
-57-

Me~a~es vs. Remote Procedures
Is a False Dichotomy

/~tcAaag Lee Scott

Department of Computer Sciences
University of Wisconsin - Madison

12i0 W. Dayton
~[adison,]El 53706

ABSTRACT

This paper discusses some of the major design decisions that dis-
tir~uish recent language proposals for concurrent programming,
It is argued that the classification of languages as "procedure-
based" or "message-based" is misleading, in that it confuses two
independent issues. It is further argued that these issues are best
left undecided by the language designer.

1. I u t r o d u c t i o a

The last few years have seen the creation o[a large number of high-level
languages for concurrent programming. Since the publishing of Lauer and
Needharn's paper "On the Duality of Operating System Structures"[8] it has
been fashionable to divide such languages into two categories: procedure-based
languages and Inessage-based [an&uages. Unfortunately, at least t~e questions
must be asked to determine the category in which a particular language
belongs:

I) Does the sender of a message continue execution immediately, or does it
wait for a reply?

2) Are messages received explicitly by active processes, or does their arrival
automatically trigger the execution of some spec[fled body of code?

The rE'st of these questions involves the choice of a synchronization
mechanism. The second is really a matter of syntax. I intend to show that the
two questions are in fact 4.nW.epe~,t~e'n~; they give rise to jt~rur combinations of
answers, not two. Moreover, there are applications in which each of the combi-
nations is the method of choice, so a reasonable language nl~ht need to provide
more than one. I will return to these claims in sections 4 and 5 after first dis-
cussing the issues of synchronization and message receipt in greater detail.

2. Synchronization
Much recent effort has been devoted to the study of multi-eomputerso in

which separate processors have no memory in common. On such machines, all
interaction between processes must ultimately be achieved by means of mes-
sages. Because of this limitation, synchronization is subsumed in the semantics
o[the ~onH operation.

This workw~ ~p~edhy ~F ~tnumberMC~Sl~904~d ~Arpacon~actnumb~
N~141~IC1~87.

SIGPLAN Notices, Vi8 =5, May 1983

-58-

Liskov[9] has s u g g e s t e d t h r e e synchrordza t ion mecb~r~sms, These are

I) No-Wait Sand: After sending a message, a process continues execution
immediately.

5) SynchronizationS_end: A sender waits until its message has been received.

8) Remote Invocation ~eD/i: A sender waits until 42 receives a reply from the
r,~c e4m ~rr,

Only remote invocation ~ deserves the title 'procedure based.' Of
Liskov's three alternatives, it is the only one in which the sendim~ of a message
is designed to bring about the execution of a remote operation- a procedure --
on the sender's behalf. The other two options are clearly 'message-based;' they
simply transfer information. Under this nomenclature, Brineh Hansen's Distri-
buted Processes[l] is procedure-based. So are Ada[ll], Communication
Port[10], and the various languages based on monitors. • CSP[8], on the other
hand, is message-based, as are PLITS[4] and Extended CLU[9].

Me~sage Rece ip t

Many c o n c u r r e n t l anguages provide a ~ ope ra t i on t h a t can be exe-
c u t e d l ike any o t h e r ins t ruc t ion . Examples inc lude Ada, Communica t i on Por t ,
C~P, PLYI~, and Ex tended CLU. These languages d e m o n s t r a t e a fairly wide
w_riety of syn tax in the i r r espec t ive vers ions of r.e.aeA.v.e~ but t hey all have one
thing in common: Message r e c e i p t is an ex/~I/c/t operat ion, p e r f o r m e d by an
a l ready-ac t ive process .

By cont ras t , Dis t r ibu ted P r o c e s s e s and the var ious mon i to r languages have
no r~c~i.v.a ope ra t i on at all. Rather , t h e y provide a m e c h a n i s m for handl ing
incoming messages t h a t looks ve ry m u c h like an o rd ina ry sequent ia l p r o c e d u r e .
The arr ival of a mes sage t r i gge r s the e x e c u t i o n of an appropr i a t e body of code,
m u c h a s an i n t e r r u p t t r iggers its hand le r . With such a m e c h a n i s m , message
r e c e i p t is izn.plici2; i t is no t p e r f o r m e d by any act ive process .

It s e e m s r easonab le to desc r ibe explici t r e ce ip t as 'message-based ' and
impl ic i t r e ce i p t as ' p rocedure -based . ' With this c lassif icat ion sys tem, bo th Com-
m u n i c a t i o n P o r t and Aria a re message -based . They were p r o c e d u r e - b a s e d in
section 2.

4. Inde l~endence of S y n c h r o n i z a t i o n a n d Message Rece ip t

Some languages fall nea t ly into the p r o c e d u r e - b a s e d / m e s s a g e - b a s e d dicho-
tomy; it m a k e s no d i f fe rence whe the r we base the c lass i f icat ion on the synchron-
izat ion m e c h a n i s m or the fo rm of mes sage rece ip t . Other languages a r e no t so
easy to pin down, Both Ada and Communication Port use remote invocation
send, but provide for the ezplicit receipt of messages. I know of no published
language that uses only implicit message receipt with one of the simpler syn-
chronization mechanisms. Cook's StarMod[3], however~ provides four di~erent
comb/nut/ons: both synchronization and remote invocation ~na paired with
both explicit and implicit message receipt.

® Some monitor languages (e.g. Modula[12]) allow the unrestricted use of shared data. This
can cause prob]erns for irap]eraentations on multi-computers. However, if we impose the
restriati~n (as in Concurent Pascal[2] and Yesa[7]) that uH ~ed data be protected within
rnonitors, then we can build fairly simple hnplementat~ons in which menitors receive mes-
sages conteirdzlg in parameters and send messages containing nut parameters.

-59-

The existence of languages like Ada, StarMod, and Communication Port
shows that synchronization and message receipt are independent issues. I sug-
gest that the popular term remote procedure call should be used only for the
combination of remote invocation senl with implicit message receipt.
"i~essage-based [an~ua4~e" and "procedure-based language" are ambiguous and
should be abandoned altogether.

5. The Need for Ya~ety

Which is the 'best' combination of synchronization and message receipt?
For synchronization, one is likely to prefer remote invocation se~ad whenever a
reply is expected. It has cleaner syntax than either other method, and it avoids
the two implicit acknowledgments needed to achieve similar results with syn-
chronization sen/. It may not be the best method, however, in situations that
require no reply, since it reduces concurrency. Moreover, there are some prob-
lems that are nearly impossible to solve cleanly ~th remote invocation san/f5].
These arise when one process requests a service from another (and eventually
expects to receive a reply), but may need to provide information to a third pro-
cess b~f~e the reply can be made. Clearly, no one synchronization mechanism
will be best for all applications.

Now consider the syntax of message receipt. When a server handles
requests from a community of clients,] fund implicit receipt to be more 'elegant'
tharl the explicit approach. There is something distasteful about a supposedly
active process that does nothing but sit in an infinite loop waitin~ for somethi~
to do:

J:nndnle server;
h e 4 =

wait for a message;
n a s a r e q u e s t n~

A:

B:
o . .

end nasa;

~Da server ,

The implicit a p p r o a c h is m o r e appealing:

J:nndnl.a server;
A:

aatz : B:
° . .

server .

For corout ines , on the o the r hand, implicit r ece ip t is definitely no t the m e t h o d
of choice. Consider the following:

-60-

producer ;

mine : buffer;
done : semaphore := O;
putit : semaphore := i;

oldstuff (.ant his : buffer);
2 (done);
his := mine:
X (putit);

2nil. oldstuff;

-- called by consumer

hB~in

2 (putit);
produce;
X (done);

~p~_~t~Aly;
And producer .

mnr]11]~ cons t l rner ;
h~in

~nnn
A

~.~l! producer , oldstuff(buffer);
coI1sume;

~ p ~ t ~ r l l y ;
p_nR C OICXSUIIIeF.

Equivalently, we may write

mndul~, c o n s u m e r ;

m ine : buffer;
done : s e m a p h o r e := 1;
got i t • s e m a p h o r e := O;

~nt.ry newstutl (m hers : buffer); -- cal led by p roduce r
2 (done):
mine := his;
X (gotit);

p.n~ newstuff;

hp.~in

]¢snn

(gout):
consume ;
X (done);

fnr~a, lr~ng t_imo;
~nH c o n s u m e r .

-61-

producer;

produce;
consurner, newstuff(buffer);

aqn u
pro duc er.

Neither solution is as attractive as the explicit approach:

w~ ,lule producer;
h Cn

produce;
s~. buffer he consumer;

and. Ina ;
RnH producer.

rnnfhll f~ consumer;

l n n n
L

r~c~iw buffer frnm producer;
c o n s u m e ;
Innp;

~nfl consumer.

As with synchronization, no one form of message receipt will be best for all
applications.

6. Conclusion

The discussions in sections 2, 3, and 4 have demonstrated that synchromza-
tion is an independent issue from the syntax of message receipt. Since both
issues are intuitively appealing bases on which to categorize languages as
'message-based' or 'procedure-based,' this independence casts serious doubt on
the validity of the message-based/procedure-based dichotomy. Moreover, the
examples of section 5 demonstrate that there are situations in which any one of
the possible combinations of synchronization and message receipt may be the
method of choice. It seems reasonable to let the programmer decide which
mechanism to use for each application. Just as a sequential language benefits
from the presence of several similar loop constructs, so might a concurrent
language benefit from the presence of several similar constructs for inter-
process communication.

Amknowledgment.s
My thanks to the members of the Charlotte and Crystal r e sea rch groups.

Special thouks to my advisor, Raphael Finkel, and to his colleague, Marvin
Solomon.

-62-

References

i. Brimch Hansen, P., "Distributed Processes: A Concurrent Programming Con-
cept," CACIJ 21(II) pp. 984-941 (November 1978).

2. Brmch Hamsen, P., "The ProgreJ.nming Language Concurrent Pascal," IEEE
T r a ~ c ~ s on Soft'maTe L'zginee~bzg ~-1(~) pp. 199--~07 (June 19'75).

8, Cook, R. P., "~Mod-A Language for Distributed Programming," IEEE Tra~-
s~c~o~ on Soft~u~Te Engineering S~=6(6) pp. 568-571 (November 1980).

4. Feldman, J. A., "HAgh Level Programming for Distributed Computing," CACM
e2(8) pp. 353-868 (June 1979).

5. Fimkel, E, A., "Tools for Parallel Programming," Appendix B of Second
Report, Wisconsin Parallel Array Computer (W]SPAC) Research Project,
University of Wisconsin Electrical and Computer Engineering Report #80-~7
(August 1980).

8, Hoare, C.A.R., "Cornrnunicating Sequential Processes," CACM 21(8) pp.
886-677 (August 1978),

7. Lampson, B. W. and D. D. Redell, "Experience with Processes and Monitors in
Mesa," CACM ~(~) pp. 105-117 (February 1980),

8. Lauer, H. C. and R. M. Needham, "On the Dua~ty of Operating System Struc-
tures," ACM Opez~{ng Systems Rev~e~ IS(Z)pp. 8-19 (April 1979), Origi-
nally presented at the Second International Symposium on Operating Sys-
tems, October 1978.

9, Liskov, B., "Primitives for Distributed Computing," Proceedings o/ the
Seventh ACM Symposium on Opera2ing Systems Principles, pp. 88-4~
(December 1979).

10. Mao, T.W. and R. T. Yeh, "Communication Port: A Language Concept for
Concurrent Programming," IEEE Trancactions on Softv~aze Engineering
SE--8(2) pp. 194-804 (March 1980).

11. United States Department of Defense, "Military Standard: Ada Programming
Language," (MIL-STD-!815) (10 December 1980).

12. Wirth, N., "Modula: a Language for Modular Multiprogramming," Soft~zave-
.Pr~,c#i, ce and E, zpe~-i, ence 7 pp. 8-85 (1977).

