
Experience with Charlotte:
Simp licit)' versus Function In a Distributed Operating S),stem

Raphael A. Finkel, Michael L. Scoll, William K. KaIsow,
Yeshayahu Artsy, Hung-Yang Chang, Prisun Dewan, Aaron 1. Gordon,

Bryan Rosenburg, Marvin H. Solomon, Cui-Qing Yang

University of Wisconsin - Madison
1210 W. Dayton Street
Madison, WI 53706

Extended abstract

1. Introduction

Charlotte is a distributed openting system currently in production use at the University of Wisconsin-Madison
[1,2,5]. Charlotte is intended as a testbed for developing techniques and IOOls for exploiting large-grain paraIlelism to
solve computation-intensive problems. It runs 011 the Crystal network (4), which contains 20 V AX-11nSO computers
interconnected by an 80 Mbps token ring. Charlotte was constructed over the course of approximately 5 yean, going
through several distinct versions as the underlying hardware and our ideas for implementation changed.

Our starting point was a set of axioms that defined the environment of the project, goals that defined our hopes, and
design dec:lslons that helped us to reach those goals. Our implementation taught us that the goals are not easily reached.
In particular, the issue of simplicil)' is quite complex; the quest for simplicity in various areas often conflict with each
other. The pwpose of this paper is to explain the lessons we learned and motivate the steps we lOOk while learning those
lessons.

The axioms that consttained OIarlotte's design were:

• Charlotte must run on 8 multicomputer. A mullicompUl~r is a collection of conventional computers, each with
its own memcwy, connected by a communications device. The tradeoffs between multicomputers and multiproces
sors, which share memory, include scalability (multicomputers have a greater potential), gnin of paraIlelism (mul
ticomputers are suited only to large-grain para1lelism), and expense (it seems less expensive to build a multicom
puter).

• Charlotte should support a wide variet)' of application programs. Since the field of distributed computing is
still young. we did not want to limit ourselves to client-server, pipeline, master-slave, or other communication para
digms aIId algorithm structures.

• Policies and mechanisms should be dearl)' separated. In order to experiment with policies, we did not want to
embed them in the core of the operating system. Instead. we decided to place mechanisms in a urnel that is repli
cated on each machine. Policies are governed by illiZiI)' processes whose location is generally irrelevant to the
objects that they govern.

Our overall goals were simplicity and function:
Charlotte should provide adequate function. The communication facilities of Charlotte should be appropriate to
application programs covering the wide variety of communication paradigms. This function should allow graceful
degradation if some machines fail.

• Charlotte should be simple. Both the kernel and the utility processes should have this property. Simplicity has
many dimensions. We intended OIarlotte to be minimal, in the sense that it would not provide features that were
not needed, and effici~nt, in the sense that the primitives could be executed quickly. We were also concerned that
Charlotte be both easil), implemented and easily used. We were only partially successful in meeting these latter
goals.
Charlotte is unique in the design decisions we made. Our initial design decisions included the following:

• Processes do not sbare memof)'. This decision allows us to make inter-process communication completely loca
tion independent. It mirrors the fact that Charlotte runs on a multicomputer .

• This wert lUpportecI i. pan by NSF Bl"DI MCS-810S904, AIpa CO.lraCI number NOOI4-82-C-2087,. Bell Teleph""e Laboratorie. Doc
IOral Scholanhip, ud • Teklronica DocLoral Fellowship.

I]

mls
Workshop on Design Principles for Experimental Distributed Systems, Purdue Univ., Oct. 1986

Communication II on reUable, symmetric. bl-dlrec:tlonal paths Damed by capabilities. Two-way paths are
justified below. The use of capabilities (described more fuUy below) promotes an object-based model for clients
and serveD. Processes exercise control over who may send them messages. An action by one process cannot dam
age another, so long IS the second takes basic precautions. Capability-based naming also facilitates experimenta
tion in migration for load sharing.

• Absolute information Is stored at each end of a communication path. The information describes the machine,
process, and path number of the other end of the path, and is slOled in the kernel Our choice of absolute informa
tion is an implementation decision, and is not necessitated by the communication semantics we chose. The alterna
tive (used in V temeI [3], for example), is to store hints at each end of the path, and to use broadcast as a fallback
strategy when the hints fail
The resulting operating systern fu1fil1s our goal of function and simplicity in some ways but not in others. We will

show how the design decisions we made to satisfy our axioms and goals incurred implementation cost and required 'extra
levels of software. Although the lPC semantics were intended to be simple, it turned out that supposedly orthogonal
features interacted in complex ways and required a complex implementation. Application programmers found that while
the lPC semantics make it possible to write highly concurrent programs, they also make it easy to commit subtle pro
gramming errors. To reduce the frequency of errors, we designed the LYNX programming language to regularize the use
of Charlotte's primitives.

We learned the following important lessons from our experiences.

• Simple primitives interact in complex ways.
It is not easy to make use of asynchronous primitives.

• Appropriate higher-levellOOls mitigate the programming problems.

• Absolute dislributed information is hard to maintain.
• Message screening belongs in the application layer.

• Middle-level primitives are usually at the wrong level.
On the whole, Clarlotte has lived within its constraints and achieved its goals. Charlotte provides a functioning

framework for writing dislributed applications, and many projects are underway in designing such applications. LYNX
has been valuable beyond the multicomputer framework in which it was developed; it has been successfully ported to the
Buttedly machine [6]. Given LYNX, library routines, and our connector facility, it is fairly easy to write correct and
intelligible applications.

2. References
I. Artsy, Y ~ H-Y Chang, and R. Finkel, "Charlotte: design and implementation of a dislributed kernel," Computer

Sciences Technical Report #554, University of Wisconsin-Madison (August 1984).

2. Artsy, Y .. H-Y Clang, and R. Finkel, "Interprocess communication in Charlotte," Computer Sciences Technical
Report #632, UniveDity of Wisconsin-Madison (February 1986).

3. Cheriton, D. R. and W. Zwaenepoel, "The Dislributed V Kernel and its Performance for Diskless Workstations,"
Proceedings tfth6 Ninlh ACM Symposium on Operating Systems Principles, pp. 128-139 (In ACM Operating Sys·
tems Review 17:S) (10-13 October 1983).

4. DeWitt, D., R. Finkel, and M. Solomon, "The Crystal multicomputer: Design and implementation experience,"
Technical Report 553 (To appear, IEEE Transactions on Software Engineering) , University of
Wisconsin-Madison Computer Sciences (September 1984).

S. FmkeI, R. A~ A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kaikini, Cop Ng, M. Subbarao, O. A. Venkatesh,
S. Verma, and K. A. VOrl, "Experience with Crystal, Charlotte, and Lynx," Computer Sciences Technical Report
#630, University of Wisconsin-Madison (February 1986).

6. Scott, M. L., "Lynx reference manual," BPR 7, Computer Science Department, University of Rochester (March
1986).

