

01 disp30

Figure 10.1 Instruction format for call instructions

Example 10.3 Show how the call instruction in the following SPARC assembly code fragment is encoded.
.text

main: set str, %r8 ! setup the first argument
call pr_string ! call print string
nop ! (branch delay)
ta 0 ! exit gracefully

pr_string:
mov %r8, %r9 ! we need %r8 for the "ta 1"

74 Lab 10. Leaf Procedures on the SPARC

In this case, the target is 3 instructions from the call instruction, so the disp30 field is set to the 30-bit
binary encoding of 3.
This leads to the following machine instruction:

31 30 29 0
01 0000 0000 0000 0000 0000 0000 0000 11

That is, 0100 0000 0000 0000 0000 0000 0000 0011 in binary, or 0x40000003.

The retl instruction is actually a synthetic instruction that is translated to a jmpl (jump
and link) instruction. The jmpl instruction has two operands: an address, and a destination
register. The address is similar to the addresses used in the load and store instructions;
however, the brackets surrounding the address in the load and store instructions are omit-
ted in the jmpl instruction. When a SPARC processor executes a jmpl instruction, it saves
the address of the jmpl instruction in the destination register and sets the next program
counter to the address specified in the instruction. Figure 10.2 illustrates the formats used
to encode jmpl instructions.

A. Instructions of the form: jmpl rs1+rs2, rd
31 30 29 25 24 19 18 14 13 12 5 4 0

10 rd 111000 rs1 0 unused(zero) rs2

B. Instructions of the form: jmpl rs1+siconst13, rd

31 30 29 25 24 19 18 14 13 12 0

10 rd 111000 rs1 1 siconst13

Figure 10.2 Instruction formats for jmpl instructions

The retl instruction is translated to a jmpl instruction with the address set to %r15+8
and the destination register set to %r0. That is, the target of the branch is instruction after
the branch delay slot of the call instruction (remember, call instruction saved its address in
%r15), and the address of the retl instruction is discarded (saved in %r0).

Example 10.4 Show how a retl instruction is encoded.

A retl instruction is translated to the instruction jmpl %r15+8, %r0. This instruction is encoded using
the second format shown in Figure 10.2. Figure 9.3. As such, we must determine the values for the
rd, rs1, and siconst13 fields. The following table summarizes these encodings:

Field Symbolic value Encoded value
rd %r0 00000
rs1 %r15 01111
siconst13 8 0000 0000 0100 0

These encodings lead to the following machine instruction:
31 30 29 25 24 19 18 14 13 12 0
10 00000 111000 01111 1 0000 0000 0100 0

That is, 1000 0001 1100 0011 1110 0000 0000 1000 in binary, or 0x81C3E008.

10.4 Summary

A leaf procedure is a procedure that never calls any other procedure. In this lab we have
introduced the SPARC instructions used to write leaf procedures: call and retl. In the next
two labs, we will examine more general procedure calling conventions.

Lab 10. Leaf Procedures on the SPARC 75

10.5 Review Questions

1. xxx

10.6 Exercises

1. Write a SPARC assembly language program consisting of of a main program and a
procedure, “pr octal”, that prints an unsigned integer in octal notation.

2. Write a SPARC assembly language program consisting of of a main program and a
procedure, “pr hex”, that prints an unsigned integer in hexadecimal notation.

3. Write a SPARC procedure, called “strcmp”, that compares two strings. Your proce-
dure should accept two parameters, s1 and s2, both pointers to NULL terminated
strings. Your procedure should return an integer based on the comparison. In partic-
ular,

� if (s1 < s1) return �1;
� if (s1 > s2) return 1;
� if (s1 == s2) return 0;

You should also provide a small driver to test your procedure.
4. Write a SPARC procedure, called “strchr”, that returns a pointer to the first occur-

rence of a character within a string. The first parameter should be a pointer to a
string. The second parameter should be the character search for. If the character is
not present in the string, the procedure should return NULL (i.e., 0).
You should also provide a small driver to test your procedure.

5. Write a procedure to draw a black pixel at an arbitrary (x, y) location on the GX
device. The C declaration for the procedure would be:
void draw pixel(int x, int y)

76 Lab 10. Leaf Procedures on the SPARC

Laboratory 11
Register Windows

11.1 Goal

To introduce register windows.

11.2 Objectives

After completing this lab, you will be able to use:

� Register windows,
� The save and restore operations,
� The (synthetic) return operation.

11.3 Discussion

In this lab we introduce a more general procedure calling mechanism that uses register
windows. We introduce the save and restore instructions and another synthetic instruction,
ret, for returning from procedures.

11.3.1 Register Windows

To this point, we have used the %r names for the integer registers. From this point on,
we will use the alternate names for these registers. The alternate names are shown in
Table 11.1.

Table 11.1 Names for the integer registers

Integer registers Alternate names Group name
%r0–%r7 %g0–%g7 Global registers
%r8–%r15 %o0–%o7 Output registers
%r16–%r23 %l0–%l7 Local registers
%r24–%r31 %i0–%i7 Input registers

The alternate names reflect the uses of the registers when procedures use register win-
dows. The global registers (%g0–%g7) are shared by all procedures. The output registers
are used for parameters when calling another procedure. That is, the output registers are
outputs from the caller to the called procedure. The local registers (%l0–%l7) are used to
store local values used by a procedure. The input registers (%i0–%i7) are used for the pa-
rameters passed into the procedure. That is, the input registers are inputs passed from the
caller to the called procedure.

77

78 Lab 11. Register Windows

When you consider the relationship between the output and input registers, the trick is
to make the caller’s output registers the same as the called procedure’s input registers. On
the SPARC, this is done using overlapping register windows.

All procedures share the global registers (%g0–%g7). The remaining registers, %o0–
%o7, %l0–%l7, and %i0–%i7, are called a register window. When a procedure starts its ex-
ecution, it allocates a set of 16 registers (using the save instruction as described in the fol-
lowing section). The new register set provides the procedure with its own output and local
registers (%o0–%o7 and %l0–%l7). The procedure’s input registers (%i0–%i7) are over-
lapped with the caller’s output registers. Figure 11.1 illustrates the overlapping of register
windows between the caller and the callee.

Global registers

%g0 (%r0)
%g1 (%r1)
%g2 (%r2)
%g3 (%r3)
%g4 (%r4)
%g5 (%r5)
%g6 (%r6)
%g7 (%r7)

Callee’s
register
window

6

?

Overlap

6

?

Caller’s
register
window

6

?

Callee’s
Names

Caller’s
Names

%o0 (%r8)
%o1 (%r9)
%o2 (%r10)
%o3 (%r11)
%o4 (%r12)
%o5 (%r13)
%o6 (%r14), %sp
%o7 (%r15)
%l0 (%r16)
%l1 (%r17)
%l2 (%r18)
%l3 (%r19)
%l4 (%r20)
%l5 (%r21)
%l6 (%r22)
%l7 (%r23)
%i0 (%r24)
%i1 (%r25)
%i2 (%r26)
%i3 (%r27)
%i4 (%r28)
%i5 (%r29)
%i6 (%r30), %fp
%i7 (%r31)

%o0 (%r8)
%o1 (%r9)
%o2 (%r10)
%o3 (%r11)
%o4 (%r12)
%o5 (%r13)
%o6 (%r14), %sp
%o7 (%r15)
%l0 (%r16)
%l1 (%r17)
%l2 (%r18)
%l3 (%r19)
%l4 (%r20)
%l5 (%r21)
%l6 (%r22)
%l7 (%r23)
%i0 (%r24)
%i1 (%r25)
%i2 (%r26)
%i3 (%r27)
%i4 (%r28)
%i5 (%r29)
%i6 (%r30), %fp
%i7 (%r31)

Figure 11.1 Overlapping register windows

Lab 11. Register Windows 79

In addition to the register names we have discussed, Figure 11.1 introduces two new
names: %sp and %fp. The first of these, %sp, denotes the stack pointer. In an assembly
language program, %sp is simply another name for %o6. Similarly, %fp denotes the frame
pointer and is simply another name for %i6. We will discuss the special uses of these
registers (and hence the additional names) in the next lab when we consider stack frame
organization.

An implementation of the SPARC integer unit may have between 40 and 520 integer
registers. Every SPARC has 8 global registers, plus a circular stack of 2 to 32 register sets.
Each register set has 16 registers. The number of registers sets is implementation depen-
dent. Number of register sets provided a particular implementation of the SPARC architec-
ture has been given the name NWINDOWS. ISEM provides 32 register sets, the maximum
number supported by the SPARC Architecture. Most hardware implementations provide
7 or 8 register sets.

11.3.2 Save and Restore

The current window in the integer registers is given by the current window pointer (CWP).
The CWP is stored in the lower five bits of the processor status register (PSR). The save and
restore instructions let the programmer to manipulate the CWP.

Table 11.2 summarizes the SPARC save and restore operations. SPARC assemblers pro-
vide two instruction formats for save instructions and three formats for restore instructions.
Both formats for the save instruction and the first two formats for the restore instruction
use three explicit operands—two source operands and a destination operand. In the first
format, both source operands are in registers. In the second format, one source operand
is in a register, the other is specified using a small constant value. This constant may be
positive or negative; however its 2’s complement representation must fit in 13 bits. Its im-
portant to note, for both the save and restore operations, that the destination register is in
the register window after the CWP has been modified. The restore instruction also has a
format that doesn’t have any operands.

Table 11.2 Saving and restoring register windows

Operation Syntax Operation implemented
save caller’s save rs1, rs2, rd res = reg[rs1]+reg[rs2]
register window CWP = (CWP�1) % NWINDOWS

reg[rd] = res
save rs1, siconst13, rd res = reg[rs1]+siconst13

CWP = (CWP�1) % NWINDOWS
reg[rd] = res

restore caller’s restore rs1, rs2, rd res = reg[sr1]+reg[sr2]
register window CWP = (CWP+1) % NWINDOWS

reg[rd] = res
restore rs, siconst13, rd res = reg[rs]+siconst13

CWP = (CWP+1) % NWINDOWS
reg[rd] = res

restore CWP = (CWP+1) % NWINDOWS

80 Lab 11. Register Windows

11.3.3 Stack management

The operands of the save instruction are commonly used to allocate space for a stack frame.
We’ll discuss the stack and stack frames at greater length in the next lab. However, to the
save and restore instructions correctly, you must allocate and maintain a runtime stack.

The runtime stack grows from higher to lower addresses. The stack pointer (%r14, %o6)
should be aligned on an 8 byte address at all times. For now, we’ll use the operands of the
save instruction to subtract 96 from the stack pointer (%sp). The reason for this will be
clearer in the next lab.

In most cases, you will simply use the restore instruction with no arguments to restore
the caller’s register window. However, you can occasionally use the other versions of this
instruction to return a value from a procedure.

11.3.4 Procedure calling conventions

From the caller’s perspective using register windows does not change anything about how
it interacts with the called procedure. The caller still puts the outgoing parameters in reg-
isters %o0–%o5 (%r8–%r13) and expect the result in %o0 (%r8). Moreover, the caller may
assume that registers %g0, %g2–%g7, %o6 (%sp), %l0–%l7, and %i0–%i7 will not be al-
tered by the called procedure. Finally, the caller uses the call instruction introduced in the
previous lab to transfer control to the called procedure.

From the perspective of the called procedure, things have changed quite a bit. As soon
as control is transferred to the procedure, it needs to save to the caller’s register window.
In the body of the procedure, you can modify %g1, %i0–%i5, %l0–%l7, and %o0–%o6. You
could also modify %i7; however, %i7 holds the return address, so it’s not a good idea to
change it. Finally, just before returning control to the caller, the called procedure needs to
restore the caller’s register window.

The instruction used to restore the caller’s register window is usually put in the branch
delay slot of the instruction used to return control to the caller. Because the caller’s register
window has not been restored when the called procedure issues the return instruction, the
return instruction needs to use %i7 in calculating the return address instead of %o7 (%r15).
SPARC assemblers provide the ret instruction for this purpose. Table 11.3 summarizes the
call and return instructions.

Table 11.3 The SPARC call and ret operations

Operation Syntax Operation implemented
call and link call label %o7 = PC

PC = nPC
nPC = label

return from procedure ret PC = nPC
nPC = %i7 + 8

Example 11.1 Write a SPARC assembly language procedure, pr str, that will print a NULL terminated
string. Your procedure should take a single argument, the address of the string to print. In writing this
procedure, you should assume that the procedure pr ch is available for printing a character.

.text
! pr_str - print a null terminated string
!
! Temporaries: %i0 - pointer to string

Lab 11. Register Windows 81

! %o0 - character to be printed
!
pr_str: save %sp, -96, %sp ! PROLOGUE - save the current window and

! allocate the minimum stack frame

pr_lp: ldub [%i0], %o0 ! load character
cmp %o0, 0 ! check for null
be pr_dn
nop
call pr_char ! print character
nop
ba pr_lp
inc %i0 ! increment the pointer (branch delay)

pr_dn: ret ! EPILOGUE return from procedure and
restore ! restore old window; no return value

Example 11.2 Write a “main” SPARC assembly language fragment that allocates space for the stack and
calls the pr str procedure in the previous example.

.data
str: .asciz "Hello, World!nn"

.align 8
stack_top:

. = . + 2048
stack_bot:

.text
start:

set stack_bot-96, %sp ! initialize the stack and allocate
! the minimum stack frame

set str, %o0 ! initialize pointer to str
call pr_str ! call print string
nop ! (branch delay)

end: ta 0

Example 11.3 Write a procedure that recursively calculates the Nth Fibonacci number. You may assume
that N is non-negative and will be small enough that register overflow will not occur.

! fib - calculate the Nth Fibonacci number
!
! fib(N) = fib(N-1) + fib(N-2)
! fib(0) = fib(1) = 1

fib: save %sp, -96, %sp ! PROLOGUE

cmp %i0, 1
bg fib_call ! call recursively
nop

ret ! EPILOGUE
restore %g0, 1, %o0 ! return 1

82 Lab 11. Register Windows

fib_call:
call fib ! call with N-1
sub %i0, 1, %o0 ! (branch delay)
mov %o0, %l0 ! %l0 = fib(N-1)

call fib ! call with N-2
sub %i0, 2, %o0 ! (branch delay)

ret ! EPILOGUE
restore %l0, %o0, %o0 ! return fib(N-1) + fib(N-2)

11.3.5 Exceptions

Both the save and restore operations can generate exceptions (or traps). Before the CWP is
modified, the bit in the WIM cooresponding to the new value for the CWP is tested. If the
bit in the WIM is 1, an exception is generated. For a save instruction, this causes a window
overflow trap. For a restore instruction, this causes a window underflow trap.

These traps are normally handled by the operating system and are transparent to the
application programmer. In tkisem these traps are handled by the rom code. We will discuss
the code used to handle these traps in Lab 17.

11.3.6 Instruction encoding

We have introduced three new instructions in this lab: save, restore, and ret. The save and
restore instructions are encoded as data manipulation instructions (the instruction formats
are shown in Figure 9.3). The restore instruction with no operands is actually a synthetic
instruction in which all of the operands are %g0. Table 11.4 summarizes the encodings of
the op3 field for the save and restore instructions.

Table 11.4 Encoding op3 in save and restore instructions

Instruction op3

save 111100
restore 111101

Like the retl instruction, the ret instruction is a synthetic instruction, based on the jmpl
instruction. The ret instruction is translated to jmpl %i7+8, %g0.

11.4 Summary

This lab presents a more general mechanism for procedures on the SPARC. Register win-
dows provide easy access to a large collection of registers and can reduce the need to save
registers in memory. While this mechanism has many advantages there are several dis-
advantages to keep in mind. The mechanism only provides six registers for procedure
parameters. If you write a procedure with more than six parameters, you will need to to
use the stack for any parameters beyond six. Secondly, most implementations only have 7
or 8 register sets. So, if your call sequence gets deeper than NWINDOWS (as it probably
will in most recursive procedures), you are again forced to use the stack.

Lab 11. Register Windows 83

11.5 Review Questions

11.6 Exercises

1. Write a procedure which will draw a bitmap at an arbitrary (x, y) location on the GX
device. The bitmap is described by an array of chars, a width, and a height (i.e., the
X Windows bitmap format) The C declaration for the procedure would be:
void draw bitmap(char* bits, int w, int h, int x, int y)
The draw bitmap procedure should make use of the draw pixel procedure (from the
previous lab).

2. Write a procedure that “tiles” a bitmap to the GX display. The procedure should call
draw bitmap for the first tile. But, for all of the subsequent tiles, you should use the
GX BLIT operation. The C declaration for the procedure would be:
void tile bitmap(char* bits, int w, int h)
Don’t forget to clip the border tiles appropriately.

84 Lab 11. Register Windows

Laboratory 12
Standard Calling Conventions

12.1 Goal

To cover the standard procedure calling conventions for the SPARC.

12.2 Objectives

After completing this lab, you will be able to write assembly language procedures that:

� Follow the standard calling conventions for the SPARC,
� Call C functions, and
� Can be called from C.

12.3 Discussion

In most cases, you will not want to write entire programs in assembly language. Instead,
you will want to write most of the program in a high-level language (like C) and only write
a few procedures in assembly language—the procedures that cannot be easily optimized
in the high-level language or that need to take advantage of special features provided by
the machine.

In this lab, we complete our presentation of the SPARC application binary interface
(ABI). The SPARC ABI is a set of conventions that are expected to be folowed by all com-
pilers and assembly language programmers. These conventions cover the uses of registers
and the structure of the stack frame. If you follow the conventions specified by the SPARC
ABI in your assembly language procedures, it will be possible to call your proceudres from
procedures written in high-level languages. You will also be able to call procedures written
in high-level languages from your assembly language procedures.

In Lab 10 we covered the portion of the SPARC ABI that deals with optimized leaf
procedures. In Lab 11 we covered the conventions related to register usage for procedures
that are not implementd as optimized leaf procedures. In this lab we cover the conventions
related to the allocation and structure of stack frames. Throughout this lab we will assume
that we are not implementing an optimized leaf procedure.

12.3.1 The allocation of stack frames

The stack pointer is stored in register %o6. In assembly language, this register can be
referenced using the alias %sp. Due to the overlap of register windows, the stack pointer
for the calling procedure is always available in register %i6. In SPARC terminology, the
previous stack pointer is called the frame pointer and can be accessed using the alias %fp.
The stack grows from addresses with larger numbers to addresses with smaller numbers.

85

86 Lab 12. Standard Calling Conventions

As such, allocation of a stack frame is implemented by subtracting a value from the current
stack pointer (actually, this usually done by adding a negative number to the stack pointer).

Caller’s
stack
frame

Current
stack
frame

-

-

%fp (=%i6)
(previous %sp)

%sp (=%o6)

larger
addresses

smaller
addresses

6

Stack
growth

Figure 12.1 Stack frame allocation in the SPARC ABI

12.3.2 Parameters

As we noted in the previous two labs, registers %o0–%o5 are used for the first six param-
eters passed to a procedure. If a procedure has more than 6 parameters, the remaining
parameters are passed on the stack. SPARC procedures do not push parameters (beyond
the sixth parameter) onto the procedure call stack. Instead, they allocate space in their stack
frame for the parameters and copy parameters into this space. This means that the called
procedure will find its parameters (beyond the sixth) in the caller’s stack frame. The called
procedure can access these parameters using the frame pointer (%fp) with positive offsets.

12.3.3 Stack frame organization

As a minimum, every procedure that is not implemented as an optimized leaf procedure
(i.e., any procudure that executes a save instruction) must allocate a stack frame or 64
bytes. This space will be used to store the input and local registers (%i0–%i7 and %l0–%l7)
allocated by this procedure should you run out of register windows in a later procedure
call.

Every nonleaf procedure must allocate an additional 7 words (28 bytes) in its stack
frame. The first word of this space is used to store a “hidden” parameter. The hidden
parameter is used for procedures that return structured values. Procedures that return
simple values use %i0 (the caller’s %o0) to return the result. However, if a procedure

Lab 12. Standard Calling Conventions 87

returns a structured value, the result may not fit in a register. In this case, the ccalling
procedure must allocate space for the return value (probably in its stack frame). The calling
procedure then puts the address of this space into the hidden parameter before making the
call.

The remaining 6 words can be used by the called procedure to store the first six ar-
guments (the ones passed in %o0–%o5). In most cases, the called procedure will be able
to access these parameters in the registers %i0–%i5 and will not need to store them in the
caller’s stack frame. However, if the called procedure needs to take the address of a param-
eter, it needs to store the parameter into memory (you can’t take the address of a register).

In addition to the regions that we have discussed, a procedure may allocate additional
stack space for: alignment (the stack pointer should always be a multiple of 8), outgoing
parameters (beyond the sixth parameter), automatic local arrays and other automatic lo-
cal variables that don’t fit in the local registers %l0–%l7, temporaries, and floating point
registers. Figure 12.2 illustrates the organization of a SPARC stack frame.

automatic
local

variables

temporaries
and pad

outgoing
parameters

past the sixth

space for
the first six
parameters

hidden parameter

space for
%i0–%i7

and %l0–%l7

-%fp

-%fp� (4 � l)

-%sp + (92 + 4 � p)

-%sp + 92

-%sp + 68

-%sp + 64

-%sp

required
for all

procedures

6

?
required

for nonleaf
procedures

6

?

Figure 12.2 Stack frame organization

Example 12.1 Translate the following C function into a SPARC procedure.

88 Lab 12. Standard Calling Conventions

int add7(int p1, int p2, int p3, int p4, int p5, int p6, int p7)
f

return p1 + p2 + p3 + p4 + p5 + p6 + p7;
g

In this case, the parameters p1–p6 will be in registers %i0–%i5. The parameter p7 will be in the
caller’s stack frame at offset 92 (that is, %fp + 92).

.text
add7: save %sp, -64, %sp ! this is a leaf procedure

ld [%fp+92], %l0 ! we’ll eventually need p7

add %i0, %i1, %i0 ! add in p2
add %i0, %i2, %i0 ! add in p3
add %i0, %i3, %i0 ! add in p4
add %i0, %i4, %i0 ! add in p5
add %i0, %i5, %i0 ! add in p6

ret
restore %i0, %l0, %o0 ! add in p7

Example 12.2 Translate the following C function which includes a call to the function defined in exam-
ple 12.1

int test(int x1, int x2)
f

int l1, l2;

l1 = x1 + x2;
l2 = x2 - x1;
return add7(x1, x2, l1, l2, l1+l2, l2-l1, l2+l2);

g

.text
test: save %sp, -(92+4), %sp ! allocate the minimum stack frame

! (includes a 4 byte ‘‘alignment’’
pad)

add %i0, %i1, %l0 ! l1 = x1 + x2;
sub %i1, %i0, %l1 ! l2 = x2 - x1;

mov %i0, %o0 ! first parameter
mov %i1, %o1 ! second parameter
mov %l0, %o2 ! third parameter
mov %l1, %o3 ! fourth parameter
add %l0, %l1, %o4 ! fifth parameter
sub %l1, %l0, %o5 ! sixth parameter

add %l1, %l1, %l2 ! temp = l2+l2
call add7
st %l2, [%sp+92] ! seventh parameter (delay slot)

ret
restore %g0, %o0, %o0 ! return the result to caller’s %o0

Lab 12. Standard Calling Conventions 89

It is also common to access local variables stored in the stack using negative offsets from
the frame pointer.

Example 12.3 Translate the following C function into a SPARC procedure. You should assume that the
procedures “read int” and “write int” are defined elsewhere.

void read10()
f

int i;
int a[10];

for(i = 0 ; i < 10 ; i++) f

a[i] = read_int();
g

for(i = 9 ; i >= 0 ; i--) f

write_int(a[i]);
g

g

In this case, we will use %l0 for i (scaled by 4) and the array a will be stored in the local space starting
at %fp�40.

.text
add7: save %sp, -(92+4*10+4), %sp ! we need 40 words for the array

sub %fp, 40, %l1 ! l1 points to the start of the
array

clr %l0 ! i = 0

top1: call read_int
nop
st %o0, [%l1+%l0] ! a[i] = read_int();

inc %l0, 4 ! increment i += 4
cmp %l0, 40 ! i < 10*4
bl top1
nop

mov 36, %l0 ! i = 9*4
top2: ld [%l1+%l0], %o0 ! write_int(a[i])

call write_int
nop

deccc %l0, 4 ! i -= 4
bge top2 ! i >= 0
nop

ret
restore

90 Lab 12. Standard Calling Conventions

12.4 Summary

12.5 Review Questions

12.6 Exercises

Laboratory 13
Integer Arithmetic on the SPARC

13.1 Goal

To cover

13.2 Objectives

After completing this lab, you will be able to write SPARC programs that:

� Implement multiple precision arithmetic.

13.3 Discussion

13.4 Summary

13.5 Review Questions

13.6 Exercises

91

92 Lab 13. Integer Arithmetic on the SPARC

Laboratory 14
The Floating Point Coprocessor

14.1 Goal

To cover the floating point coprocessor on the SPARC.

14.2 Objectives

After completing this lab, you will be able to write SPARC programs that:

� Use floating point operations.

14.3 Discussion

14.4 Summary

14.5 Review Questions

14.6 Exercises

93

94 Lab 14. The Floating Point Coprocessor

Laboratory 15
Linking and Loading

15.1 Goal

To cover the translation process implemented by the ISEM tools.

15.2 Objectives

After completing this lab, you will:

� coff

15.3 Discussion

15.4 Summary

15.5 Review Questions

15.6 Exercises

95

96 Lab 15. Linking and Loading

Laboratory 16
Traps

16.1 Goal

To cover the basic SPARC trap mechanism and trap instructions.

16.2 Objectives

After completing this lab, you will be able to write trap handlers:

� trap always
� conditional traps

16.3 Discussion

16.3.1 The Processor Status Register (PSR)

Figure 16.1 presents the fields in the processor status register.

Figure 16.1 The processor status register

16.3.2 Address Spaces

As noted in Lab 1, the SPARC uses separate address spaces for data and text (code). In
fact, the SPARC provides (at least) four address spaces: the user instruction space, the
supervisor instruction space, the user data space, and the supervisor data space. When
the processor is in user state, instructions are fetched from the user instruction space while
data values are loaded from and stored to user data memory. Similarly, when the processor
is in supervisor mode, instructions are fetched from supervisor instruction space and data
values are, by default, loaded from and stored to supervisor data memory.

When the processor is in supervisor state, you can use special load and store instruc-
tions to access data values in alternate memory spaces. For examples, you can load a
value from the user data space, or store a value into the user instruction space. These in-
structions require an explicit address space indicator (ASI). Table 16.1 summarizes the ASI
values used for these instructions.

97

98 Lab 16. Traps

Table 16.1 Address Spaces on the SPARC

Address space ASI
User Instructions 7
Supervisor Instructions 8
User Data 9
Supervisor Data 10

16.3.3 The ROM Code

16.4 Review Questions

16.5 Exercises

1. Write a trap handler that will print a NULL terminated string in the user data space.
(Because the string is in the user data space and not in supervisor data space, you
cannot use “puts” function in rom.s to implement this trap.) The starting address of
the string will be available in
The functionality provided by this trap is not absolutely necessary. Application pro-
grams could attain equivalent functionality using multiple invocations of trap 1 (putc).
What is the advantage of providing this as an separate trap?

Laboratory 17
Exceptions and Exception
Handling

17.1 Goal

To cover exception handling on the SPARC.

17.2 Objectives

After completing this lab, you will:

� exception handlers.

17.3 Discussion

17.4 Summary

17.5 Review Questions

17.6 Exercises

99

100 Lab 17. Exceptions and Exception Handling

Laboratory 18
Interrupts and Interrupt Handling

18.1 Goal

To cover interrupts and interrupt handling on the SPARC.

18.2 Objectives

After completing this lab, you will:

� interrupt handlers.

18.3 Discussion

18.4 Summary

18.5 Review Questions

18.6 Exercises

101

102 Lab 18. Interrupts and Interrupt Handling

Laboratory 19
Context Switching

19.1 Goal

To cover context switching on the SPARC.

19.2 Objectives

After completing this lab, you will:

� multitasking.

19.3 Discussion

19.4 Summary

19.5 Review Questions

19.6 Exercises

103

104 Lab 19. Context Switching

	SPARC Registers
	Aliases for the integer registers
	Set instruction
	Load and store instructions
	Addition and Subtraction instructions
	Move instruction
	Setting the integer condition codes
	Branch instructions
	Branch instruction synonyms
	Comparison instruction
	Multiplication and division instructions
	Signed multiplication and division
	Move from/to Y register
	Bitwise logical instructions
	Bitwise logicals with condition codes
	Shift instructions
	Assembler directives and expressions
	Addressing modes
	Load and store (reprise)
	Operand sizes and memory allocation
	Load and store (full details)
	Unsigned loads
	MIscellaneous
	Instruction formats
	Synthetic instructions
	Leaf subroutines
	Register windows
	Calling conventions

