
Butterfly Project Report
17

An Empirical Study of Message-Passing Overhead

Michael L. Scott and Alan L. Cox

December 1986

Computer Science Department
University of Rochester

Rochester, NY 14627

An Empirical Study of Message.Passing Overhead

Michael L. Scott
Alan L. COl[

University of Rochester
Computer Science Department

Rochester, NY 14627

December 1986

ABSTRACT

Conventional wiodom holds that me.sage-passing is orders of magnitude more expensive
than shared memory for communication between parallel proce..... Differences in the
speed of underlying hardware mechaniems fail to account for a substantial portion of the
performance gap. The remainder is ganerally attributed to the "inevitable coat" of
higher-level semantic., but a dseper understanding of the factors thet contribute to
message-pa88ing overhead has not been forthcoming.

1n this paper we provide a detailed performance analysis of one message-p88sing ayBtem:
the implementation for the BBN Butterfly Parallel Proce880r of the LYNX distributed
programming language. The case study includes a description of the implementation,
an explanation of optimizations employed to improve ita performance, and a detailed
breakdown of remaining cost.. The data provide a direct measure of the expense of indi
vidual feature. in LYNX. They also provide insight into the likely cost. of other
message-p888ing syBtems, both present and future. Le.sons gained from our experience
should be of use to other researchers in performing similar studies.

1. Introduction

On modem, microprocessor-based computers, the time required to load or store a

word of main memory is on the order of microseconds, even in shared-memory multiproces

sors. By contrast, for a very wide range of systems, the time required to pass a message

between heavy-weight processes is on the order of tens of milliseconds, three or four orders

of magnitude removed from memory access times.

There are at least two obvious reasons why messages should be more expensive than

operations on shared memory. First, on many architectures there ie a substantial find

overhead associated simply with moving data from one place to another. For local area

networks, thie overhead is a function both of the bandwidth of the communication channel

and of the processing time required to drive the interfaces. Cheriton and Zwaenepoel, for

Thi, work wu supported in part by NSF grant number OOR·8320136, by Darpa contract number DACA 76-
8O-C-0001, and by an IBM Faculty Development Award.

2

example, report a network penalty of about a millisecond to send 100 bytes of data

between SUN workstations on a 3 Mbitlsecond Ethernet [7].

The second explanation for the performance difference between shared memory and

mesaage passing is that mesaages provide semantics that shared variables do not. No mes

aage can be received before it is sent, 80 synchronization (and context switches) are

inherent. In addition, most styles of mesaage-passing provide queueing, flow control, and

some form of authentication or protection. Many provide address resolution, type checking,

exception handling, and gathering and scattering of parameters as well On local area net

works, most provide cleaner failure semantics than does the underlying hardware.

Even in the absence of physically-sharable memory, logically-shared variables can be

implemented much more cheaply than can, for instance, remote procedure calls. With

microcoded protocols, Spector [24] was able to perform remote memory operations in about

50 instruction times (1551's) on Xerox Alto computers on a 3 Mbitlsecond Ethernet. The

non-microcoded equivalent took 30 times as long, and was still four times faster than a

request and reply message using standard protocols (see below). In his studies of remote

operations in StarMod, leBlanc [14] reported similar results: 150 instruction times (880 I's)

to perform remote memory operations on PDP 11/23 computers connected by a

1 Mbitlsecond network. Remote procedure calls, by contrast, took over 20 times as long.

Despite the "obvious" reasons why mesaage passing should take longer than reading

and writing shared data, there seems to be a widespread impression among researchers in

the field that mesaages take "too long". This impression is not new. The notes from a

workshop on distributed computing, held at MIT in 1978 [17], contain the following state

ment:

Message passing appear. m be very expensive. Although it was difticult m establiBh uni

form definitions of what was being measured, a time of about 20 miUiseconds was quoted as

the round trip time m send a (null) me88age and receive an answer on the Xarox Aim sys

tems, with similar numbers put forth for mM systems and Multics. This is both a surpris

ingly. high and surprisingly uniform time. . .. no one was able m indicate exactly whare the

time went, or why 20 ms should be a universal lower bound on message passing time.

Though proceasors, networks, and protocols have all improved dramatically since 1978,

mesaage-passing times are still relatively slow. Detailed figures are not always published,

but users of Accent [19] and Mach [1] (with the Matchmaker stub generator [11]), Char

lotte [3], Clouds [13], DemoslMP [18], and Eden [6] all report times in the tens of mil

liseconds to perform simple remote operations. The V kernel [8], which places great

emphasis on speed, requires 1.46 ms for a request and reply within a machine, and 3.1 ms

3

between machines with SUN workstations on a 10 Mbit Ethernet. The award for faatest

operations with the highest level of semantics probably goes to the RPCruntime package

and Lupine stub generator, running in the Cedar environment at Xerox PARC [5]. Birrell

and Nelson report a time for this system of approximately 1.1 ms per call to an empty

remote procedure, with relatively high performance Dorado workstations connected by a

3 Mbit Ethernet.

In the quotation above, it is important to heed the caution about defining what is

measured. Comparisons between disparate systems are limited not only by differences in

the organization and speed of the underlying hardware, but also by differences in the level

of semantics supported. In his doctoral thesis, Nelson reports a time of 145 microseconds

per remote procedure call in his faatest Dorado implementation. The time drops to 1241's

if processes busy-wait. This implementation is so fast that the 11 I's overhead of the tim

ing loop becomes a significant fraction of the total cost. Unfortunataly, the semantics pro

vided are so restricted that the timings do little more than provide a lower bound for the

cost of RPC: parameters are limited to a few baaic types, manually gathered and scattered;

stubs must be coded manually as well; the communication firmware is implemented in such

a way that standard Ethernet protocols are unavailable to other processes on the machine.

Rather than fuel a debate over whose software is fastest, we prefer to aak for each

individual system: what are the factors that contribute to its overhead? Careful attribution

of costs to message-passing subtaaks is crucial for optimization. Moreover, it is the only

reliable way to evaluate the cost-effectiveness of contemplated features. Without detailed

accounting, it is impossible to determine whether the difference in speed between compet

ing systems is due to hardware overhead, choice of semantics, or simply cleverness of cod

ing.

Surprisingly, very little such accounting haa made its way into print. Spector is

almost alone in providing a microsecond-by-microsecond breakdown of the time required to

perform a remote operation. It is our intention in this paper to provide an equally detailed

analysis for remote procedure calls in a distributed programming language. We believe

this analysis to be useful not only in the understanding of our own particular language and

implementation, but also in the design of similar systems and in the development of an

intuitively satisfying appreciation of "where the time goes" in mesaage-passing systems in

general.

Our choice of language is LYNX [23], as implemented [22] on the BBN Butterfly

Parallel Processor [4]. We believe LYNX to be representative of a large class of languages

in which interprocess communication is based on rendezvous or remote procedure call.

4

Languages in this class include Ada (26), Argus (15), NIL (25), SR (2), and the dialects of

CSP (10). The Butterfty, with its shared-memory architecture, is in some ways quite unlike

the more common meBSage-based multicomputers, but the difference between multiproces

sor block transfers and multicomputer meBSages has a relatively small and self-contained

impact on the protocols required to implement remote procedure calls. Moreover, it is the

nature of performance studies such as these that the peculiarities of a particular language

and machine are readily identified and isolated in the final data.

Section 2 of this paper provides an overview of LYNX. It is followed hy a description

of our implementation for the Butter1ly (section 3) and of the optimizations we applied to

improve its performance (section 4). Section 5 contains an accounting, by subtask, of the

costs that remain. We conclude with a discussion of the meaning of those costs.

2. Overview of LYNX

The LYNX programming language is not itself the subject of this article. Language

features and their rationale are described in detail elsewhere [21,23). Our intent in the

current section is to provide only as much information as is needed to understand the

remainder of the paper.

The fundamental abstractions in LYNX are the process, the link, and the thread of

control. Processes execute in parallel, poBSibly on separate processors. There is no provi

sion for shared memory. Processes interact only by exchanging messages on links. A link

is a two-directional communication channel with a single process at each end. Each process

may be divided into an arbitrary number of threads of control. Threads are similar to

coroutines; they are a control-flow mechanism that facilitates the management of multiple

contexts within a process. Threads are not designed for parallelism; they execute in

mutual exclusion. Execution moves to another thread automatically when the current

thread is blocked.

New threads may be created at any level of lexical nesting. Threads that are nested

inside the same scope may therefore share non-local, non-global data. The activation

records of a process form a tree (a cactus stack), with a thread of control in each leaf.

Looking back up the path to the root, each thread sees what appears to be a normal run

time atack. Individual activation records are allocated dynamically in a number of stan

dard sizes, much as they are in Mesa [12J.

Interprocess communication is based on the invocation of remote operations. A pro

cess that wishes to provide a given operation can do so in one of two ways: it can create a

thread of control that waits for a request explicitly. or it can bind a link to an entry

5

procedure so that a new thread will be created automatically to handle each incoming

request. The explicit case is similar to the accept statement of Ada, and shares its name.

The implicit case is an example of a remote procedure call.

A thread requests a remote operation by executing a connect statement. It blocks

until a reply is received. Meanwhile, other threads may execute. Remote operations are

therefore non-blocking from the point of view of a process.

Incoming messages are not received asynchronously. They are queued instead, on a

link-by-link basis. Each link end has one queue for incoming requests and another for

incoming replies. Messages are received from a queue only when the queue is open and all

the threads in the process are blocked (at which time we say the process has reached a

block point). A reply queue is open whenever a thread has sent a request on the link and

has yet to receive a reply. A request queue is open whenever its link has been bound to an

entry procedure or named by a thread that is waiting to accept.

A blocked process waits until one of its previously-sent messages has been received,

or until an incoming message is available in at least one of its open queues. In the latter

case, the process chooses a non-empty queue, receives that queue's first message, and exe

cutes through to the next block point. For the sake of fairness, an implementation must

guarantee that no queue is ignored forever.

Messages in the same queue are received in the order sent. Each message blocks the

sending thread within the sending process. The process must be notified when messages

are received in order to unblock appropriate threads. It is therefore possible for an imple

mentation to rely upon a stop-and-wait protocol with no actual buffering of messages in

transit. Request and reply queues can be implemented by lists of blocked threads in the

run-time package for each sending process.

One of the more challenging features of links, from an implementor's point of view, is

the provision for moving their ends. Any message, request or reply, can contain references

to an arbitrary number of link ends. Language semantics specify that receipt of such a

message has the side effect of moving the specified ends from the sending process to the

receiver. The process at the far end of a moved link must be oblivious to the move, even if

it is currently relocating its end as well.

6

3. Initial Implementation

3.1. The Butterfly and Chrysalis

The BBN Butterfly Parallel Processor [4] can 8Upport up to 256 separate proce8sing

node8. Each node con8i8t8 of a Motorola 68000 CPU, a bit-sliceci co-proce880r calJed the

Processor Node Controller, (PNC) and up to 4 Mbytes of RAM. The 68000 runs at

8 MHz. An empty subroutine calJ with no parameters (JSR, LINK, ULNK, RTS) completes

in alm08t exactly 10 I's. Newer machines employ a 68020 and 68881, with a double-speed

clock.

The PNCs are connected by the Butterfly Switch, an FFT-style interconnection net

work. Each PNC mediates al1 memory requests from its processor, passing them through to

local memory when appropriate, or forwarding them through the switch to another PNC.

References to individual words of remote memory take 3 to 5 times as long as references to

local memory. The PNCs also provide atomic fetch-and-phi operations, a8 welJ as a micro

coded block transfer that achieves an effective throughput between nodes of about

20 Mbitsisec, with a start-up cost of 50 I's.

The Butterfly's native operating system, cal1ed Chrysalis, provides primitives for the

management of a number of basic abstractions, including processes, memory objects,

event blocks, and dual queues. Many of the primitives are supported by PNC microcode.

Each process runs in an address space that can span as many as one or two hundred

memory objects. Each memory object can be mapped into the address spaces of an arbitrary

number of processes. Synchronization of access to shared memory is achieved through use

of the event blocks and dual queues.

An event block is similar to a binary semaphore, except that (1) a 32-bit datum can

be provided to the V operation, to be returned by a subsequent P, and (2) only the owner

of an event block can wait for the event to be posted. Any process that knows the name of

the event can perform the post operation. The most common use of event blocks is in con

junction with dual queues.

A dual queue is 80 named because of its ability to hold either data or event block

names. A queue containing data is a simple bounded buffer, and enqueue and dequeue

operations proceed as one would expect. Once a queue becomes empty, however, subse

quent dequeue operations actual1y enqueue event block names, on which the calling

processes can wait. An enqueue operation on a queue containing event block names will

post a queued event instead of adding its datum to the queue.

7

3.2. LYNX Compiler and Run·time System

LYNX ia implemented by a croll compiler that runa on the Butterfly'a hoat machine.

For compatibility reaaona, and to simplify the implementation, the compiler generatea C ror

"intermediate code". Errors in the LYNX aource inhibit code generation, 10 the output, if

any, will pall through the C compiler without complaint. Programmers are in general

unaware olthe C back end.

Communication between LYNX proceaaes is supported by a run-time library package,

alao written in C. At start-up time, every LYNX process allocates a single dual queue and

event block through which to receive notifications or meaaages sent and received. A lin1t ia

represented by a memory object, mapped into the addrell apac:ee or the two connected

proceseee (see figure 1). Within each procell, the link is rererenced by indexing into an

array or link descriptors in the run-time support package. Each descriptor contains a

pointer to the shared memory object, together with liets or threads that are waiting ror

communication on the link. The memory object itsel(contains buft'er apace ror a single

request and a single reply in each direction. Since dynamic allocation and re-mapping or

message buft'ers would be prohibitively ezpensive, me88ages are limited to a hed max

imum length, currently 2000 bytes.

In addition to message buft'ers, each link object alao contains a eet or ftag bits and the

names or the dual queues ror the procelles at each end or the lin1t. When a procell gathers

request for P requestforQ

reply for P replJ for Q

I'ipre 1: Dared Iiak object

8

a message into a buffer or scatters a message out of a buffer into local variables, it sets a

liag in the link object (atomically) and then enqueues a notice of its activity on the dual

queue for the process at the other end of the link. When the process reaches a block point

it attempts to dequeue a notice from its own dual queue, waiting if the queue is empty.

The liag bits permit the implementation of link movement. Both the dual queue

names in link objects and the notices on the dual queues themselves are considered to be

hints. Absolute information about which link ends belong to which processes is known only

to the owners of the ends. Absolute information about the availability of messages in

buffers is contained only in the link object liags. Whenever a process dequeues a notice

from its dual queue it checks to see that it owns the mentioned link end and that the

appropriate liag is set in the corresponding object. If either check fails, the notice is dis

carded. Every change to a liag is eventually reliected by a notice on the appropriate dual

queue, but not every dual queue notice reliects a change to a liag. A link is moved by pass

ing the (address-space-independent) name of its memory object in a message. When the

message is received, the sending process removes the memory object from its address space.

The receiving process maps the object into its address space, changes the information in the

object to name its own dual queue, and then inspects the liags. It enqueues notices on its

own dual queue for any of the liags that are set.

3.3. Protocol

Notifications on dual queues, with block transfers for data movement, play the role of

messages in our implementation. Our initial protocol defined eight types of notices: REQ,

REQ..,ACK, REP, REP...ACK, FAR..END...DESTROYED, REQ..,ACK...ERR, REP....ERR, and REP...ACK....ERR.

The final three are used only in the event of exceptions, type clashes, or requests for non

existent operations. FAR..END...DESTROYED is used only when cleaning up connections. The

rest of this discussion focuses on REQ, REQ..,ACK, REP, and REP...ACK.

Suppose processes P and Q are connected by link L, and that a thread A in P wishes

to invoke an operation provided by a thread B in Q. A blocks until the request buffer for Q

is available in L. It fills the buffer, sets the appropriate liag, and posts a REQ notice on Q's

dual queue. The next time Q is blocked, it receives the REQ notice and wakes up B. B

copies the request out of the buffer into local variables, sets the appropriate liag, and posts

a REQ..,ACK notice on Ps dual queue. When it receives this notice, P knows that the request

buffer is available to threads other than A, if needed. When B is done serving the request,

it blocks until the reply buffer for P is available in L. It fills the buffer, sets the appropri

ate liag, and posts a REP notice on Po dual queue. The next time P is blocked, it receives

9

the REP notice and wakes up A. A copies the reply out of the buffer into local variables,

sets the appropriate /lag, and posts a REP ..ACK notice on Q's dual queue. When it receives

this notice, Q unblocks B.

Since "messages" on the Butterlly are as reliable as main memory, acknowledgments

are not needed to recover from "lost packets". They are required, however, for /low control

and for confirmation of high-level semantic checks. In the event that P has no additional

threads waiting to send requests to Q, the REQ..ACK notice can be eliminated (though the

corresponding /lag cannot). With relatively minor changes to the semantics of LYNX, the

REP..ACK notice can be eliminated also. We explore these possibilities (among others) in

section 4.

4. Optimizations

When our first timing figures were collected, we had not yet completed the code to

establish links between independent processes. We were able, however, to create a link

whose ends were both owned by the same process. We arranged for that process to send

messages to itself. The "round trip" time for an null invocation came to 5.9 milliseconds.

Through a series of four revisions, this time was reduced to 2.78 ms:

(1) Instruction histograms (from an execution profiler) indicated that the section of code

consuming the largest individual amount of time was the standard integer multipli

cation subroutine (the 68000 does not have a 32-bit multiply instruction). Investi

gation revealed that the only reason the subroutine was being called was to calcu

late subscripts into the array of link descriptors in the run-time support package.

Since each descriptor was 60 bytes long, the addition of a 4-byte pad allowed the

generation of left shifts for multiplication. Total savings: 22%.

(2) Turning on peephole optimization in the C compiler and using conditional compila

tion to disable debugging support reduced the time to 4.0 mslinvocation. Additional

savings: 13%.

(3) The original implementation of the cactus stack used the standard C malloe library

to allocate activation records. We expected this to be slow, and profiling confirmed

the expectation. The new allocator keeps a cache of frames in a number of "stan

dard" sizes. Additional savings: 25%.

(4) In August of 1986 we took delivery of a new C compiler for the Butter/ly, obtained

by BBN from Green Hills Software. Use of the new compiler as the LYNX back end

lO

resulted in better code. Additional savings: 7%.1

With the implementation complete and with obvious inefficiencies removed, we pro

ceeded to a series of multi-proce88 timing tests. Statistics were collected for simple pro

grams that perform a large number of remote operations in a tight loop. Dividing total

elapsed time by the number of iterations yields an estimate of the overhead of an indivi

dual operation.

This technique has several limitations. It ignores the effects of the scheduling algo

rithm, which may be atypical for a proce88 that blocks frequently. It ignores the fact that a

typical LYNX process is composed of a large number of threads and that several operations

may be pending at once. It ignores the fact that each processor will usually be shared by a

large number of proce88es, 80 that the latency seen by a single process may not reflect

overall throughput for the jobs on the machine.

Despite its limitations, we have concentrated on round-trip latency because it is rela

tively easy to measure (a "representative" job mix is not required) and because it has been

used to describe the performance of a large number of similar systems. Our code performs

four basic tests: two for a null operation with no parameters, and two with 1000 bytes of

parameters in each direction. In each case, one test uses implicit receipt (RPC) and the

other explicit receipt (accept). After the arrival of the Green Hills C compiler, our figures

for explicit receipt were as follows: 2

nullop
bigop

Proce88es
different nodes

2.16 ms
3.79 ms

on
same node

3.55 ms
5.19 ms

In considering the details of the protocol, we came to the realization that in many (if

not most) cases, the RE~CK notice serves no purpose. It can be subsumed in the REP

notice whenever the client proce88 is not in a hurry to reuse the link's request buffer." A

new version of the run-time package was constructed that contains two additional flags in

the shared link object. The flags indicate whether the two proce88eS at the ends of the link

are interested in receiving RE~CK notices. A client process sets the bit when it has

1 The diff'erence between the eompilel'8 is more pronounced in reslime programs. Our testa use relatively
simple straight-line code, with very little in the way of complicated expresaiona or loops.

2 Reoulla an accurate to about ± 0.02 IDS.

3 LYNX links are completely Bymmetric. Either of the prOCES&eB attached to a link can make requests of the
other. We use the terms "client proces8" and "server proceu" to mean "the proceal playing the role of client
(server, respectively) in the current di8CU88ion".

11

additional threads waiting to send requests. A server process posts a REQ..ACK notice on its

partner's dual queue only when the 'interested' bit is set. The REQ..ACK bit is still set in

any case. If a thread in the client tries to send a request while the request buffer appears

to be full, the client will check the REQ..ACK bit to see if a potentially useful notice went

unp08ted, and will re-create it if necessary.

W,th a minor change in the semantics of LYNX, the REP.ACK notice can be elim

inated also. Like the REQ..ACK notice, REP .ACK serves to inform a process that a buffer has

been emptied and can be used by another thread of control. In addition, it serves to inform

a server that the requesting thread in the client was still waiting when the reply arrived.

LYNX semantics call for the server thread to feel an exception if the client thread has died

(as a result of feeling an exception itse)f'). For efficiency reasons, the original implementa

tion of LYNX (on the Crystal multicomputer at the University of Wisconsin [9]) did not

support these semantics, and it would not be a serious loss to forgo them on the Butterfly as

well. We constructed a version of the run-time package in which another two flags were

added to the link object, much like the 'interested' bits above. REP .ACK notices are elim

inated when the server process has no additional threads waiting to send replies. Adoption

of the modification was deferred until the size of the potential time savings could be deter

mined.

Figure 2 compares the three versions of the protocol under the assumption that the

optional notices are never required. Again with explicit receipt, our times for the modified

protocols are as follows:

No request acknowledgments:

nullop
bigop

Processes on
different nodes same node

2.22 ms 3.26 ms
3.67 ms 4.90 ms

No request or reply acknowledgments:

nullop
bigop

Processes on
different nodes same node

1.96 ms 2.82 ms
3.59 ms 4.42 ms

Until we collected timing results and constructed figure 2, we did not realize that

with the client and server on separate nodes the principal effect of the protocol changes

would be to reduce the amount of overlapped computation, without reducing latency. The

savings fur processes on the same node were more than twice as large, percentage-wise, as

the savings for proce88es on separate nodes. For the null operation, latency on separate

nodes actually increased slightly when request acknowledgments were removed (though it

dropped below the original figure when reply acknowledgments were removed as weI\). A

full explanation of the figures depends on at least three factors:

Original protocol

eIiODI r

Without request
ac:knowleclgmenta

Without request or reply
ac:knowleclgmenta

dient ..,.. eIi.t lener

l------~L-- 1---- __ ~L__ 1------'!.'!I-----

r---!!'P-~~----
UP REP

UP

----!!~~~~---1
UQ -------------,

1
etc.

Figure 2: protocols

12

(1) In the first and second protocols, the timing loops for nullop are tight enough that

the processes do not have quite enough time to finish examining an ac:knowledg

ment before the next notice arrives. The requesta and replies that follow ack

nowledgments are therefore received without waiting. For bigop, the extra time

required to copy parameters means that the processes wait for every notice.

(2) It takes leas time to post a notice to an empty dual queue than it does to post to a

queue on which another proceaa is waiting. In the first protocol, the server posta

two notices: the REQ.,ACK and the UP. For bigop, both of the posta are expensive.

For nullop, only one of them is. The second protocol therefore laves more time in

the server for bigop than it does for nUllop.

(3) The client haa work it must do when it knows that ita request has been received.

The second protocol eliminates the overhead of one invocation of the dispatcher, but

some of the work that used to be overlapped with the server when the REQ.,ACK waa

received must now be done while the server is blocked, after the REP is received.

13

In moving from the first to the second protocol, non-overlapped time is saved in the client

when sending the REQ...ACK. Non-overlapped time is lost in the client after receiving the

REP. There is a net gain for bigop. There is a net loss for nulIop, because of the tight loop

and lack of waiting. In moving from the second to the third protocol, the semantic changes

to LYNX alIow most of the work that was performed upon receipt of a REP...ACK to be elim

inated, not deferred (the thread of control that sends a reply no longer blocks). There is

therefore a net gain for both bigop and nulIop.

5. Remaining Costs

For more detailed protocol analysis, our principal tool was an execution-time profiler

that builds histograms from periodic samplings of the program counter. Our C compiler

does not support the colIection of subroutine call counts, but the protocol is simple enough

for them to be predicted by hand. Some of our early optimizations, particularly the change

in size of the link record and the replacement of the activation record alIocator, were

motivated by profiling results. Those results were examined, however, at the granularity of

procedure calIs only. In the analysis reported in this section, we worked at the level of

individual instructions.

Statistics were colIected for the sel1ioop program described at the beginning of sec

tion 4. The program was run for 100,000 iterations, with a client thread making requests

of a server thread over a link that connected to the same process at both ends. Assembly

listings of the run-time support package were compared against the C-Ianguage source to

determine the purpose of each individual instruction. The counts for instructions with

similar purposes were grouped together into categories. The results are summarized in

figure 3.

5.1. Explanation

Threads

The run-time package maintains a ready list, together with lists of threads waiting for

various kinds of messages. There is overhead associated with moving threads between

lists, with saving and restoring context at thread switches, with verifying that buffers

are available when a thread wishes to communicate, and with searching lists for

appropriate threads when notices arrive. The ability to create nested threads leads to

dynamic alIocation of activation records.

Checking and exception handling

Links must be checked for validity at every connect and accept statement. Since

Threads
queue management

context switches
buffer acquisition
queue searching (dispatcher)

cactus stack

Checking and exception handling

are connect and accept links valid?

is notice link vaHd (dispatcher)?
run-time type checking (dispatcher)

general overhead for LYNX exceptions

establishment of LYNX exception handlers

establishment of Chrysalis exception handler

Miscellaneous overhead

client and server for loops
dispatcher while loop, switch

procedure-call overhead for communication routines

loading of registers with active values

Bookkeeping (who wants what sorts of services and who

is willing to provide them)

Actual communication

set, clear flags
enqueue, dequeue notices

find addresses of buffers

Protocol option testing

link movement

background threads
premature requests
optional acknowledgments

4.8
6.4

1.3
3.1

6.8

1.6

1.6

0.8
0.6

4.4

9.2

0.6
1.4

14.7

5.6

12.4

7.3

1.0

2.0

1.0
1.6
1.8

22.4

18.1

22.2

10.6

20.6

6.4

Figure 3: cost breakdown (in percent of total work performed)

14

dual queue notices are hints, the link mentioned in an incoming notice must be

checked for validity as well. LYNX relies on run-time type checking for messages, but

the overhead is very low [20]. Much larger amounts of time are devoted to setting up

and taking down exception handlers.

LYNX provides an exception-handling mechanism similar to that of Ada [26]. The

implementation requires a single, 32-bit move instruction at the beginning of each

subroutine, and a somewhat larger amount of work at the beginning and end of each

handler-protected block of code. Errors in communication result in exceptions in

appropriate threads. Modularity of the run-time package is maintained by enclosing

parts of the protocol in default exception handlers that put their data structures into a

15

consistent state and then re-raise the exception.

The Chrysalis operating system itself provides another form of exception handling,

grafted onto the C language through use of the C preprocessor. Instead of returning a

failure code, an operating system service that is unable to complete successfully will

cause a Chrysalis throw. Since they are not supported directly by the compiler, the

catch blocks that handle throws impose a larger cost than do the handlers of LYNX.

There is only one catch block in the language run-time package. It protects the

enqueue operation when posting notices, and is therefore set up and taken down twice

per iteration, consuming over nine percent of the total execution time.

Miscellaneous overhead

The for loops in the client and server are self-explanatory, as are the calling sequences

for subroutines. The loop in the dispatcher keeps dequeueing notices until one of them

can be used to make some thread runnable. The switch (case) statement has arms for

each kind of incoming message.

The C compiler is clever enough to move frequently-used values into registers at the

beginning of each subroutine. It is essentially impossible to attribute the cost of doing

so to individual instruction categories.

Bookkeeping

When a client thread requests an operation, the name of the operation, an encoding of

the types of its parameters, and the name of the thread itself must all be written into

the shared link object. When a server attempts to accept a message, similar informa

tion must be placed into data structures accessible to the dispatcher. Active servers

must keep track of (possibly nested) clients waiting for replies. Link numbers and

notice types must be packed and unpacked in notices.

Communication

Actual communication involves setting and clearing flags, enqueueing and dequeueing

notices, and copying parameters. In our nullop tests, the third item consists simply of

moving the addresses of buffers into pointers that are never used. In the absence of

acknowledgment notices, there are four pairs of flag operations and two pairs of dual

queue operations. The dual queue operations are more expensive individually, but less

expensive collectively.

Protocol option testing

There are six places in the protocol at which special action must be taken to deal with

moving link ends. At the top of the dispatcher's main loop there is a check that

16

returns control to a "background" thread if the notice queue is empty.' At the begin

ning of the code for accept, there is a check to see if a request notice was received

before any thread was ready to provide the appropriate service. At the beginning of

the code to post notices, there is a check that skips the enqueue oC acknowledgments.

None of the protocol's special cases arise in our simple timing tests, but the if state

ments that check for them account for over six percent oC the total work performed.

5.2. Timeline

The instruction histogram counts from our timing tests can be used to build a time

line Cor remote invocations. The dimensions oC figure 4 are based on the timings oC the

se11loop program, but are charted to indicate the operation oC the nullop test with client and

server processes on separate nodes. The time required to wake up a process has been

estimated by subtracting the time for the se11loop test from the time Cor the nullop test

(with client and server on the same node) and dividing by two. The length of the resulting

timeline is 2.00 ms, a value that varies from the actual measured time Cor nullop on

separate processors by just over two percent.

6. Discussion

6.1. Marginal Costs

6.1.1. Threads

Support for multiple threads of control within a process consumes over 22 percent oC

the total CPU time for a remote invocation. Management of the cactus stack is the largest

single contributor to this total, but context switches and queue management run a close

second and third.

Some of the overhead of threads could be reduced by changes to the implementation.

Queue management might be cheaper on machines (such as the VAX) with hardware

queue instructions. Alternatively, the time spent moving threads between queues could be

eliminated by keeping all threads on a single linked list and performing a linear search of

that list whenever a thread oC a certain class was desired. Such a change would improve

the timing results for our simple test programs, but would impose serious costs on practical

4 There is no provision for asynchronous receipt of messages in LYNX. but a thread that has a large amount
of low-priority work to do can poll for messages by indicating ilB desire to wait until communication haa subsided.

17

jls

o

prepare request message

193

postREQ

451
wakeup

500 476
520

context switch to dispatcher dispatch
601

wait
687 715

context switch to server
756

inspect request

871

postREQ_ACK

1000 1006

prepare reply message

1238

post REP

1497
wakeup 1500

1522 1557
end opearation

1603
dispatch

1771 prepare to accept
context switch to client

inspect reply
1812

1845
1853 context switch to dispatcher

post REP _ACK 1924
wait 1995 2000 2010

Figure 4: timeline

programs with very large numbers of threads.

18

The overhead of the cactus stack could be cut in half by a production-quality LYNX

compiler. Because the current implementation uses the C compiler as a back end, it is not

p088ible to determine the sizes of activation records until program start-up time. Instead of

being hard~ed with a known frame size, the allocator is implemented as a parameterized

macro; it pays for indexing operations at every subroutine call, in order to find the head

node for an appropriate list of frames.

The cactus stack could be eliminated entirely by requiring all threads to be created

at the outermost lexical level. Such a restriction would be consistent with the designs of

several other distributed languages. For reasons explained elsewhere [23], we believe 'the

ability to nest threads to be an important advantage of LYNX over other language designs,

and would be reluctant to forgo it. We consider the measured overhead to be an acceptable

price to pay.

Most of the functionality of threads, we believe, will be required in any programming

system designed to support server process and a remote-invocation style of interproce88

communication. This conclusion is supported by the work of Liskov, Herlihy, and Gil

bert [16], and by the designers of a large number of other distributed programming

langnages, in which lightweight proce88es (usually designed to run in a truly parallel

fashion) can be created in each address space.

There are good arguments both for and against the parallel execution of threads. It

is likely, however, that any implementation supporting simultaneous execution of light

weight processes will be more expensive than the coroutine threads of LYNX. Our figures

thus approximate a lower bound on queue manipulation and context-switching overhead.

6.1.2. Movable Links

Like the ability to nest threads of control, the movement of link ends is an important

and distinctive characteristic of LYNX, We had hoped in our implementation to pay for

moving ends only in the threads and processes that use them. It is of course nece88ary in

each message to check whether link ends are enclosed. Figure 3 shows that those checks

accounted for just over two percent of the elapsed time in our sel1loop test. What is le88

obvious is that much of the time listed under "actual communication" can be attributed to

moving links as well.

In the original protocol, with acknowledgments, the flag bits in the shared link

objects were needed only to ensure the ability to move links. If it had not been possible to

change the process at the far end of a link, then dual-queue notices could have provided

absolute information instead of hints. With the development of the second and third

19

protocols of figure 2, the flag bits took on a second role: keeping track of acknowledgments

that were not sent, but might have been if they had been wanted. Without those bits, a

thread that attempted to send a request or reply would not know if the required buffer was

still full, or had been emptied the instant before.

Without the need to move links, the newest protocol would be able to avoid setting

and clearing bits for REQ and REP notices, but would still need to manipulate them for

REQ..ACK and REP .ACK. Between the checks for enclosures and the setting and clearing of

half of the flags, the marginal cost of the movability of links appears to be about nine per

cent of latency, or 1801's per remote invocation.

We have considered an alternative implementation of link movement, in which dual

queue notices carry absolute information. The overhead of flag bits would be eliminated for

ordinary messages, but the cost of actually moving a link would increase dramatically.

Link movement is important and frequent enough to make the tradeoff unattractive.

6.2. Lessons

For the benefit of those who may wish to undertake similar performance studies for

other message-passing systems, we offer the following suggestions:

Intuition ill not very helpful.

Beginning programmers are taught to distrust their intuition when attempting to tune

their code. Our experience testifies to the wisdom of this advice. It came as a com

plete surprise, for example, when we discovered that we were spending 1.3 ms per

invocation calculating subscripts into the table of link records. It was also a surprise

(though a less happy one) when the elimination of acknowledgment notices on the dual

queues yielded only modest improvements in latency. Similarly, we were disappointed

to discover that the flag operations that permit link movement were responsible for as

much as seven percent of our invocation time. We had been inclined to think of those

operations as trivial.

Overlapped computation ill crucial.

As demonstrated by our experience with the protocol optimizations of section 4, no

explanation of message-passing overhead can be complete without an understanding of

precisely which parts of the protocol can be executed simultaneously on separate pro-

ceSSOrB.

It helps to have a variety of measurement techniques.

Our analysis drew on several kinds of statistics: we collected instruction count histo

grams; we timed communication within a process, between processes, and between

20

machines; we collected statistics (in the run-time support package) on such things as

the number of times a process was forced to wait for a notice from its dual queue. No

one of these measurement techniques alone sufficed to explain performance. The com

parison of nullop timings with the predicted results of the timeline in section 5.2 pro

vided a reassuring cross-check on our figures. The slowdown of the nullop tast on

separate machines after the elimination of REQ.ACK notices was explained by counting

the number of times each process was blocked by dequeue operations.

7. Recent Results

Since completing the analysis of section 5, we have implemented several minor

changes to the run-time package for LYNX. One of these circumvents the normal mechan

ism for establishing Chrysalis exception handlers, saving about 40 I's per enqueue opera

tion when posting notices. Others changes result in small savings throughout the code,

with relatively little impact on the proportions of figure 4. The following is a complete set

of timings as of December 1986:

Explicit receipt:

nullop
bigop

Proce88es on
different nodes same node

1.80 ms 2.58 mS
3.45 ms 4.21 mS

Implicit receipt:

nullop
bigop

Processes on
different nodes same node

2.04 ms 2.76 ms
3.72 ms 4.42 ms

The figures for implicit receipt are larger than those for explicit receipt because of the over

head of creating and destroying threads. Space considerations for this paper preclude a

detailed discussion.

Acknowledgment

Thanks to Ken Yap for his help in porting LYNX to the Butterlly.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. TevaDian, and M. Young,
"Mach: A New Kernel Foundation for UNIX Development," Proceedings of the Sum
mer 1986 USENIX Technical Conference and Exhibition, June 1986.

[2] G. R. Andrews, R. A. Ol88on, M. Coffin, 1. J. P. Elshoff, K. Nilsen, and T. Purdin,
"An Overview of the SR Language and Implementation," TR 86-6a, Department of
Computer Science, University of Arizona, 18 February 1986, revised 23 June 1986.
Submitted to ACM TOPLAS.

21

[3] Y. Artsy, H.-Y. Chang, and R. Finkel, "Interprocess Communication in Charlotte,"
Computer Sciences Technical Report #632, University of Wisconsin - Madison,
February 1986. Revised version to appear in IEEE Software.

[4] BBN Laboratories, "Butter1ly. Parallel Processor Overview," Report #6148, Version
1, Cambridge, MA, 6 March 1986.

[5] A. D. BirreJl and B. J. Nelson, "Implementing Remote Procedure Calls," ACM
TOCS 2:1 <February 1984), pp. 39-59. Originally presented at the Ninth ACM
Symposium on Operating Systems Principles, 10-13 October 1983.

[6] A. P. Black, "Supporting Distributed Applications: Experience with Eden," Proceed
ings of the Tenth ACM Symposium on Operating Systems Principles, 1-4 December
1985, pp. 181-193. In ACM Operating Systems Review 19:5.

[7] D. R. Cberiton and W. Zwaenepoel, "The Distributed V Kernel and its Performance
for Diskless Workstations," Proceedings of the Ninth ACM Symposium on Operating
Systems Principles, 10-13 October 1983, pp. 129-140. In ACM Operating Systems
Review 17:5.

[8] D. R. Cheriton and W. Zwaenepoel, "Distributed Process Groups in the V Kernel,"
ACM TOCS 3:2 (May 1985), pp. 77-107.

[9] D. J. DeWitt, R. Finkel, and M. Solomon, "The CRYSTAL Multicomputer: Design
and Implementation Experience," Computar Sciences Technical Report #553,
University of Wisconsin - Madison, September 1984.

[10] C. A. R. Hoare, "Communicating Sequential Processes," CACM 21:8 (August 1978),
pp. 666-677.

[11] M. B. Jones, R. F. Rashid, and M. R. Thompson, "Matchmaker: An Interface
Specification Language for Distributed Processing," Conference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Languages, Janu
ary 1985, pp. 225-235.

[12] B. W. Lampson and D. D. Redell, "Experience with Processes and Monitors in
Mesa," CACM 23:2 (February 1980), pp. 105-117.

[13] R. J. leBlanc and C. T. Wilkes, "Systems Programming with Objects and Actions,"
Proceedings of the Fifth International Conference on Distributed Computing Systems,
13-17 May 1985, pp. 132-139.

[14] T. J. leBlanc and R. P. Cook, "An Analysis of Language Models for High
Performance Communication in Local-Area Networks," Proceedings of the SIG
PLAN '83 Symposium on Programming Language Issues in Software Systems, 27-29
June 1983, pp. 65-72. In ACM SIGPLAN Notices 18:6.

[15] B. Liskov and R. Scheifler, "Guardians and Actions: Linguistic Support for Robust,
Distributed Programs," ACM TOPLAS 5:3 (July 1983), pp. 381-404.

22

[16] B. Liskov, M. Herlihy, and L. Gilbert, "Limitations o(Remote Procedure Call and
Static Process Structure (or Distributed Computing," Programming Methodology
Group Memo 41, Laboratory (or Computer Science, MIT, September 1984, revised
October 1985.

[17] J. L. Peterson, "Notes on a Workshop on Distributed Computing," ACM Operating
Systems Review 13:3 (July 1979), pp. 18-27.

[18] M. L. Powell and B. P. Miller, "Process Migration in DEMOSIMP," Proceedings of
the Ninth ACM Symposium on Operating Systems Principles, 10-13 October 1983,
pp. 110-118. In ACM Operating Systems Review 17:5.

[19] R. F. Rashid and G. G. Robertson, "Accent: A Communication Oriented Network
Operating System Kernel," Proceedings of the Eighth ACM Symposium on Operat
ing Systems Principles, 14-16 December 1981, pp. 64-75.

[20] M. L. Scott and R. A. Finkel, "A Simple Mechanism (or Type Security Across Com
pilation Units," Computer Sciences Technical Report #541, University o(Wisconsin
- Madison, May 1984. Revised version to appear in IEEE Transactions on
Software Engineering.

[21] M. L. Scott, "Design and Implementation o(a Distributed Systems Language,"
Ph. D. Thesis, Computer Sciences Technical Report #596, University of Wisconsin
- Madison, May 1985.

[22] M. L. Scott, "The Interface Between Distributed Operating System and High-Level
Programming Language," Proceedings of the 1986 International Conference on
Parallel Processing, 19-22 August 1986, pp. 242-249. Also published in the Univer
sity of Rochester 1986-87 Computer Science and Computer Engineering Research
Review, and available as TR182 and BPR 6, Department of Computer Science,
University of Rochester, September 1986 (revised).

[23] M. L. Scott, "Language Support (or Loosely-Coupled Distributed Programs," IEEE
Transactions on Software Engineering, January 1987. Also published as TR183,
Department o(Computer Science, University o(Rochester, September 1986
(revised).

[24] A. Z. Spector, "Performing Remote Operations Efficiently on a Local Computer Net
work," CACM 25:4 (April 1982), pp. 246-260.

[25] R. E. Strom and S. Yemini, "The NIL Distributed Systems Programming Language:
A Status Report," ACM SIGPLAN Notices 20:5 (May 1985), pp. 36-44.

[26] United States Department of Defense, "Reference Manual for the Ada* Program
ming Language," (ANSIIMIIrSTD-1815A-1983), 17 February 1983.

