%ﬁessages vs. Remote Procedures
is a False Dichotomy

Michael Lee Scotf

Department of Computer Sciences
University of Wisconsin - Madison
1210 W. Dayton
Madison, WI 53706

ABSTRACT

This paper discusses some of the major design decisions that dis-
tinguish recent language proposals for concurrent programming.
It is argued that the classification of languages as '‘procedure-
based’” or "'message-based” is misleading, in that it confuses two
independent issues. It is further argued that these issues are best
left undecided by the language designer.

1. Introduction

The last few years have seen the creation of a large number of high-level
languages for concurrent programming. Since the publishing of Lauer and
Needham's paper "‘On the Duality of Operating System Structures”[8] it has
been fashionable to divide such languages into two categories: precedure-based
languages and message-based languages. Unfortunately, at least fwo questions
must be asked to determine the category in which a particular language
belongs: :

1) Does the sender of a message continue execution immediately, or does it
wait for a reply?

2) Are messages received explicitly by active processes, or does their arrival
automatically trigger the execution of some specified body of code?

The first of these guestions involves the choice of a synchronization
mechanism. The second is really a matter of syntax. I intend to show that the
two questions are in fact independent; they give rise to four combinations of
answers, not two. Moreover, there are applications in which each of the combi-
nations is the method of choice, so a reasonable language might need to provide
more than one. I will return to these claims in sections 4 and 5 after first dis-
cussing the issues of synchronization and message receipt in greater detail.

2. Synchronization

Much recent effort has been devoted to the study of multi-computers, in
which separate processors have no memory in common. On such machines, all
interaction between processes must ultimately be achieved by means of mes-
sages. Because of this limitation, synchronization is subsumed in the semantics
of the send operation.

This work was supported by NSF grant number MCS-8105804 and by Afpa contract number
N0014/82/C/2087,

SIGPLAN Notices, V18 #5, May 1983

-57.-



Liskov[9] has suggested three synchronization mechanisms. These are

1) No-Wait Send: After sending a message, a process continues execution
imrnediately.

2) Synchronization Send: A sender waits until its message has been received.

3) Remote Invocation Send: A sender waits until i receives a reply from the
receiver,

Only remote invocation send deserves the title ‘procedure based.’ Of
liskov's three alternatives, it is the only one in which the sending of a message
is designed to bring about the execution of a remote operation — a procedure —
on the sender's behalf. The other two options are clearly 'message-based;’ they
simply transfer information. Under this nomenclature, Brinch Hansen's Distri-
buted Processes[1] is procedure-based. So are Ada[11], Communication
Port[10], and the various languages based on monitors.* CSP[8], on the other
hand, is message-based, as are PLITS[4] and Extended CLU[9].

3. lMessage Receipt

Many concurrent languages provide a receive operation that can be exe-
cuted like any other instruction. Examples include Ada, Communication Port,
CSP, PLITS, and Extended CLU. These languages demonstrate a fairly wide
variety of syntax in their respective versions of receive, but they all have one
thing in common: Message receipt is an explicit operation, performed by an
already-active process.

By contrast, Distributed Processes and the various monitor languages have
no receive operation at all. Rather, they provide a mechanism for handling
incoming messages that looks very much like an ordinary sequential procedure.
The arrival of a message triggers the execution of an appropriate body of code,
much as an interrupt triggers its handler. With such a mechanism, message
receipt is implicit; it is not performed by any active process.

It seems reasonable to describe explicit receipt as ‘message-based' and
implicit receipt as '‘procedure-based.’ With this classification system, both Com-
munication Port and Ada are message-based. They were procedure-based in
section 2.

4. Independence of Synchronization and Message Receipt

Some languages fall neatly into the procedure-based/message-based dicho-
tomy; it makes no difference whether we base the classification on the synchron-
ization mechanism or the form of message receipt. Other languages are not so
easy to pin down. Both Ada and Communication Port use remote invocation
2end, but provide for the explicit receipt of messages. 1 know of no published
language that uses only implicit message receipt with one of the simpler syn-
chronization mechanisms. Cook's StarMod[3], however, provides four different
combinations: both synchronization and remote invocation send paired with
both explicit and implicit message receipt.

¢ Some monitor languages (e.g. Modula[12]) allow the unrestricted use of shared data. This
can cause problems for implementations on multi~computers. However, if we impose the
restriction (as in Concurent Pascal[2] and Mesa][7]) that all shared date be protected within
monitors, then we can build fairly simple implementations in which monitors receive mes-
sages containing in parameters and send messages containing qut parameters.

~-58-~



The existence of languages like Ada, StarMod, and Communication Port
shows that synchronization and message receipt are independent issues. 1 sug-
gest that the popular term remote procedure call should be used only for the
combination of remote invocation send with implicit message receipt.
“"Message-based language' and “'procedure-based language’ are ambiguous and
should be abandoned altogether,

5. The Need for Variety

Which is the 'best’ combination of synchronization and message receipt?
For synchronization, one is likely to prefer remote invocation send whenever a
reply is expected. It has cleaner syntax than either other method, and it avoids
the two implicit acknowledgments needed to achieve similar results with syn-
chronization send. It meay not be the best method, however, in situations that
require no reply, since it reduces concurrency. Moreover, there are some prob-
lemns that are nearly impossible to solve cleanly with remote invocation send{5].
These arise when one process requests a service from another (and eventually
expects Lo receive a reply), but may need to provide information to a third pro-
cess before the reply can be made. Clearly, no one synchronization mechanism
will be best for all applications.

Now consider the syntax of message receipt. When a server handles
requests from a community of clients, I find implicit receipt to be more 'elegant’
than the explicit approach. There is something distasteful about a supposedly
active process that does nothing but sit in an infinite loop waiting for something
to do:

module server,

begin
loop

wait for a message;
case request of
A

B:
end case;
forever;
end server,
The implicit approach is more appealing:

modula server;
entry A:
en.h:y B:

end server.

For coroutines, on the other hand, implicit receipt is definitely not the method
of choice. Consider the following:

-590-



module producer;

yar
mine : buffer;
done : semaphore := 0;
putit : semaphore ;= 1;

entry oldstuff (aut his : buffer); -- called by consumer
B (done);
his := mine;
Y (putit);

end oldstufl;

begin
P (putit);

produce;
X (done);

repeatedly;
end producer.

module consumer;

begin

leap
call producer.oldstuff(buffer);

consume;
repeatedly:

end consumer.
Equivalently, we may write

module consumer;

yar
rnine : buffer;
done : semaphore ;= 1;
gotit : semaphore := 0;

entry newstuff (in hers : buffer); -- called by producer
P (done);
raine := his;
X (gotit);

end newstuff;

begin

P (gotit);
consume;
¥ (done);
for along time;
end consumer,

-60-



maodiile producer,
begin
loap

produce;
call consumer.newstuff{buffer);
equally long;
end producer.

Neither solution is as attractive as the explicit approach:

module producer;

begin
loop

produce;
send buffer ta consumer;
end loop;
end producer.

maodule consumer,
begin

receive buffer from producer;
consurne;
end loop;
end consumer.
As with synchronization, no one form of message receipt will be best for all
applications.

8. Conclusion

The discussions in sections 2, 3, and 4 have dernonstrated that synchroniza-
tion is an independent issue from the syntax of message receipt. Since both
issues are intuitively appealing bases on which to categorize languages as
‘message-based’ or 'procedure-based,’ this independence casts serious doubt on
the validity of the message-based/procedure-based dichotomy. Moreover, the
examples of section 5 demonstrate that there are situations in which any one of
the possible combinations of synchronization and message receipt may be the
method of choice. It seems reasonable to let the programmer decide which
mechanism to use for each application. Just as a sequential language benefits
from the presence of several similar loop constructs, so might a concurrent
language benefit from the presence of several similar constructs for inter-
process communication.

Acknowledgments
My thanks to the members of the Charlotte and Crystal research groups.
Special thanks to my advisor, Raphael Finkel, and to his colleague, Marvin

Solomon.

-61-



Reterences

1.

2.

10.

11.

12.

Brinch Hansen, P, “'Distributed Processes: A Concurrent Programming Con-
cept,’”” CACH 21(11) pp. 934-941 (Novermnber 1978).

Brinch Hansen, P., "The Programming Language Concurrent Pascal,” JEEE
Transactions on Software Engineering SE-1(2) pp. 199-207 (June 1975).

Cook, R. P., "*Mod—A Language for Distributed Programming,” IEEF Tran-
sactions on Software Fngineering SE-8(6) pp. 563-571 (Novermnber 1980).

Feldman, J. A, "High Level Programming for Distributed Computing,’ CACH
22(6) pp. 353-368 (June 1979).

Finkel, R, A,, "Tools for Parallel Programming,”’ Appendix B of Second
Report, Wisconsin Parallel Array Cornputer (WISPAC) Research Project,
University of Wisconsin Electrical and Computer Engineering Report #80-27
(August 1880).

Hoare, C. A R, "Communicating Sequential Processes,”’ CACH 21(8) pp.
668-877 (August 1978).

Lampson, B. W. and D. D. Redell, “Experience with Processes and Monitors in
Mesa,”” CACM 23(2) pp. 105-117 (February 1980).

Lauer, H. C. and R. M. Needham, “On the Duality of Operating System Struc-
tures,” ACM COperating Systems Review 13(2) pp. 3-18 (April 1979). Origi-
nally presented at the Second International Symposium on Operating Sys-
tems, October 1978.

Liskov, B., ''Primitives for Distributed Computing,”" Proceedings of the
Seventh ACHM Symposium on QOperaling Systems Principles, pp. 33-42
{December 1979).

Mao, T.W. and R. T. Yeh, "Communication Port: A Language Concept for
Concurrent Programming,” [EEE Trancactions on Software Engineering
SE-6(2) pp. 194-204 (March 1980).

United States Department of Defense, '‘Military Standard: Ada Programming
Language,” (MIL-STD-1815) (10 December 1980).

Wirth, N., "Modula: a Language for Modular Multiprogramming,'' Soffware—
Proctice and Experience 7 pp. 3-35 (1977).



