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ABSTRACT 
A distributed operating system provides a process abstraction and primitives for oommuni
cation between processes. A distributed programming language regularizes the use of the 
primitives. making them both safer and more oonvenient The level of abstraction of the 
primitives. and therefore the division of labor between the operating system and the 
language suppon routines. has serious ramifications for efficiency and flexibility. Experi
ence with three implementations of the LYNX distributed programming language suggests 
that functions that can be implemented on either side of the interface are best left to the 
language run-time package. 

1. Introduction 
Recent years have seen the development of a large number of distributed programming 

languages and an equally large number of distributed operating systems. While there are excep
tions to the rule. it is generally true that individual research groups have focused on a single 
language. a single operating system. or a single language/O.S. pair. Relatively little attention has 
been devoted to the relationship between languages and 0.5. kernels in a distributed setting. 

Amoeba [16]. Demos-MP [17]. Locus [27]. and the \' kernel [8] are among the better-known 
distributed operating systems. Each by-passes language Issues by relying on a simple library
routine interface to kernel communication primitives. Eden [6] and Cedar [25] have both devoted a 
considerable amount of attention to programmtng language Issues. but each is very much a single
language system. The Accent project at CMU [18] is perhap' the only well-known effon to suppon 
more than one programming language on a single underly ing kernel. Even so. Accent is only able 
to achieve its multi-lingual character by insisting on a single. universal model of interprocess com
munication based on remote procedure calls [12]. Languages with other models of process interac
tion are not considered. 

In the language community. it is unusual to find implementations of the same distributed 
programming language for more than one operating system. or indeed for any existing operating 
system. Dedicated. special-purpose kernels are under construction for Argus [15]. SR [1.2]. and 
NIL [23.24]. Several dedicated implementations have been designed for Linda [7.11]. No distri
buted implementations have yet appeared for Ada [26]. 
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DARPA oontract number NOOI4-82-C-2087, and a Bell Telephone Laboratories Doctoral Scholarship. At the 
University of Rochester, the work is supported in pan by NSF grant number DCR-8320136 and DARPA con
tract number DACA 76-8S-C-OOOl. 
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If parallel or distributed hardware is to be used for general-purpose computing, we must 
eventually learn how to support multiple languages efficiently on a single operating system, 
Toward that end, it is worth considering the division of labor between the language run-time pack
age and the underlying kerneL Which functions belong on which side of the interface? What is 
the appropriate level of abstraction for uni\ersal primitives? Answers to these questions will 
depend in large part on experience with a variety of language/O. S_ pairs_ 

This paper repons on implementations of the LYNX distributed programming language for 
three existing, but radically different. distributed operating systems. To the surprise of the imple
mentors, the implementation effort turned out to be substantially easier for kernels with low-level 
primitives_ If confirmed by similar results with other languages, the lessons provided by work on 
LYNX should be of considerable value in the design of future systems_ 

The first implementation of LYNX was constructed during 1983 and 1984 at the University 
of Wisconsin. where it runs under the Charlotte distributed operating system [4,10) on the Crystal 
multicomputer [9)- The second implementation was designed. but never actually built, for Kepecs 
and Solomon's SODA [13,14)_ A third implementation has recently been released at the University 
of Rochester. where it runs on BBN Butterfly multiprocessors [5) under the Chrysalis operating sys
tem. 

Section 2 of this paper summarizes the features of LYNX that ha\e an impact on the ser
vices needed from a distributed operating system kernel. Sections 3, 4. and 5 describe the three 
LYNX implementations, comparing them one to the other. The final section discusses possible les
sons to be learned from the comparison. 

2. LYNX Overview 
The LYNX programming language is not itself the subject of this article. Language features 

and their rationale are described in detail elsewhere [20,21. 22). For present purposes, it suffices to 
say that LYNX was designed to support the loosely-coupled style of programming encouraged by a 
distributed operating system. Unlike most existing languages, LYNX extends the advantages of 
high-level communication facilities to processes designed in isolation, and compiled and loaded at 
disparate times. LYNX suppons interaction not only between the pieces of a multi-process appli
cation. but also between separate applications and between user programs and long-lived system 
servers. 

Processes in LYNX execute in parallel, possibly on separate processors. There is no provi
SIOn for shared memory. Interprocess communication uses a mechanism similar to remote pro
cedure calls (RPC), on virtual circuits called links. Links are two-directional and have a single pro
cess at each end. Each process may be divided into an arbitrary number of threads of control, but 
the threads execute in mutual exclusion and may be managed by the language run-time package, 
much like the coroutines of Modula-2 [28). 

2.1. Communication Characteristics 
(The following paragraphs describe the communication behavior of LYNX processes. The 

description does not provide much insight into the way that LYNX programmers think about their 
programs. The intent is to describe the externally-visible characteristics of a process that must be 
supported by kernel primities.) 

Messages in LYNX are not received asynchronously. They are queued instead, on a Iink
by-link basis_ Each link end has one queue for incoming requests and another for incoming 
replies. Messages are received from a queue only when the queue is open and the process that 
owns its end has reached a well-defined block point. Request queues may be opened or closed 
under explicit process control. Reply queues are opened when a request has been sent and a reply 
is expected. The set of open queues mdY therefore vary from one block point to the next. 

A blocked process waits until one of its previously-sent messages has been received, or until 
an incoming message is available in at least one of its open queues. In the latter case, the process 
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0) link 1 8 
--- -- - - -message - - - - -::> 

link 3 

figure I: link moving at both ends 

chooses a non-empty queue, receives that queue's first message, and executes through to the next 
block point. For the sake of fairness, an implementation must guarantee that no queue is ignored 
forever. 

Messages in the same queue are received in the order sent. Each message blocks the send
ing coroutine within the sending process. The process must be notified when messages are received 
in order to unblock appropriate coroutines. It is therefore possible for an implementation to rei, 
upon a stop-and-wait protocol with no actual buffering of messages in transit. Request and reply 
queues can be implemented by lists of blocked coroutines in the run-time package for each sending 
process. 

The most challenging feature of links, from an implementor's point of view, is the prO\ ision 
for moving their ends. Any message, request or reply, can contain references (0 an arbitrary 
number of link ends. Language semantics specify that receipt of such a message has the side effect 
of moving the specified ends from the sending process to the receiver. The process at the far end 
of each moved link must be oblivious to the move. even if it is currently relocating its end as I'<ell. 
In figure 1, for example, processes A and D are moving their ends of link 3, independently, in such 
a way that what used to connect A to D will now connect B to C. 

It is best to think of a link as a flexible hose. A message put in one end will eventually be 
delivered to whatever process happens to be at the other end. The queues of available but un
received messages for each end are associated with the link itself, not with any process. A moved 
link may therefore (logically at least) have messages inside. waiting to be received at the moving 
end. In keeping with the comment above about stop-and-wait protocols, and to prevent complete 
anarchy, a process is not permitted to move a link on which it has sent unreceived messages, or on 
which it owes a reply for an already-received request. 

2.2. Kernel Requirements 
To permit an implementation of LYNX, an operating system kernel must provide processes, 

communication primitives, and a naming mechanism that can be used to build links. The major 
questions for the designer are then 1) hal'< are links to be represented? and 2) how are RPC-style 
request and reply messages to be transmitted on those links? It must be possible to move links 
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without losing messages. In addition. the tennination of a process must destroy all the links 
attached to that process. Any attempt to send or receive a message on a link that has been des' 
troyed must fail in a way that can be reflected back into the user program as a run-time exception. 

3. The Charlotte Implementation 

3.1. Overview of Charlotte 
Charlotte [4, 10] runs on the Crystal multicomputer [9], a collection of 20 VAX 111750 node 

machines connected by a 10-Mbit/second token ring from Proteon Corporation. 

The Charlotte kernel is replicated on each node. It PH)\ ides direct support for both 
processes and links. Charlotte links were the original motivation for the circuit abstraction in 
LYNX. As in the language, Charlotte links are two directional. with a single process at each end. 
As in the language, Charlotte links can be created, destroyed, and moved from one process to 
another. Charlotte even guarantees that process tennination demoys all of the process's links. It 
was originally expected that the implementation of I. YNX ·style imerprocess communication would 
be almost trivial. As described in the rest of this section, that expectation turned out to be naive. 

Kernel calls in Charlotte include the folio", ing: 

MakeLink (var endl. end2 : link) 
Create a link and return references to its ends. 

Destroy (myend : link) 
Destroy the link with a given end. 

Send (I. : link; buffer: address: length: integer: enclosure: link) 
Start a send actirity on a given link end. optionally enclosing one end of some other link. 

Receive (L : link; buffer: address; length: integer) 
Start a receive actiYity on a given link end. 

Cancel (I. : link; d : direction) 
Attempt to cancel a previously-started send or receive activity. 

Wait (var e : description) 
Wait for an activity to complete, and return its description (link end, direction, length, enclo· 
sure). 

All calls return a status code. All but Wait are guaranteed to complete in a bounded amount of 
time. Wail blocks the caller umil an activity completes. 

The Charlotte kernel matches send and receive activities. It allo",s only one outstanding 
activity in each direction on a given end of a link. Completion must be reported by Wail before 
another similar activity can be started. 

3.2. Implementation of LYNX 
The language run-time package represents every LYNX link with a Charlotte link. It uses 

the activities of the Charlotte kernel to simulate the request and reply queues described in section 
2.1. It starts a send activity on a link whenever a process attempts to send a request or reply meso 
sage. It starts a receive activity on a link when the corresponding request or reply queue is opened. 
if both were closed before. It attempts to cancel a previous-started receive activity when a process 
closes its request queue, if the reply queue is also closed. The multiplexing of request and reply 
queues onto receive activities was a major source of problems for the implementation effort. A 
second source of problems was the inability to enclose more than one link in a single Charlotte 
message. 
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3.2.1. Screening Messages For the vast majority of remote operations, only two Charlotte mes
sages are required: one for the request and one for the reply. Complications arise, however, in a 
number of special cases. Suppose that process A requests a remote operation on link L. 

0-1. -0 
request 

-------------------~ 

Process B receives the request and begins serving the operation. A now expects a reply on Land 
starts a receive activity with the kernel. Now suppose that before replying B requests another 
operation on L, in the reverse direction (the coroutine mechanism mentioned in section 2 makes 
such a scenario entirely plausible). A will receive B's request before the reply it wanted. Since A 
may not be willing to serve requests on L at this point in time (its request queue is closed). B is not 
able to assume that its request is being served simply because A has received it. 

A similar problem arises if A opens its request queue and then closes it again. before reach
ing a block point In the interests of concurrency, the run-time support routines will have posted a 
Receive with the kernel as soon as the queue was opened. When the queue is closed, they will 
attempt to cancel the Receive. If B has requested an operation in the meantime, the Cancel will 
fail. The next time A's run-time package calls Wait, it will obtain notification of the request from 
B, a message it does not want. Delaying the start of receive activities until a block point does nor 
help. A must still start activities for all its open queues. It will continue execution after a message 
is received from exactly one of those queues. Before reaching the nexl block point. it may change 
the set of messages it is willing to receive. 

It is tempting to let A buffer unwanted messages until it is again willing to receh e from B. 
but such a solution is impossible for two reasons. First, the occurrence of exceptions in L Y~X can 
require A to cancel an outstanding Send on L. If B ha' already received the message (indd'er
tently) and is buffering it internally, the Cancel cannOl ,ucceed. Second, the scenario in which A 
receives a requesl but wants a reply can be repeated an arbitrary number of limes. and -\ cannm be 
expected to provide an arbitrary amount of buffer space. 

A must return unwanted messages to B. In addition to the request and rep I) messages 
needed in simple situations, the implementation now requires a retry message. Retry is a negative 
acknowledgment. It can be used in the second scenario above, when A has closed its request 
queue after receiving an unwanted message. Since A will have no Receive outslanding. lhe re-sent 
message from B will be delayed by the kernel until the queue is re-opened. 

In the first scenario, unfortunately, A will still have a Receive posted for the reply it wants 
from B. If A simply returned requests to B in retry messages, it might be subjected to an arbitrary 
number of retransmissions. To prevent these retransmissions we must introduce the forbid and 
allow messages. Forbid denies a process the right to send requests (it is still free to send replies). 
Allow restores that right. Relry is equivalent to forbid followed by allow. It can be considered an 
optimization for use in cases where no replies are expected, so retransmitted requests will be 
delayed by the kernel. 

Both forbid and relry return any link end that was enclosed in the unwanted message. A 
process that has received a forbid message keeps a Receive posted on the link in hopes of receiving 
an allow message.l A process that has sent a forbid message remembers that it has done so and 
sends an allow message as soon as it is either willing to receive requests (its request queue is open) 
or has no Receive outstanding (so the kernel will delay all messages). 

1 This of course makes it vulnerable to receiving unwanted messages itself. 
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simple case 

connect ________ !e_q~:s! ______ ::> accept 

compute 
~ - - - - - - - r:~1j' _____ - - - _ reply 

multiple enclosures 

connect ________ !e_q~:s! ______ ::> accept 
goahead 

~-------------------__________ e~c:. _______ ::> 
... 
enc -------------------::> 

replv 
~---------"---------enc 
~-------------------

enc 
~-------------------

figure 2: link enclosure protocol 

compute 
reply 
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3.2.2. Moving Multiple Links To move more than one link end with a single LYNX message, 
a request or reply must be broken into several Charlotte messages. The first packet contains non
link data, together with the first enclosure. Additional enclosures are passed in empty enc messages 
(see figure 2). For requests, the receiver must return an explicit goahead message after the first 
packet so the sender can tell that the request is wanted. No goahead is needed for requests with 
zero or one enclosures, and none is needed for replies, since a reply is always wanted. 

One consequence of packetizing LYNX messages is that links enclosed in unsuccessful mes
sages may be lost. Consider the following chain of events: 
a) Process A sends a request to process B, enclosing the end of a link. 

b) B receives the request unintentionally; inspection of the code allows one to prove that only 
replies were wanted. 

c) The sending coroutine in A feels an exception, aborting the request. 

d) B crashes before it can send the enclosure back to A in a forbid message. From the point of 
view of language semantics, the message to B was never sent, yet the enclosure has been lost. 
Under such circumstances the Charlotte implementation cannot conform to the language 
reference manual. 

The Charlotte implementation also disagrees with the language definition when a coroutine 
that is waiting for a reply message is aboned by a local exception. On the other end of the link the 
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server should feel an exception when if attempts to send a no-longer-wanted reply. Such excep
tions are not provided under Charlotte because they would require a final. top-level acknowledg
ment for reply messages. increasing message traffic by 50%. 

3.3. Measurements 
The language run-time package for Charlotte consists of just over 4000 lines of C and 200 

lines of V AX assembler. compiling to about 21K of object code and data. Of this total. approxi
mately 45% is devoted to the communication routines that interact with the Charlotte kernel. 
including perhaps 5K for unwanted messages and multiple enclosures. Much of this space could 
be saved with a more appropriate kernel interface. 

A simple remote operation (no enclosures) requires approximately 57 ms with no data 
transfer and about 65 ms with 1000 bytes of parameters in both directions. C programs that make 
the same series of kernel calls require 55 and 60 ms. respectively. In addition to being rather slow. 
the Charlotte kernel is highly sensitive to the ordering of kernel calls and to the tnterleaving of 
calls by independent processes. Performance figures should therefore be regarded as suggestive. 
not definitive. The difference in timings between LYNX and C programs is due to effons on the 
part of the run-time package to gather and scatter parameters. block and unblock co routines. estab
lish default exception handlers. enforce fio" control. perform type checking. update tables for 
enclosed links. and make sure the links are valid. 

4. The SODA Implementation 

4.l. Oveniew of SODA 
As pan of his Ph. D. research [13.14]. Jonathan Kepecs set out to design a minimal kernel 

for a multicomputer. His "Simplified Operating system for Distributed Applications" might better 
be described as a communications protocol for use on a broadcast medium with a very large 
number of heterogeneous nodes. 

Each node on a SO[)A network consists of two processors: a client processor. and an associ
ated kernel processor. The kernel processors are all alike. They are connected to the network and 
communicate with their client processors through shared memo!) and interrupts. :-iodes are 
expected to be more numerous than processes. so client processors dre not multi-programmed. 

Every SODA process has a unique id. It also advertises a collection of names [0 which it is 
willing to respond. There is a kernel call to generate new names. unique Olel space and time. The 
disco,er kernel call uses unreliable broadcast in an attempt to find a process thdt ha, advenised a 
given name. 

Processes do not necessarily send messages. rather they request the transfer of data. A pro
cess that is interested in communication specifies a name. a process id. a small amount of out-of
band information. the number of bytes it would like to send and the number it is willing to 
receive. Since either of the last two numbers can be zero. a process can request to send data. 
receive data, neither. or both. The four varieties of request are termed put. get. signal. and 
exchange. respectively. 

Processes are informed of interesting events by means of software interrupts. Each process 
establishes a single handler which it can close temporarily when it needs to mask out interrupts. A 
process feels a software interrupt when its id and one of its advertised names are specified in a 
request from some other process. The handler is provided with the id of the requester and the 
arguments of the request. including the out-of-band information. The interrupted process is free to 
save the information for future reference. 

At any time. a process can accept a request that was made of it at some time in the past. 
When it does so. the request is completed (data is transferred in both directions simultaneously). 
and the requester feels a software interrupt informing it of the completion and providing it with a 
small amount of out-of-band information from the accepter. Like the requester. the accepter 
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specifies buffer sizes. The amount of data transferred in each direction is the smaller of the 
specified amounts. 

Completion interrupts are queued when a handler is busy or closed. Requests are delayed; 
the requesting kernel retries periodically in an attempt to get through (the requesting user can 
proceed). If a process dies before accepting a request. the requester feels an interrupt that informs 
it of the crash. 

4.2. A Different Approach to Links 

A link in SODA can be represented by a pair of unique names. one for each end. A process 
that owns an end of a link advenises the associated name. Every process knows the names of the 
link ends it owns. Every process keeps a hint as to the current location of the far end of each of its 
links. The hints can be wrong. but are expected to work most of the time. 

A process that wants to send a lYNX message. either a request or a reply. initiates a SODA 
put to the process it thinks is on the other end of the link. A process moves link ends by enclosmg 
their names in a message. When the message is SODA-accepted by the receiver. the ends are 
understood to have mmed. Processes on the fixed ends of moved links will have incorrect hints. 

A process that wants to receive a LY]'I;X message. either a request or a reply. initiates a 
SODA signal to the process it thinks is on the other end of the link. The purpose of the signal is 
allow the aspiring receiver to tell if its link is destroyed or if its chosen sender dies. In the latter 
case, the receiver will feel an interrupt informing it of the crash. In the former case, we require a 
process that destroys a link to accept any previously-posted status signal on its end, mentioning'the 
destruction in the out-of-band information. We also require it to accept any outstanding put 
request. but with a zero-length buffer, and again mentioning the destruction in the out-of-band 
information. After clearing the signals and pucs, the process can unadvertise the name of the end 
and forget that it ever existed. 

Suppose now that process A has a link L to process C and that it sends its end to process B. 

_____ ~~ss~g: ___ '0> 

L 

If C wants to send or receive on L, but B terminates after receiving L from A, then C must be 
informed of the termination so it knows that L has been destroyed. C will have had a SODA 
request posted with A. A must accept this request so that C knows to watch B instead. We there
fore adopt the rule that a process that moves a link end must accept any previously-posted SODA 
request from the other end, just as it must when it destroys the link. It specifies a zero-length 
buffer and uses the out-of-band information to tell the other process where it moved its end. In 
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the above example. C will re-start its request with B instead of A. 

The amount of work involved in moving a link end is very small. since accepting a request 
does not even block the accepter. More than one link can be enclosed in the same message with 
no more difficulty than a single end. [f the fixed end of a moving link is not in active use. there is 
no expense involved at all. [n the above example. if C receives a SODA request from B. it will 
know that L has moved. 

The only real problems occur when an end of a dormant link is moved. [f our example. if L 
is first used by C after it is moved. C will make a SODA request of A. not B. since its hint is out
of-date. There must be a way to fix the hint. [f each process keeps a cache of links it has known 
about recently. and keeps the names of those links advertised. then A may remember it sent L to 
B. and can tell C where it went. [f A has forgotten. C can use the discover command in an attempt 
to find a process that knows about the far end of L. 

A process that is unable to find the far end of a link must assume it has been destroyed. [f 
L exists. the heuristics of caching and broadcast should suffice to find it in the vast majority of 
cases. [f the failure rate is comparable to that of other "acceptable" errors. such as garbled mes
sages with "valid" checksums. then the heuristics may indeed be all we ever need. 

Without an actual implementation to measure. and without reasonable assumptions about 
the reliability of SODA broadcasts. it is impossible to predict the success rate of the heuristics. The 
SODA discover primitive might be especially strained by node crashes. since they would tend to 
precipitate a large number of broadcast searches for lost links. [f the heuristics failed too often. a 
fall-back mechanism would be needed. 

Several absolute algorithms can be devised for finding missing links. Perhaps the simplest 
looks like this: 

• Every process advertises a freeze name. When C discovers its hint for L is bad. it posts a 
SODA request on the freeze name of every process currently in existence (SODA makes it 
easy to guess their ids). It includes the name of L in the request. 

• Each process accepts a freeze request immediately. ceases execution of everying but its own 
searches (if any). increments a counter. and posts an unfreeze request with C. [f it has a hint 
for L. it includes that hint in the freeze accept or the unfreeze request. 

• When C obtains a ne", hint or has unsuccessfully queried everyone. it accepts the unfreeze 
requests. When a frolen process feels an interrupt indicating that its unfreeze request has 
been accepted or that C has crashed. it decrements its counter. [f the counter hits zero. it con
tinues execution. The existence of the counter permits multiple concurrent searches. 

This algorithm has the considerable disadvantage of bringing every LYNX process in existence to a 
temporary halt. On the other hand. it is simple. and should only be needed when a node crashes 
or a destroyed link goes unused for so long that eveT)one has forgotten about it. 

4.2.1. Potential Problems As mentioned in the introduction. the SODA version of LYNX was 
designed on paper only. An actual implementation would need to address a number of potential 
problems. To begin with. SODA places a small. but unspecified. limit on the size of the out-of
band information for request and accept. If all the self-descriptive information included in mes
sages under Charlotte were to be provided out-of-band, a minimum of about 48 bits would be 
needed. With fewer bits available. some information would have to be included in the messages 
themselves. as in Charlotte. 

A second potential problem with SODA involves another unspecified constant: the permissi
ble number of outstanding requests between a given pair of processes. The implementation 
described in the previous section would work easily if the limit were large enough to accommodate 
three requests for every link between the processes (a LYNX-request put. a LYNX-reply put. and a 
status signal). Since reply messages are always wanted (or can at least be discarded if unwanted). 
the implementation could make do with two outstanding requests per link and a single extra for 
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replies. Too small a limit on outstanding requests would leave the possibility of deadlock when 
many links connect the same pair of processes. In practice. a limit of a half a dozen or so is 
unlikely to be exceeded (it implies an improbable concentration of simultaneously· active resources 
in a single process). but there is no way to reflect the limit to the user in a semantically-meaningful 
way. Correctness would start to depend on global characteristics of the process-interconnection 
graph. 

4.3. Predicted Measurements 
Space requirements for run-time support under SODA would reflect the lack of special cases 

for handling unwanted messages and multiple enclosures. Given the amount of code devoted to 
such problems in the Charlotte implementation, it seems reasonable to expect a savings on the 
order of 4K bytes. 

For simple messages, run-time routines under SODA would need to perform most of the 
same functions as their counterparts for Charlotte. Preliminary results with the Butterfly imple' 
mentation (described in the following section) suggest that the lack of special cases might sale 
some time in conditional branches and subroutine calls. but relatively major differences in run·time 
package overhead appear to be unlikely. 

Overall performance, including kernel overhead. i, harder to predict. Charlotte has a con· 
siderable hardware advantage: the only implementation of SODA ran on a collection of PDP' 
11/23's with a I·Mbit/sccond CSMA bus. SODA, on the other hand, was designed with speed in 
mind. Experimental figures reveal that for small messages SODA was three times as fast as Char· 
lotte2 Charlotte programmers made a deliherate decision to sacrifice efficiency in order to keep the 
project manageable. A SO!)A version of I YNX might well be intrinsically faster than a compar
able version for Charlotte. 

5. The Chrysalis Implementation 

5.1. Overview of ChQ,alis 
The BB\, Butterfl, Parallel Processor [5J is a 68000-based shared-memory multiprocessor. 

The Chrysalis operating system provides primitives. many of them in microcode. for the manage
ment of system abstract;,,";, Among these abstractions are processes, memory objects. event 
blocks. and dual queues. 

Each process runs In an address space that can span as many as one or two hundred 
memory objects, Each memory object can be mapped into the addre" spaces of an arbitrar, 
number of processes. Synchronization of access to shared memory IS achieled through use of the 
event blocks and dual queues. 

An event block is similar to a binary semaphore, except that I) a 32-bit datum can be pro
vided to the V operation, to be returned by a subsequent P, and 2) only the owner of an event 
block can wait for the event to be posted. Any process that knows the name of the event can per
form the post operation. The most common use of event blocks is in conjunction with dual 
queues. 

A dual queue is so named because of its ability to hold either data or event block names. A 
queue containing data is a simple bounded buffer, and enqueue and dequeue operations proceed as 
one would expect. Once a queue becomes empty, however, subsequent dequeue operations actu
ally enqueue event block names. on which the calling processes can wait An enqueue operation on 
a queue containing event block names actually posts a queued event instead of adding its datum to 
the queue. 

1 The difference is less dramatic for larger messages: SODA's slow network exacted a heavy toll. The 
figures break even somewhere between lK and 2K bytes. 
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5.2. A Third Approach to Links 
In the Butterfly implementation of LYNX, every process allocates a single dual queue and 

event block through which to receive notifications of messages sent and received. A link is 
represented by a memory object. mapped into the address spaces of the two connected processes. 
The memory object contains buffer space for a single request and a single reply in each direction. 
It also contains a set of flag bits and the names of the dual queues for the processes at each end of 
the link. When a process gathers a message into a buffer or scatters a message out of a buffer into 
local variables. it sets a flag in the link object (atomically) and then enqueues a notice of its activity 
on the dual queue for the process at the other end of the link. When the process reaches a block 
point it attempts to dequeue a notice from its own dual queue, waiting if the queue is empty. 

As in the SODA implementation, link movement relies on a system of hints. Both the dual 
queue names in link objects and the notices on the dual queues themselves are considered to be 
hints. Absolute information about which link ends belong to which processes is known only to the 
owners of the ends. Absolute information abllut the availability of messages in buffers is contained 
only in the link object flags. Whenever a process deq ueues a notice from its dual queue it checks 
to see that it owns the mentioned link end and that the appropriate flag is set in the corresponding 
object. If either check fails, the notice is discdrJ~J. her) change to a flag is eventually reflected 
by a notice on the appropriate dual queue. but not e\ ery dual queue notice reflects a change to a 
flag. A link is moved by passing the (address-spdcc-independent) name of its memory object in a 
message. When the message is receiled. the sending process removes the memory object from its 
address space. The receiving process maps the object mto its address space. changes the informa
tion in the object to name its own dual queue. and Ihen inspects the flags. It enqueues notices on 
its own dual queue for any of the flags that are se' 

Primitives provided by Chrysalis make atomic changes to flags extremely inexpensive. 
Atomic changes to quantities larger than 16 bits (including dual queue names) are relatively costly. 
The recipient of a moved link therefore writes the name of its dual queue into the new memory 
object in a non-atomic fashion. It is possible that the process at the non-moving end of the link 
will read an invalid name. but only after setting flags. Since the recipient completes its update of 
the dual-queue name before inspecting the flags, changes are never overlooked. 

Chrysalis keeps a reference count for each memory object. To destroy a link. the process at 
either end sets a flag bit in the link object, enqueues a notice on the dual queue for the process at 
the other end. unmaps the link object from its address space. and informs Chrysalis that the object 
can be deallocated when its reference count reaches zero. When the process at the far end 
dequeues the destruction notice from its dual queue. it confirms the notice by checking it against 
the appropriate flag and then urunaps the link object. At this point Chrysalis notices that the refer
ence count has reached zero. and the object is reclaimed. 

Before terminating, each process destroys all of its links. Chrysalis allows a process to catch 
~11 exceptional conditions that might cause premature termination, including memory protection 
faults, so even erroneous processes can clean up their links before going away. Processor failures 
are currently not detected. 

5.3. Preliminary Measurements 
The Chrysalis implementation of LYNX has only recently become available. It consists of 

approximately 3600 lines of C and 200 lines of assembler, compiling to 15 or 16K bytes of object 
code and data on the 68000. Both measures are appreciably smaller than the respective figures for 
the Charlotte implementation. 

Message transmission times are also faster on the Butterfly. by more than an order of magni
tude. Recent tests indicate that a simple remote operation requires about 2.4 ms with no data 
transfer and about 4.6 ms with 1000 b~tes of parameters in both directions. Code tuning and pro
tocol optimizations now under development are likely to improve both figures by 30 to 40%. 
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6. Discussion 

Even though the Charlotte kernel provides a higher-level interface than does either SODA 
or Chrysalis. and even though the communication mechanisms of LYNX were patterned in large 
part on the primitives prO\ided by Charlotte. the implementations of LYNX for the latter two sys
tems are smaller, simpler, and faster. Some of the difference can be attributed to duplication of 
effort between the kernel and'1he language run-time package. Such duplication is the usual target 
of so-called end-to-end arguments [19]. Among other things, end-to-end arguments observe that 
each level of a layered software system can only eliminate errors that can be described in the con
text of the interface to the level above. Overall reliability must be ensured at the application level. 
Since end-to-end checks generally catch all errors, low-level checks are redundant. They are 
justified only if errors occur frequently enough to make early detection essential. 

LYNX routines never pass Charlotte an invalid link end. They never specify an impossible 
buffer address or length. They never try to send on a moving end or enclose an end on itself. To 
a certain extent they provide their own top-level acknowledgments. in the form of goahead, retry, 
and forbid messages, and in the confirmation of operation names and types implied by a reply 
message. They would provide additional acknowledgments for the replies themselves if they were 
not so expensive. For the users of l.Y",X. Charlotte wastes time by checking these things itself. 

Duplication alone, however, cannn[ account for the wide disparity in complexity and 
efficiency between the three l.YNX implementations. Most of the differences appear to be due to 
the difficulty of adapting higher· level Charlotte primitives [0 the needs of an application for which 
they are almost, but not quite, correct. In comparison to Charlotte, the language run-time packages 
for SODA and Chrysalis can 

(1) move more than one link in a message 

(2) be sure that all recehed messages are wanted 

(3) recover the enclosures in aborted messages 

(4) detect all the exceptional conditions described in the language definition, without any extra 
acknowledgments. 

These advantages obtain precisely because the facilities for managing virtual circuits and for screen
ing incoming mes 'ages are not provided by the kernel. By moving these functions into the 
language run-time package, SODA and Chrysalis allow the implementation to be tuned specifically 
to L Y!'iX. In addition, by maintaining the flexibility of the kernel interface they permit equally 
efficient implementation, of a wide variety of other distributed languages. with entirely different 
needs. 

It should be emphasized that Charlotte was not originally intended to support a distributed 
programming language. Like the designers of most similar systems, the Charlotte group expected 
applications to be written directly on top of the kernel. Without the benefits of a high-level 
language, most programmers probably would prefer the comparatively powerful facilities of Char
lotte to the comparatively primitive facilities of SODA or Chrysalis. With a language. however, the 
level of abstraction of underlying software is no longer of concern to the average programmer. 

For the consideration of designers of future languages and systems, we can cast our experi
ence with LYNX in the form of the following three lessons: 

Lesson one: Hints can be better than absolutes. 
The maintenance of consistent. up-to-date. distributed information is often more trouble than 
it is worth. It can be considerably easier to rely on a system of hints. so long as they usually 
work, and so long as we can tell when they fail. 

The Charlotte kernel admits that a link end has been moved only when all three parties agree. 
The protocol for obtaining such agreement was a major source of problems in the kernel, par
ticularly in the presence of failures and Simultaneously-moving ends [3]. The implementation 
of links on top o/SODA and Chrysal" was comparatively easy. It is likely that the Charlotte 
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kernel itself would be simplified considerahl, by using hints when moving links. 

Lesson two: Screening belongs in the application layer. 
Every reliable protocol needs top-level acknowledgments. A distributed operating system can 
attempt to circumvent this rule by all"v.mg a user program to describe in advance the sorts of 
messages it would be willing to adn""v ledge if they arrived. The kernel can then issue ack
nowledgments on the user's behalf. The shortcut only works if failures do not occur between 
the user and the kernel. and if the descriptive facilities in the kernel interface are sufficiently 
rich to specifY precisely which mc,;sages are wanted. In LYNX. the termination of a coroutine 
that was waiting for a reply can be considered to be a "failure" between the user and the ker
nel. More important. the descriptive mechanisms of Charlotte are unable to distinguish 
between req uests and replies on the same link. 

SODA prov ides a very general mechanism for screening messages. Instead of asking the user 
to describe its screening function. SODA allows it to provide that function itself. In effect. it 
replaces a static description of desired messages with a formal subroutine that can be called 
when a message arm es. Chrysalis provides no messages at all. but its shared-memory opera
tions can be used to build whatever style of screening is desired. 

Lesson three: Simple primitives are best. 
From the point of view of the language implementor, the "ideal operating system" probably 
lies at one of t\\U extremes: it either provides everything the language needs, or else provides 
almost nothing. but in a flexible and efficient form. A kernel that provides some of what the 
language needs. but not all, is likely to be both awkward and slow: awkward because it has 
sacrificed the flexibility of the more primitive system. slow because it has sacrificed its simpli
city. Clearly, Charlotte could be modified to support all that LYNX requires. The changes. 
however. would not be trivial. Moreover, they would probably make Charlotte significantly 
larger and slower. and would undoubtedly leave out something that some other language 
would want. 

A high-level interface is only useful to those applications for which its abstractions are 
appropriate. An application that requires only a subset of the features prov ided by an under
lying layer of software must generally pay for the whole set anyway. An application that 
requires features hidden by an underlying layer may be difficult or impossible to build. For 
general-purpose computing a distributed operating system must support a wide variety of 
languages and appllcations. In such an environment the kernel interface will need to be rela
tively primitive 
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