
A SIMPLE MECHANISM FOR TYPE SECURITY
ACROSS COMPILATION UNITS

by

Michael L. Scott
Raphael A. Finkel

Computer Sciences Technical Report #541

June 1984

A Simple Mechanism for Type Security
Across Compilation Units

Michael L. Scott
Raphael A. Finkel

Department of Computer Sciences
University of Wisconsin - Madison

I 2 lOW Dayton
Madison. WI 53706

Mav 1984

ABSTRACT

This note describes a simple mechanism for checking structural type equivalence across
compilation units. The type of each external object is described in canonical form. A
hash function compresses the description into a one- or two-word code. Type checking is
then performed by any standard linker. without modifications. For distributed programs.
type checking can be also performed at run rime. with minimal overhead.

I. In troduction

A type-checking mechanism for separate compilation must strike a difficult balance between
correctness and conservatism. On the one hand. it should prevent the use of compilation units that
make incompatible assumptions about their interface. On the other hand, it should cause as few
unnecessary recompilations as possible. When definitions change, an ideal mechanism would
recompile all and only those pieces of a program that would otherwise malfunction. Approaching
this ideal has proven surprisingly difficult. enough so that many programming systems provide no
checking whatsoever.

We believe that a simple and easy-to-use type-checking mechanism for separate compilation is
extremely important. We are particularly interested in a mechanism that can be extended to provide
checking for messages exchanged between the separately-loaded modules of a distributed program.
We describe a technique that achieves simplicity and efficiency at the expense of a small but non-zero
probability of failure.

2. Background

There are two principal approaches to detlning type equivalence: name equivalence and struc­
tural equivalence [2]. Each has its own advantages and disadvantages [I I]. Each poses its own dif­
Hculties for separate compilation.

In a language using name equivalence. each object is associated with a reference to the (lexical)
declaration of its type. Each declaration defines a separate type, unique over space and time.
Declarations never change: they are replaced by new and different versions, deHning new and dif­
ferent types.

A type-checking mechanism for name equivalence implements a dependency DAG in which
each program fragment points to the declarations used in its compilation. Each declaration may point
to others, on which it in turn depends. Typical implementations [9,12.13] allow separate

This work was supported in part by NSF grant numbel MCS-Sl 05904. by Arpa contract number N0014/82/C!20S7.
and by a Bell Telephone Laboratories Doctoral Scholarship

2

compilation units to share files of declarations. A declaration file must be compiled before any com­
pilation unit that uses it. The compiled version contains a time stamp. Each object file names the
compiled versions of the declaration files that were used in its own compilation. For distributed pro­
grams, the naming scheme must work across machines, so that copies of declaration files at separate
sites appear to be the same.

The bookkeeping required for enforcing name equivalence is simplified considerably by group­
ing declarations together in files. Unfortunately. that grouping also leads to an overly conservative
mechanism. In effect, even the smallest change to a declaration file creates new versions of all the
types the file contains. Any program unit that uses any of those types must then be recompiled. The
problem is especially severe in programming systems like UW-Pascal [8], where all definitions are
contained in a single environment file. A mechanism for extending an existing environment without
invalidating its previous contents helps to some extent.

Many of the problems just described disappear if we adopt the more liberal rules of structural
type equivalence. These rules define a type as a particular arrangement of simpler types. Each type
can be declared lexically any number of times The type-checking mechanism guarantees that
interacting compilation units contain matching descriptions of the structure of their interface. As a
matter of convenience, it may still be desirable to share tiles of declarations, but the type checking
mechanism no longer depends on policing that sharing. All that matters is the COfllenl of declara­
tions, and that content is checked for each individual type.

Structural type equivalence has been used with separate compilation in a number of existing
compilers [1.5.6]. It introduces its own implementation problems. Each type declaration is put in
canonical form and is inserted in the ~ymbol table of each object file that imports or exports an object
of that type. A special-purpose linker is required to guarantee that importing and exporting files con­
tain identical canonical torms. The type information itself consumes a considerable amount of space.
Comparing it byte-far-byte takes time. We can afford that time for relatively infrequent runs of the
linker, but we cannot afford it for run-time checking on messages.

3. The mechanism

In a note on type checking with low-level linkers [3], Richard Hamlet credits one of his referees
with the idea of using a hash function to compress the descriptions of types. We elaborate on this
suggestion. We use structural equivalence for type checking across compilation units. but we do not
insist on absolute security. By admitting the possibility that occasional type errors will go
undetected, we eliminate the need for a special linker. reduce the size of object files, and allow effi­
cient run time message checking.

In each object file. the compiler includes a one- or two-word hash code for each external object.
The code for a variable depends on its name and on the canonical description of its type. The code
for a procedure depends on its name and on the type and modes (but not the names) of its parame­
ters. Hash codes can be treated as ordinary symbols by any standard linker. Exporting modules
-'define" the codes and importing modules declare them "undetlned.·· A utility program can
translate -'missing symbol" errors from the linker into specific, useful type-clash messages. Such a
utility is preferable to a special-purpose linker because it requires no knowledge of load-file formats
or other operating system-specific details.

The hashing technique extends readily to distributed programs that are linked and loaded in
several pieces. In a circuit-switched network a sender and receiver can exchange hash codes when
their circuit is created. In a packet-switched network they can exchange hash codes with each mes­
sage. In either case. the extra overhead of checking tor type consistency will be insignificant in com­
parison with the typical cost of communication

3

4. A convenient canonical form and hash function

We have used hashing as a means of message type checking in an experimental distributed pro­
gramming language [10]. The data types in our language are similar to those of Pascal [4], except
that there are no pointers. Pointers complicate matters; they are discussed in a subsequent section.

Our hash function is defined on strings of symbols. Our symbol set includes the set of digits. as
well as the symbols array, Boolean. case. character, end, enumeration, integer, operation,
record, return, set, subrange. and to. Our messages are used to invoke remote operations. Logi­
cally. we obtain canonical forms by expanding the subparts of each type declaration recursively and
by using an abbreviated syntax to express the results in as short a string as possible. The hash code
of a remote operation is computed from the concatenation of the operation's name, the modes of its
parameters, and the canonical descriptions of their types.

In actuality, there is no need to compute explicit canonical forms. Our hash function treats a
string of symbols as an integer base IV. where N is the size of the symbol set. It calculates the
integer's residue modulo p. where p is a very large prime. During compilation we maintain two
values for each type the program defines' the hash code and length of the type's canonical form.
When a new type is defined in terms of existing ones. we can compute the new hash code and length
from the stored information for the existing types. Suppose. for example. we are given the following
declarations:

A = 1..10;
B = record

i. j : integer:
end;

C = array [A] of B:

We would like the hash code for C to be the same as the hash code for

C = array [1..10] of record
i, j : integer:

end:

This is precisely the result we obtain by letting

hashval (C) [a x Nhashlel7 (·1) .,- hasiIval (A)] X NlllL~h1ell (B) + hashval (8) .

hash/en (C) I + hash/en (A) +- hash/en (8) ,

where a is the value of the symbol "array" as an N-ary digit. All arithmetic is carried out in the
ring of integers mod p. Further details are contained in an appendix.

5. The problem with pointers

When pointers are present the above technique breaks down. The problem stems from the need
for forward references in detlning circular structures. When a given type is first encountered we
may not know the nature of its constituent parts. We can still derive a canonical description and
hash code for each type. but we cannot do it incrementally the way we could above.

Given a set of interrelated types. it is not difficult to determine which are structurally distinct,
and which equivalent [7]. Symbol table entries for equivalent types can be coalesced. We can then
use the string notation above. augmented with backpointers. to construct canonical descriptions for
the types that remain. We expand each type declaration recursively until we encounter a cycle. We
then insert a backpointer to the point where the cycle began. For example. the type

sequence = record

end;

item: integer:
next: 'sequence:

might be represented by the string" record integer pointer -3 end."

6. Conclusion

4

Type checking across compilation units has always been a major nuisance. By requiring only
structural type equivalence for external references. rather than name equivalence. we can reduce the
amount of work involved considerably By hashing the descriptions of types we can summarize all
the information about a compilation unit's connections to the outside world in a reasonable number
of bits. Type checking can be performed at link time or run time without worrying about which
units depend on which files of declarations and what was modified when. An arbitrarily high degree
of security can be obtained by increasing the size of the hash-function range.

References

[1] Celentano, A .. P. D. Vigna. C. Ghezzi. and D. Mandrioli. "Separate Compilation and Partial
Specification in Pascal. IEEE framacrions on Soliware Engineering SE-6:4 (July 1980), pp .
.320-.328.

[2] Ghezzi, C. and M. Jazayeri. IJrogramming Language Concepts. John Wiley and Sons, New
York (1982).

[3] Hamlet. R. G .. "High-Level Binding with Low-Level Linkers." CACM 19: II (November
1976). pp. 642-644.

[4] Jensen, K. and N. Wirth. Pascal User Manual and Report. Lecture Notes in Computer Science
#18, Springer-Verlag, Berlin (1974).

[5] Kieburtz. R. Boo W. Barabash. and C. R. Hill. "A Type-checking Program Linkage System
for Pascal," Proceedings. Tflird Inrernariollaf Con/erence on Software Engineering (10-12 May
1978). pp. 23-28.

[6] Koch, W. and C. Oeters. "The Berlin ALGOL 68 Implementation." Proceedings of the
Strathclyde ALGOL 68 Conference (29-.31 March 1977). In ACM SfGPLAN Notices 12:6 (June
1977).

[7] Kral, J., "The Equivalence of Modes and the Equivalence of Finite Automata." ALGOL Bul­
letin.35 (March 1973). pp. 34-35.

[8] LeBlanc. R. J. and C. N. Fischer. "On Implementing Separate Compilation in Block­
Structured Languages." Proceedings of'the SIGPLAN Svmposillln on Compiler Construction (6-
10 August 1979), pp. l39-14.3. In ACM SIGPLAN Notices 14:8 (August (979).

[9] Mitchell, J. G .. W. Maybury. and R. Sweet. "Mesa Language Manual. version 5.0." CSL-
79-3. Xerox Palo Alto Research Center (April 1979).

[10] Scott, M. L. and R. A. Finkel, "LYNX: A Dynamic Distributed Programming Language."
To appear in the 1984 Internalional Conference on Parallel Processing (August 21-24. (984).

[11] Tennent, R. D., "Another Look at Type Compatibility in Pascal." Software-Pracrice and
Experience 8 (1978), pp. 429-437.

5

[12] United States Department of Defense. "Reference Manual for the Ada Programming
Language," (ANSIIMIL-STD-1815A-1983) (17 February 1983).

[13] Wirth, N .. "Modula-2." Report 36. Institut fur Informatik, ETH Zurich (1980).

Appendix

Let <a> ao be a string of symbols. Then

hash (<a » = Jet l',II ~ VI Ord(ai)} mod p .

If <a> is the canonical description of a type A. we say

hash val (A) has/7(<a » and hashlen(A) /1,

In our implementation. ,v is 36 and p is 2.32 -.3 = 4294967293. We represent every symbol
by a letter or digit. The digits 0 - '9' have values 1-10. The letters 'a' -'z' have values II through
36. No symbol has value O. since prepending a zero-value symbol to a string would not change its
hash code, The lack of a zero-value symbol allows us to use N for the value of 'z' without introduc­
ing ambiguity.

Using a. e, i. n. 0, r. s. and t for the symbols array, end, integer, return, operation.
record, subrange. and to. respecti\ely. we have the following hash codes for the types A. B, C,
and C' in section 4:

type hash code string

A 1785564073 sil tlO
B 1331691 riie
C,C 2112304967 asi I t I Oriie

The hash codes of remote operations are computed similarly. Suppose Ioo is an operation that
takes one argument of type C and returns a result of type B. The type string for foo is
"oasiltlOriienriieefoo:" irs hash code is 3966191234.

The syntax for canonical descriptions is quite terse,. The intent is to use as rew symbols as pos­
sible while avoiding ambiguity. The names of record fields are not significant

