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ABSTRACT 

This note describes a simple mechanism for checking structural type equivalence across 
compilation units. The type of each external object is described in canonical form. A 
hash function compresses the description into a one- or two-word code. Type checking is 
then performed by any standard linker. without modifications. For distributed programs. 
type checking can be also performed at run rime. with minimal overhead. 

I. In troduction 

A type-checking mechanism for separate compilation must strike a difficult balance between 
correctness and conservatism. On the one hand. it should prevent the use of compilation units that 
make incompatible assumptions about their interface. On the other hand, it should cause as few 
unnecessary recompilations as possible. When definitions change, an ideal mechanism would 
recompile all and only those pieces of a program that would otherwise malfunction. Approaching 
this ideal has proven surprisingly difficult. enough so that many programming systems provide no 
checking whatsoever. 

We believe that a simple and easy-to-use type-checking mechanism for separate compilation is 
extremely important. We are particularly interested in a mechanism that can be extended to provide 
checking for messages exchanged between the separately-loaded modules of a distributed program. 
We describe a technique that achieves simplicity and efficiency at the expense of a small but non-zero 
probability of failure. 

2. Background 

There are two principal approaches to detlning type equivalence: name equivalence and struc­
tural equivalence [2]. Each has its own advantages and disadvantages [I I]. Each poses its own dif­
Hculties for separate compilation. 

In a language using name equivalence. each object is associated with a reference to the (lexical) 
declaration of its type. Each declaration defines a separate type, unique over space and time. 
Declarations never change: they are replaced by new and different versions, deHning new and dif­
ferent types. 

A type-checking mechanism for name equivalence implements a dependency DAG in which 
each program fragment points to the declarations used in its compilation. Each declaration may point 
to others, on which it in turn depends. Typical implementations [9,12.13] allow separate 
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compilation units to share files of declarations. A declaration file must be compiled before any com­
pilation unit that uses it. The compiled version contains a time stamp. Each object file names the 
compiled versions of the declaration files that were used in its own compilation. For distributed pro­
grams, the naming scheme must work across machines, so that copies of declaration files at separate 
sites appear to be the same. 

The bookkeeping required for enforcing name equivalence is simplified considerably by group­
ing declarations together in files. Unfortunately. that grouping also leads to an overly conservative 
mechanism. In effect, even the smallest change to a declaration file creates new versions of all the 
types the file contains. Any program unit that uses any of those types must then be recompiled. The 
problem is especially severe in programming systems like UW-Pascal [8], where all definitions are 
contained in a single environment file. A mechanism for extending an existing environment without 
invalidating its previous contents helps to some extent. 

Many of the problems just described disappear if we adopt the more liberal rules of structural 
type equivalence. These rules define a type as a particular arrangement of simpler types. Each type 
can be declared lexically any number of times The type-checking mechanism guarantees that 
interacting compilation units contain matching descriptions of the structure of their interface. As a 
matter of convenience, it may still be desirable to share tiles of declarations, but the type checking 
mechanism no longer depends on policing that sharing. All that matters is the COfllenl of declara­
tions, and that content is checked for each individual type. 

Structural type equivalence has been used with separate compilation in a number of existing 
compilers [1.5.6]. It introduces its own implementation problems. Each type declaration is put in 
canonical form and is inserted in the ~ymbol table of each object file that imports or exports an object 
of that type. A special-purpose linker is required to guarantee that importing and exporting files con­
tain identical canonical torms. The type information itself consumes a considerable amount of space. 
Comparing it byte-far-byte takes time. We can afford that time for relatively infrequent runs of the 
linker, but we cannot afford it for run-time checking on messages. 

3. The mechanism 

In a note on type checking with low-level linkers [3], Richard Hamlet credits one of his referees 
with the idea of using a hash function to compress the descriptions of types. We elaborate on this 
suggestion. We use structural equivalence for type checking across compilation units. but we do not 
insist on absolute security. By admitting the possibility that occasional type errors will go 
undetected, we eliminate the need for a special linker. reduce the size of object files, and allow effi­
cient run time message checking. 

In each object file. the compiler includes a one- or two-word hash code for each external object. 
The code for a variable depends on its name and on the canonical description of its type. The code 
for a procedure depends on its name and on the type and modes (but not the names) of its parame­
ters. Hash codes can be treated as ordinary symbols by any standard linker. Exporting modules 
-'define" the codes and importing modules declare them "undetlned.·· A utility program can 
translate -'missing symbol" errors from the linker into specific, useful type-clash messages. Such a 
utility is preferable to a special-purpose linker because it requires no knowledge of load-file formats 
or other operating system-specific details. 

The hashing technique extends readily to distributed programs that are linked and loaded in 
several pieces. In a circuit-switched network a sender and receiver can exchange hash codes when 
their circuit is created. In a packet-switched network they can exchange hash codes with each mes­
sage. In either case. the extra overhead of checking tor type consistency will be insignificant in com­
parison with the typical cost of communication 
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4. A convenient canonical form and hash function 

We have used hashing as a means of message type checking in an experimental distributed pro­
gramming language [10]. The data types in our language are similar to those of Pascal [4], except 
that there are no pointers. Pointers complicate matters; they are discussed in a subsequent section. 

Our hash function is defined on strings of symbols. Our symbol set includes the set of digits. as 
well as the symbols array, Boolean. case. character, end, enumeration, integer, operation, 
record, return, set, subrange. and to. Our messages are used to invoke remote operations. Logi­
cally. we obtain canonical forms by expanding the subparts of each type declaration recursively and 
by using an abbreviated syntax to express the results in as short a string as possible. The hash code 
of a remote operation is computed from the concatenation of the operation's name, the modes of its 
parameters, and the canonical descriptions of their types. 

In actuality, there is no need to compute explicit canonical forms. Our hash function treats a 
string of symbols as an integer base IV. where N is the size of the symbol set. It calculates the 
integer's residue modulo p. where p is a very large prime. During compilation we maintain two 
values for each type the program defines' the hash code and length of the type's canonical form. 
When a new type is defined in terms of existing ones. we can compute the new hash code and length 
from the stored information for the existing types. Suppose. for example. we are given the following 
declarations: 

A = 1..10; 
B = record 

i. j : integer: 
end; 

C = array [A] of B: 

We would like the hash code for C to be the same as the hash code for 

C = array [1..10] of record 
i, j : integer: 

end: 

This is precisely the result we obtain by letting 

hashval (C) [ a x Nhashlel7 (·1) .,- hasiIval (A)] X NlllL~h1ell (B) + hashval (8) . 

hash/en (C) I + hash/en (A) +- hash/en (8) , 

where a is the value of the symbol "array" as an N-ary digit. All arithmetic is carried out in the 
ring of integers mod p. Further details are contained in an appendix. 

5. The problem with pointers 

When pointers are present the above technique breaks down. The problem stems from the need 
for forward references in detlning circular structures. When a given type is first encountered we 
may not know the nature of its constituent parts. We can still derive a canonical description and 
hash code for each type. but we cannot do it incrementally the way we could above. 

Given a set of interrelated types. it is not difficult to determine which are structurally distinct, 
and which equivalent [7]. Symbol table entries for equivalent types can be coalesced. We can then 
use the string notation above. augmented with backpointers. to construct canonical descriptions for 
the types that remain. We expand each type declaration recursively until we encounter a cycle. We 
then insert a backpointer to the point where the cycle began. For example. the type 



sequence = record 

end; 

item: integer: 
next: 'sequence: 

might be represented by the string" record integer pointer -3 end." 

6. Conclusion 
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Type checking across compilation units has always been a major nuisance. By requiring only 
structural type equivalence for external references. rather than name equivalence. we can reduce the 
amount of work involved considerably By hashing the descriptions of types we can summarize all 
the information about a compilation unit's connections to the outside world in a reasonable number 
of bits. Type checking can be performed at link time or run time without worrying about which 
units depend on which files of declarations and what was modified when. An arbitrarily high degree 
of security can be obtained by increasing the size of the hash-function range. 
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Appendix 

Let <a> ao be a string of symbols. Then 

hash ( <a » = Jet l',II ~ VI Ord(ai )} mod p . 

If <a> is the canonical description of a type A. we say 

hash val (A) has/7( <a » and hashlen(A) /1, 

In our implementation. ,v is 36 and p is 2.32 -.3 = 4294967293. We represent every symbol 
by a letter or digit. The digits 0 - '9' have values 1-10. The letters 'a' -'z' have values II through 
36. No symbol has value O. since prepending a zero-value symbol to a string would not change its 
hash code, The lack of a zero-value symbol allows us to use N for the value of 'z' without introduc­
ing ambiguity. 

Using a. e, i. n. 0, r. s. and t for the symbols array, end, integer, return, operation. 
record, subrange. and to. respecti\ely. we have the following hash codes for the types A. B, C, 
and C' in section 4: 

type hash code string 

A 1785564073 sil tlO 
B 1331691 riie 
C,C 2112304967 asi I t I Oriie 

The hash codes of remote operations are computed similarly. Suppose Ioo is an operation that 
takes one argument of type C and returns a result of type B. The type string for foo is 
"oasiltlOriienriieefoo:" irs hash code is 3966191234. 

The syntax for canonical descriptions is quite terse,. The intent is to use as rew symbols as pos­
sible while avoiding ambiguity. The names of record fields are not significant 


