
An Empirical Study of Message-Passing Overhead

Michael L. Scott
Alan L. Cox

UniYenity of Rochelter
Computer Science Department

~elter.~ 14627

ABSTRACT

Conventional wisdom holds that melsage-passing il orden of
magnitude more expenlive than shared memory for communica
tion between parallel proceaaes. Differences in the lpeed of
underlying hardware mechanilms fail to account for a lubltan
tial portion of the performance gap. The remainder il generally
attributed to the "inevitable COlt" of higher-level &emantica, but
a deeper underatanding of the factora that contribute to
musage-passing overhead has not been forthcoming.

In thil paper we provide a detailed performance analYlil of one
message-palling IJltem: the implementation for the BBN
Butterfly Parallel Processor of the LYNX distributed program
ming language. The case study includes a description of the
implementation, an explanation of optimizatioDl employed to
improve itl performance, and a detailed breakdown of remaining
COltS. The data provide a direct measure of the expense of indi
vidual features in LYNX. They also provide insight into the
likely costs of other message·passing systems, both present and
future. Lessons gained from our experience IIhould be of use to
other rellearchers in performing similar studies.

1. Introduction
On modern, microprocessor·based computers, the time

required to load or ltore a word of main memory il on the order
of microseconds, even in Ihared·memory multiprocellOrs. By
contrast, for a very wide range of Iysteml, the time required to
pasll a message between .heavy·weight procellles il on the order
of tenl of milliseconds, three or four orders of magnitude
removed from memory access times.

There are at least two obvious reasons why messages
should be more expensive than operations on shared memory.
Firat, on many architectures there is a lubstantial fixed over·
head associated simply with moving data from one place to
another. For local area networks, thill overhead il a function
both of the bandwidth of the communication channel and of the
processing time required to drive the interfaces. Cheriton and
Zwaenepoel, for example. report a network penalty of about a
millisecond to send 100 bytes of data between SUN workstations
on a 3 Mbit/second Ethernet [7].

The second explanation for the performance difference
between shared memory and message passing is that messages
provide semantics .that shared variables do not. No message can
be received before it is sent, so synchronization (and context
lwitches) are inherent. In addition, most styles of message·
pallling provide queueing, 80w control, and some form of authen·
tication or protection. Many provide address resolution, type
checking, exception handling, and gathering and scattering of
parametera as well. On local area networks, most provide
cleaner failure semantics than does the underlying hardware.

This work was supported in part by NSF grant number DCR·
8320136, by Darpa contract number DACA76·85·C·0001, and by an
mM Faculty Development Award.

Enn in the ablence of physically-aharable memory,
logically-shared nriables can be implemented much more cheap
ly than can, for inatance, remote procedure calls. With micro
coded protocols, Spector [24] was able to perform remote memory
operations in about '50 instruction timea (155 1'1) on Xerox Alto
computers on a 3 MbitJsecond Ethernet. The non-microcoded
equivalent took 30 times as long, and was atill four timel faster
than a request and reply message using standard protocols (see
below). In hil atudies of remote operationl in StarMod,
LeBlanc [14] reported similar results: 150 inatruction times (880
I's) to perform remote memory operations on PDP 11123 comput·
ers connectecl by a 1 Mbitlsecond network. Remote procedure
calls, by contrast, took over 20 times as long.

Delpite the "obvious" reasons why melaage passing should
take longer than reading and writing shared data, there seems
to be a widespread impression among researchers in the field
that messagel take "too long". Thil impression is not new. The
notes from a workshop on distributed computing, held at MIT in
1978 [18], contain the following statement:

Meaaage paHing appean to be very expensive Although it
was difficult to establiab uniform definitions of what was being
measured, a time of about 20 mill~econdl waa quoted aa the
round trip time to send a (nul\) meaaage and receive an
answer OD the Xerox Alto ayatema. with similar numbers put
forth Cor mM aystems and Multica. Tbis ia both a surprisingly
bigh and eurprisingly uniform time. .,. no one wal able to
indicate exactly where the time went, or why 20 ms Ihould be
a univeraallower bound on me.age passing time.

Though processors, networks, and protocola have an improved
dramatically since 1978, message·palsing times are still rela·
tively slow. Detailed figures are not always published, but usera
of Accent [19] and Mach [1] (with the Matchmaker 8tub genera·
tor [11]), Charlotte [3], Clouds [13], DemoslMP [17], and Eden [6j
all report times in the tens of milliseconds to perform simple
remote operations. The V kernel [8], which places great
emphasis on speed, requires 1.46 ms for a request and reply
within a machine, and 3.1 ms between machines with SUN
workltations on a 10 Mbit Ethernet. The award for fastest
operations with the highest level of semantic8 probably goes to

. the RPCruntime package 8nd Lupine Itub generator, running in
the Cedar environment at Xerox PARC [5]. Birrell and Nelson
report a time for this system of approximately 1.1 ml per call to
an empty remote procedure, with relatively high performance
Dorado workstations connected by a 3 Mbit Ethernet.

In the quotation above, it is important to heed the caution
about defining what is measured. Comparisons between
disparate 8ystems are limited not only by differences in the
organization and speed of the underlying hardware, but also by
differences in the level of semantics supported. In his doctoral
thesis, Nelson reports a time of 145 microseconds per remote pro·
cedure call in his fastest Dorado implementation. The time
drops to 1241's if processes busy·wait. This implementation is
so fast that the III's overhead of the timing loop becomes a
8ignificant fraction of the total cost. Unfortunately, the seman·
tics provided are 80 restricted that the timings do little more

536
CH2439-8/87/0000/0536$Ol.OO © 1987 IEEE

mls
ICDCS '87

than provide a lower bound for the coat of RPC: parametera are
limited to a few balic types, manually gathered and scattered;
Itubl mUlt be coded manually aa well; the communication
firmware i8 implemented in 8uch a way that Itandard Ethernet
protocols are unanilable to other proce .. es on the machine.

Rather than fuel a debate over whose IOftware il fastelt,
we prefer to aak Cor each individuallYltem: what are the factora
that contribute to ita overhead? Careful attribution of coats to
message-pa .. illliubtaab is crucial for optimization. Moreover,
it il the only reliable way to evaluate the coat-effectiYlIIle .. of
contemplated featurel. Without detailed accounting, it ia impol
aible to determine whether the difference in apeed betw"n com
petiDJ Iysteml is due to hardware overhead, choice of semanticI,
or limply clevernell of coding.

Surprilingly, very little IUch accounting hal made ita way
into print. Spector ia almOit alone in providilll a microaecond
by-microsecond breakdown of the time required to perform a
remote operation. It il our intention in thil paper to provide an
equally detailed analYlil for remote procedure calli in a diltri
buted programming language. We believe thil analylil to be
useful not only in the understanding of our own particular
language and implementation, but allo in the delign of limilar
Iysteml and in the development of an intuitively satisfying
appreciation of "where the time goes" in me .. age-pusing IYI
tema in general.

Our choice of language is LYNX (22], aa implemented [21]
on the BBN Buttedy Parallel ProceslOr [4]. We believe LYNX
to be reprelentative of a large clau of languagea in which inter
procesl communication il bued on rendezvoul or remote pro
cedure call. Languagel in thil Clall include Ada [26],
Argus [15], NIL (25], SR [2], and the dialects of CSP [10]. The
Butterfly, with its Ihared-memory architecture, il in some waya
quite unlike the more common message-based multicomputers,
but the difference between multiprocessor block transfers and
multicomputer messages has a relatively small and self
contained impact on the protocols required to implement remote
procedure calls. Moreover, it is the nature of performance stud
iel luch as these that the peculiarities of a particular language
and machine are readily identified and isolated in the final data.

Section 2 of this paper providea an overview of LYNX. It
is followed by a description of our implementation for the
Butterfly (section 3) and of the optimizations we applied to
improve its performance (section 4). Section 5 containa an
accounting, by aubtask, of the costs that remain. We conclude
with a diacu .. ion of the meaning of those costa.

2. Overview of LYNX

The LYNX programming language is not itself the subject
of this article. Language features and their rationale are
described In detail elsewhere [20,22]. Our intent in the current
section is to provide only as much information as is needed to
understand the remainder of the paper.

The fundamental abstractions in LYNX are the process,
the link, and the thread of control. Procelles execute in paral
lel, possibly on separate processora. There is no provision for
shared memory. Processes interact only by exchanging mes
sages on links. A link is a two-directional communication chan
nel with a single procoss at each end. Each proce.. may be
divided into an arbitrary number of threads of control. Threads
are similar to coroutines; they are a control-flow mechanism that
facilitates the management of multiple contexts within a pro
cell. Threads are not designed for parallelism; they execute in
mutual exclusion. Execution moves to another thread automati
cally when the current thread is blocked.

New threads may be created at any level of lexical nest
ing. Threads that are nested inside the same scope may there
fore share non-local, non-globai data. The activation records of a

537

procesl form a tree (a cactus ltack), with a thread of control in
each leaf. Looking back up the path to the root, each thread
seel what appean to be a normal run-time ltack. Individual
actintion recorda are allocated dynamically in a number of
ltandard sizel, much aa they are in Mesa [12].

Interprocoll communication il based on the invocation of
remote operations. A proco .. that wishea to provide a given
operation can do so in one of two wayl: it can create a thread of
control that waits for a requelt explicitly, or it can bind a link
to an entry procedure 10 that a new thread will be created
automatically to handle each incoming requelt. The explicit
cue is limilar to the accept .tatement of Ada. and Ihares its
name. The implicit case il an example of a remote procedure
call.

A thread requesta a remote operation by executing a (on
nect .tatement. It blockl until a reply is received. Meanwhile,
other thread. may execute. Remote operations are therefore
non-blocking from the point of view of a process.

Incoming m ge. are DOt received asynchronously. They
are queued instead, on a link-by-link basis. Each link end has
one queue for incoming requelts and another for incoming
replies. Menages are received from a queue only when the
queue i. open and all the thread. in the procosl are blocked (at
which time we say the procesl hal reached a block point). A
reply queue i. open whenever a thread haa sent a request on the
Unk and hal yet to receive a reply. A request queue is open
whenever its link haa been bound to an entry procedure or
named by a thread that is waiting to accept.

A blocked procell waits until one of ita previously-sent
messagel baa been received, or until an incoming me .. age is
available in at leaat one of itl open queuea. In the latter case,
the proc .. 1 chooses a non-empty queue, receives that queue's
firlt message, and executes through to the next block point. For
the lake of fairness. an implementation must guarantee that no
queue il ignored forever.

M in the lame queue are received in the order sent.
Each mel88ge blocks the sending thread within the aending pro
cell. The proceSI muat be notified when me .. ages are received
in order to unblock appropriate threada. It ia therefore possible
for an implementation to rely upon a atop-and-wait protocol with
no actual buffering of messagel in transit. Request and reply
queues can be implemented by lists of blocked threads in the
run-time package for each .ending process.

One of the more challenging features of links, from an
implementor'. point of view, ia the provision for moving their
ends. Any meaaage, request or reply, can contain referencel to
an arbitrary number of link ends. Language lemanties specify
that receipt of IUch a me .. age has the side effect of moving the
apecified enda from the sending procoss to the receiver. The pro
cell at the far end of a moved link must be oblivious to the
move, even if it i. currently relocating its end as well.

3. Initial Implementation

3.1. The Butterfly and Chrysalis
The BBN Butterfly Parallel Processor [4] can support up

to 256 separate processing nodes. Each node consists of a
Motorola 68000 CPU, a bit-lliced co-processor called the Proces
sor Node Controller, (PNC) and up to 4 Mbytes of RAM. The
68000 runs at 8 MHz. An empty subroutine call with no param
eters (JSR, LINK, ULNK, RTS) completes in almost exactly 10
I'a. Newer machines employ a 68020 and 68881, with a double
speed clock.

The PNCs are connected by the Butterfly Switch, an FFT
style interconnection network. Each PNC mediates all memory
requests from its processor, passing them through to local
memory when appropriate, or forwarding them through the

switch to another PNC. References to individual words of
remote memory take 3 to 5 times as long as references to local
memory. The PNCs also provide atomic fetcb-and-phi opera
tions, as well as a microcoded block transfer that acbieves an
effective throughput between nodes of about 20 MbiWsec, with a
ltart-up cost of 50 I's.

The Butterdy's native operating system, called Chrysalis,
provides primitives for the management of a number of basic
abstractions, including processes, memory objects, event
blocks, and dual queues. Many of the primitives are sup
ported by PNC microcode.

Each procesa runs in an addresa space that can span as
many as one or two hundred memory objects. Each memory
object can be mapped into. the address spaces of an arbitrary
number of proceSI8ll. Synchronization of &ccesa to sbared
memory ia achieved through uae of the event blocks and dual
queuea.

An event block is limilar to a binary aemaphore, except
that (1) a 32-bit datum can be provided to the V operation, to be
returned by a subsequent P, and (2) only the owner of an event
block can wait for the event to be posted. Any procesa that
knows the name of the event can perform the POlt operation.
The most common uae of event blocks ia in conjunction with dual
queues.

A dual queue ia so named because of its ability to hold
either data or event block names. A queue containing data is a
simple bounded buffer, and enqueue and dequeue operations
proceed as one would expect. Once a queue becomes empty, how
ever, lubsequent dequeue operations actually enqueue event
block namea, on which the calling procesaes can wait. An
enqueue operation on a queue containing event block names will
poat a queued event instead of adding ita datum to the queue.

3.2, LYNX Compiler and RUD-time System
LYNX is implemented by a crOll compiler that runs on

the Butterdy's host machine. For compatibility reasons, and to
simplify the implementation, the compiler generates C for
"intermediate code". Errors in the LYNX source inhibit code
generation, so the output, if any, will pass through the C com
piler without complaint. Programmers are in general unaware
of the C back end.

Communication between LYNX processes is supported by
a run-time library package, also written in C. At start-up time,
every LYNX process allocates a aingle dual queue and event
block through which to receive notifications of messages lent
and received. A link is represented by a memory object, mapped
into the address spaces of the two connected processes (see figure
1). Within each process, the link is referenced by indexing into
an array of link descriptors in the run-time support package.
Each descriptor contains a pointer to the shared memory object,
together with lists of threads that are waiting for communica
tion on the link. The memory object itself contains buffer space
for.a single request and a single reply in each direction. Since
dynamic allocation and re-mapping of message buffers would be
prohibitively expensive, messages are limited to a fixed max
imum length, currently 2000 bytes.

In addition to message buffers, each link object also con
tains a aet of dag bits and the names of the dual queues for the
processes at each end of the link. When a process gathers a mes
sage into a buffer or scatters a message out of a buffer into local
variables, it sets a flag in the link object (atomically) and then
enqueues a notice of its activity on the dual queue for the pro
cess at the other end of the link. When the process reaches a
block point it attempts to dequeue a notice from its own dual
queue, waiting if the queue is empty.

The flag bits permit the implementation of link movement.
Both the dual queue names in link objects and the notices on the

538

request ror P requeet ror Q

repb'rorP npb'forQ

Flpre 1: shared link object

dnal queue. themaelYea are considered to be hints. Absolute
information about which link ends belong to which processes is
known only to the owuers of the ends. Absolute information
about the availability of messages in buffera is contained only in
the link object daga. Whenever a process dequeues a notice from
its dual queue it checks to lee that it owns the mentioned link
end and that the appropriate dag is set in the corresponding
object. If either check faill, the notice is discarded. Every
change to a flag ia eventually reflected by a notice on tbe
appropriate dual queue, but not every dual queue notice reflects
a change to a ftag. A link is mo.ed by passing the (address
space-independent) name of its memory object in a message
When the mesaage is received, the lending process removes the
memory object from its addresa space. Tbe receiving process
maps the object into its address space, changes the information
in the object to name its own dual queue, and then inspects the
flags. It enqueues notices on ita own dual queue for any of the
dags that are set.

3.3. Protocol
Notifications on dual queues, with block transfers for data

movement, play the role of messages in our implementation.
Our initial protocol defined eight typea of notices: REQ, REQ..ACK,
REP, REP-ACK, FAR-ENO-DESTROYED, REQ-ACK-ERR, REP-ERR, and
REP..ACK-ERR. The final three are used only in the event of
exceptions, type clashes, or requests for non-enstent operations.
FAR-END..DESTROYED ia used only when cleaning up connections.
The rest of this discuasion focuses on REQ, REQ..ACK, REP, and
REP..ACK.

Suppoae procesaes P and Q are connected by link L, and
that a thread A in P wishes to invoke an operation provided by a
thread B in Q. A blocks until the request buffer (or Q is avail
able in L. It fills the buffer, sets the appropriate flag, and posta
a REQ notice on Q's dual queue. The next time Q is blocked, it
receives the REQ notice and wakes up B. B copies the request
out of the buffer into local variables, seta the appropriate flag,
and posts a REQ..ACK notice on P's dual queue. When it receives
this notice, P knows that the request buffer is available to
threads other than A, if needed. When B is done serving the
request, it blocks until the reply buffer for P is available in L. It
fills the buffer, seta the appropriate flag, and posts a REP notice
on P's dual queue. The next time P is blocked, it receives the
REP notice and wakes up A. A copies the reply out of the buffer
into local variables, aets the appropriate dag, and posts a
REP..ACK notice on Q's dual queue. When it receives this notice,
Q unblocks B.

Since "messages" on the Butterdy are as reliable as main
memory, acknowledgments· are not needed to recover from "lost
packets". They are required, however, for flow control and for
confirmation of high-level semantic checks. In the event that P
has no additional threads waiting to send requests to Q, the
RE'lJoCK notice can be eliminated (tbough the corresponding ftag
cannot). With relatively minor changes to the semantics of
LYNX, the REP...ACK notice can be eliminated also. We uplore

·these possibilities (among otbers) in section 4.

4. Optimizations
When our first timing figures were collected, we had DOt

yet completed the code to establish links between independent
processes. We were able, however, to create a link whoee ends
were both owned by the same procesa. We arranged for that pro
cesa to send mesaages to itself. The "round trip" time for an null
invocation came to 5.9 milliseconds. Througb a series of four
revisions, this time was reduced to 2.78 ms:

(1) Instruction histograms (from an uecution profiler) indicated
that the section of code consuming the largest individual
amount of time wa. the .tandard integer multiplication sub
routine (the 68000 does not have a 32-bit multiply instruc
tion). Investigation revealed that the only realOn the sub
routine was being called was to calculate .ubscripts into the
array of link descriptors in the run-time support package.
Since each descriptor was 60 byte. long, the addition of a 4-
byte pad allowed the generation of left shifts for multiplica
tion. Total savings: 22%.

(2) Turning on peephole optimization in the C compiler and
using conditional compilation to disable debugging support
reduced the time to 4.0 mslinvocation. Additional savings:
13%.

(3) The original implementation of the cactus stack used the
standard C mallo(library to allocate activation records. We
upected this to be slow, and profiling confirmed the expec
tation. The new allocator keeps a cache of frames in a
number of "standard" sizes. Additional savings: 25%.

(4) In August of 1986 we toof delivery of a new C compiler for
the Butterdy, obtained by BBN from Green Hills Software.
Un of the new compiler as tbe LYNX back end resulted in
better code. Additional savings: 7%.1

With the implementation complete and with obvious
inefficiencies removed, we proceeded to a series of multi-process
timing tests. Statistics were collected for simple programs that
perform a large number of remote operations in a tight loop.
Dividing total elapsed time by the number of iterations yields an
estimate of the overhead of an individual operation.

This technique has several limitations. It ignores the
effects of the scheduling algorithm, which may be atypical for a
process that blocks frequently. It ignores the fact that a typical
LYNX process is composed of a large number of threads and that
several operations may be pending at once. It ignores the fact
that each processor will usually be shared by a large number of
processes, so that the latency seen by a single process may not
redect overall throughput for the jobs on the machine.

Despite its limitations, we have concentrated on round-trip
latency because it is relatively easy to measure (a "representa
tive" job mix is not required) and because it has been used to
describe the performance of a large number of similar systems.
Our code performs four basic tests: two for a null operation with
no parameters, and two with 1000 bytes of parameters in each
direction. In each case, one test uses implicit receipt (RPe) and

I The difference between the compilers is more pronounced in
realistic programs. Our tests use relatively simple straight.line code.
with very litUe in the way of complicated expressions or loops.

539

the other explicit receipt (a«ept). After the arrival of the Green
Hills C compiler, our ligures for explicit receipt were as follows:2

Procesaeson
different nodes same node

nullop
bigop

2.16 ms 3.55 ms
3.79 ms 5.19 ms

In considering the details of the protocol, we came to the
realization that in many (if not most) cases, the REQ...ACK notice
serves no purpose. It can be subsumed in the REP notice when·
ever the client procesa is not in a hurry to reuse the link's
request buffer.l1 A new version of the run-time package was con·
structed that contains two additional dags in the shared link
object. The flag. indicate whether the two proceues at the ends
of the link are interested in receiving REQ...ACK notices. A client
process sets the bit when it has additional threads waiting to
send requests. A server process posts a REQ...ACK notice on its
partner's dual queue only when the 'interested' bit is set. The
RE'lJoCK bit is still set in any case. If a thread in the client
tries to send a request while the request buffer appears to be
full, the client will check the REQ...ACK bit to see if a potentially
useful notice went unposted, and will re-create it if neceuary.

With a miDOr change in the semantics of LYNX, the
REP...ACK notice can be eliminated also. Like the REQ...ACK notice,
REP...ACK I8rves to inform a process that a buffer has been emp
tied and can be used bT another thread of control. In addition, it
serves to iDform a server that the requesting thread in the client
was still waiting when tbe reply arrived. LYNX semantics call
for the server thread to feel an exception if the client thread has
died (as a result of feeling an exception itself). For efficiency
reasons, the original implementation of LYNX (on the Crystal
multicomputer at the University of Wisconsin [9]) did not sup
port these I8mantics, and it would not be a serious loss to forgo
them on the Butterdy as well. We constructed a version of the
run-time package in which another two dags were added to the
link object, much like the 'interested' bits above. REP ...ACK
notices are eliminated when the server process bas no additional
threads waiting to send replies. Adoption of the modification
was deferred until the size of the potential time savings could be
determined.

Figure 2 compares the three versions of the protocol under
the a.sumption that the optional notices are never required.
Again with explicit receipt, our times for the modified protocols
are as follows:

nUllop
bigop

No request acks:
procesa nodes

different same
2.22 ms 3.26 ms
3.67 ml 4.90 ms

No request or reply acks:
process nodes

different same
1.96 ms 2.82 ms
3.59 ms 4.42 ms

Until we collected timing results and constructed figure 2,
we did not realize that with the client and server on separate
nodes the principal effect of the protocol changes would be to
reduce the amount of overlapped computation, without reducing
latency. The savings for processes on the same node were more
than twice al large, percentage·wise, as the savings for processes
on separate nodes. For the null operation, latency on separate
nodes actually increased slightly when request acknowledgments
were removed (though it dropped below the original figure when
reply acknowledgments were removed as well). A full

I Results are accurate to about ± 0.02 ms.

s LYNX links are completely symmetric. Either of the proceaaes
attached to a link can make requests of the other. We use the terms
"client proceu" and "server process" to mean "the process playing the
role of client (server, respectively) in the current discussion".

Original protocol Without request
acknowledgments

REP

Figure 2: protocols

Without request
or reply acks

REP

REQ -------1
etc.

explanation of the figures depends on at least three factors:

(1) In the first and second protocols, the timing loops for nullop
are tight enough that the processes do not have quite
enough time to finish examining an acknowledgment before
the next notice arrives. The requests and replies that follow
acknowledgments are therefore received without waiting.
For bigop, the extra time required to copy parameters
means that the processes wait for every notice.

(2) It takes less time to post a notice to an empty dual queue
than it does to post to a queue on which another proeMS is
waiting. In the first protocol, the server posts two notices:
the REQ...ACK and the REP. For bigop, both of the posts are
expensive. For nullop, only one of them is. The second pro
tocol therefore saves more time in the server for bigop than
it does for nullop.

(3) The client has work it must do when it knows that its
request has been received. The 8econd protocol eliminates
the overhead of one invocation of the dispatcher; but some
of the work that used to be overlapped with the server when
the REQ...ACK was received must DOW be done while the

Irvll!l'-irllJtt]~ad. after the REP is received.

moving from the fi st to the second protocol, non-overlapped
time is saved in the ~ when sending the REQ...ACK. Non

ser ... er overlapped time is lost in the client after receiving the REP.
There is a net gain for bigop. There is a net loss for nullop,
because of the tight loop and lack of waiting. In moving from
the second to the third protocol, the semantic changes to LYNX
allow most of the work that was performed upon receipt of a
REP...ACK to. be eliminated, not deferred (the thread of control
that sends a reply no longer blocks). There is therefore a net
gain for both bigop and nullop.

540

5. Remaining Costs

For more detailed protocol analysis, our principal tool was
an execution-time profileI' tliat builds histograms from periodic
8amplings of the program counter. Our C compiler does not 8Up
port the collection of subroutine call counts, but the protocol is
8imple enough for them to be predicted by hand. Some of our
early optimizations, particularly the change in size of the link
record and the replacement of the activation record allocator,
were motivated by profiling results. Those result8 were exam
ined, however, at the granularity of procedure calls only. In the
analysis reported in this section, we worked at the level of indi
vidual instructions.

StatistiCl were collected (or the se11l00p program described
at the beginning of section 4. The program was run for 100,000
iteration., with a client thread making requests of a server
thread over a link that connected to the same process at both
ends. Assembly listings of the run-time support package were
compared against the C-language source to determine the pur
pose of each individual instruction. The counts for instructions
with similar purposes were grouped together into categories.
The results are summarized in figure 3.

5.1. Explanation

Threads
The run-time package maintains a ready list, together with
lists of threads waiting for various kinds of messages.
There is overhead associated with moving threads between
lists, with laving and restoring context at thread switches,
with verifying that buffers are available when a thread
wishes to communicate, and with searching lista for

Threaclo

queue manacement
conten IWitchea
bulfer acquiaitioll
queue -archlac (diapatcher)

cactua melt

Checking and eueption hendling

are connect and accept linb valid?
w notice lin valid (dwpatcher)?
run-time type checking (dispatcher)

ceneral ov.rhead for LYNX uceptions

e81&blishm.nt of LYNX exception handlers
e.teblWhmentofChrysalwnception handler

Miscellaneous overhead

client and server for loops

dispatcher while loop,switch

proeedure-call overhead for communication routines
loading of reciaters with active value.

Bookkeeping (who want. what IOrti of services and who

.. willing to provide them)

Actual communication

set, clear nags

enqueue, dequeue notices

find .ddr ofbulfers

Protocol option testing

link movement

b.ckcround threads
premature request.
option.1 acknowledgments

4.8

U
1.3
3.1
6.8

1.6
1.6

0.8

0.6

4.4
9.2

0.6
1.4

14.7
5.6

12.4

7.3

1.0

2.0

1.0

1.6
1.8

22.4

18.1

22.2

10.6

20.6

6.4

Figure 3: cost breakdown (in pct. of total work performed)

appropriate threads when notices arrive. The ability to
create nested threads leads to dynamic allocation of activa
tion records.

Checking and exception handling
Linke must be checked for validity at every connect and
accept statement. Since dual queue notices are hints, the
link mentioned in an incoming notice must be checked for
validity as well. LYNX relies on run-time type checking for
meseages, but the overhead is very low [23]. Much larger
amounts or time are devoted to setting up and taking down
exception handlers.

LYNX provides an exception-handling mechanism limilar
to that or Ada [26]. The implementation requires a single,
32-bit move instruction at the beginning of each lubroutine,
and a somewhat larger amount of work at the beginning
and end of each handler-protected block of code. Errors in
communication result in exceptions in appropriate threada.
Modularity of the run-time package is maintained by
enclosing parte of the protocol in deCault exception. handlers
that put their data structures into a consistent state and
then re-raise the exception.

The Chrysalis operating system itself provides another Corm
of exception handling, grafted onto the C language through
use of the C preprocessor.- Instead of returning a failure
code, an operating system service that is unable to complete
successfully will cause a Chrysalis throw. Since they are
not supported directly by the compiler, the catch blocks
that handle throws impose a larger cost than do the
handlers of LYNX. There is only one catch block in the
language run-time package. It protects the enqueue opera
tion when posting notices, and is therefore set up and taken
down twice per iteration, consuming over nine percent of
the total execution time.

Miscellaneous overhead
The for loops in the client and server are self-explanatory,
as are the calling sequences for subroutines. The loop in
the dispatcher keeps dequeueing notices until one of them
can be used to malte some' thread runnable. The switch.
(case) statement has arms for each kind of incoming mes
sage.

The C compiler is clever enough to move frequently-used
values into regi@ters at the beginning of each subroutine. It
is essentially impouible to attribute the coat of doing so to
individual instruction categories.

Bookkeeping
When a client thread requests an operation, the name of the
operation, an encoding of the types of its parameters, and
the name of the thread itself must all be written into the
shared link object. When a server attempts to accept a mes
eage, similar information must be placed into data struc
tures accessible to the dispatcher. Active servers must keep
track of (possibly nested) clients waiting for replies. Link
numbers and notice types must be packed and unpacked in
notices.

Communication
Actual communication involves setting and clearing ftags,
enqueueing and dequeueing notices, and copying parame
ters. In our nullop tests, the third item consiats simply of
moving the addresses of buffers into pointers that are never
used. In the absence of acknowledgment notices, there are
four pairs of ftag operations and two pairs of dual queue
operations. The dual queue operations are more expensive
individually, but less expensive collectively.

Protocol option testing
There are six places in the protocol at which special action
must be taken to deal with moving link ends. At the top of
the dispatcher's main loop there is a check that returns

541

control to a "background" thread if the notice queue is
empty.4 At the beginning of the code for accept, there i. a
check to see if a request notice was received before any
thread was ready to provide the appropriate service. At the
beginning of the code to post noticea, there is a c:hec:k that
skips the enqueue of acknowledgments. None of the
protocol's special cases arise in our aimple timing tests, but
the if statements that check for them account for over aix
percent of the total work performed.

5.2. Timeline
The instruction histogram counts from our timing tests

can be used to build a timeline for remote invocations. The
dimenaiona of figure 4 are baaed on the timings of the selftoop
program, but are charted to indicate the operation of the nullop
teat with client and server proceasel on separate nodes. The
time required to waite up a proceu has been estimated by lub
tracting the time for the selftoop telt from the time for the null
op test (with client and server on the same node) and dividing by
two. The length of the relulting timeline il 2.00 DUI, a value
that varies from the actual mealured time for nullop on leparate
processors by just over two percent.

6. Discussion

6.1. Marginal Costs

6.1.1. Threads. Support for multiple thresds of control
within a process consumel over 22 percent of the total CPU time
for a remote invocation. Management of the cactus ltack is the
largelt lingle contributor to this total, but context awitches and
queue management run a close eecond and third.

Some of the overhead of threads could be reduced by
changes to the implementation. Queue management might be
cheaper on machines (such .. the V AX) with hardware queue
instructionl. Alternatively, the time spent moving threads
between queues could be eliminated by keeping all threads on a
single linked list and performing a linear search of that list
whenever a thread of a certain clan was desired. Such a change
would improve the timing relults for our limple telt programs,
but would impose serious coat. on practical programs with very
large numbers of threads.

The overhead of the cactus stack could be cut in half by a
production-quality LYNX compiler. Because the current imple
mentation uses the C compiler al a back end, it is not possible to
determine the aizel of activation records until program start-up
time. Inltead or being hard-coded with a known frame size, the
allocator is implemented as a parameterized macro; it pays for
indexing operations at every subroutine call, in order to find the
head node for an appropriate Iist of frames.

The cactUI ltack could be eliminated entirely by nquiring
all threads to be created at the outermost lexical level. Such a
restriction would be consistent with the designs or· leveral other
distributed languages. For reasons explained elsewhere [22], we
believe the ability to nest threads to be an important advantage
of LYNX over other language designs, and would be reluctant to
forgo it. We consider the measured overhead to be an accepta~le
price to pay.

Most of the functionality of threads, we believe, will be
required in any programmi,ng system designed to IUpport server
process and a remote-invocation style of interproceaa communica
tion. This conclusion is supported by the work ~f Liskov,

• There is no provision for asynchronous receipt of me .. ages in
LYNX, but a thread that has a large amount of low-priority work to do
can poll for messages by indicating its desire to wait until
communication has subsided.

III

0

prepare request
mesoage

193

postREQ

451
_keup

500 476
OIIntut awitch 520
'" dispatcher dispatch

601
.ait 687

715 contextawitch
756 "' ... rver

inspect request
871

postRE<LACK

1000 1006

prepare reply
message

1238

post REP

wakeup
1497 1500
1522 1557

end operation
1603

dispatch

context _itch 1771 prepare'" accept
to client

11112
inspect reply 1853 1845 context.witch

'" dispatcher

post REP _ACK 1924
wait

1995 2000

Figure 4: timeline

Herlihy, and Gilbert [16], and by the designers of a large
number of other distributed programming languages, in which
lightweight processes (usually designed to run in a truly parallel
fashion) can be created in each address space.

There are good arguments both for and against the paral
lel execution of threads. It is likely, however, that any imple
mentation supporting simultaneous execution of lightweight
processes will be more expensive than the coroutine threads of
LYNX. Our figures thus approximate a lower bound on queue
manipulation and context-switching overhead.

6.1.2. Movable Links. Like the ability to nest threads
of control, the movement of link ends is an important and dis
tinctive characteristic of LYNX. We had hoped in our imple
mentation to pay for moving ends only in the threads and
processes that use them. It is of course necessary in each mes
sage to check whether link ends are enclosed. Figure 3 shows
that those checks accounted for just over two percent of the
elapsed time in our selfl.oop test. What is less obvious is that

542

much of the time listed under "actual communication" can be
attributed to moving links as well.

In the original protocol, with acknowledgments, the flag
bits in the shared link objects were needed only to enlure the
ability to move links. If it had not been possible to change the
process at the far end of a link, then dual-queue notices could
have provided absolute information instead of hints. With the
development of the second and third protocols of figure 2, the
flag bits took on a second role: keeping track of acknowledg
ments that were not sent, but might have been if they had been
wanted. Without those bits, a thread that attempted to send a
request or reply would not know if the required buffer wal still
full, or had been emptied the inltant before.

Without the need to move links, the newelt protocol would
be able to avoid setting and clearing bits for REQ and REP
notices, but would still need to manipulate them for REQ-ACK
and REP...ACK. Between the checks for enclosurel and the letting
and clearing of half of the flags, the marginal COlt of the mova
bility of links appears to be about nine percent of latency, or 180
,&I per remote invocation.

We have considered an alternative implementation of link
movement, in which dual queue notices carry absolute informa
tion. The overhead of flag bits would be eliminated for ordinary
messages, but the cost of actually moving a link would increase
dramatically. Link movement is important and frequent enough
to make the tradeoff unattractive.

6.2. Lessons

For the benefit of those who may wish to undertake simi
lar performance studies for other message-passing systems, we
offer the following luggestions:

Intuition is not very helpful.
Beginning programmers are taught to distrust their intui
tion when attempting to tune their code. Our experience
testifies to the wisdom of this advice. It came as a complete
surprise, for example, when we discovered that we were
spending 1.3 ms per invocation calculating subscripts into
the table of link records. It was also a surprise' (though a
less happy one) when the elimination of acknowledgment
notices on the dual queues yielded only modest improve
ments in latency. Similarly, we were disappointed to dis
cover that the flag operations that permit link movement
were responsible for as much as leven percent of our invoca
tion time. We had been inclined to think of those opera
tions as trivial.

Overlapped computation is crucial.
As demonstrated by our experience with the protocol optimi
zations of section 4, no explanation of message-palling over
head can be complete without an understanding of precisely
which parts of the protocol can be executed simultaneously
on separate processors.

It helps to have a va'riety of measurement techniques.
Our analysis drew on several kinds of statistics: we col
lected instruction count histograms; we timed communica
tion within a process, between processes, and between
machines; we collected statistics (in the run-time support
package) on such things as the number of times a process
was forced to wait for a notice from ita dual queue. No one
of these measurement techniques alone sufficed to explain
performance. The comparison of nullop timings with the
predicted results of the timeline in section 5.2 provided a
reassuring cross-check on our figures. The slowdown of the
nullop test on separate machines after the elimination of
REQ...ACK notices was explained by counting the number of
times each process was blocked by dequeue operations.

7. Recent Results
Since completing the analyaia o(section 5, we have imple

mented several minor changes to the run-time package (or
LYNX. Cae of these circumventa the normal mechaniam (or
eatablishing Chrysalis exception handlers, aaving about 40 ".a
per enqueue operation when poating notices. Others changes
result in amall aavings throughout the code, with relatively little
impact on the proportiontl of figure 4. The (ollowing i. a com
plete set of timing. a. of December 1986:

nullop
bigop

Explicit receipt:
procell nodes

diJl'erent same
1.80 ms 2.58 mil
3.45 me 4.21 ms

Implicit receipt:
proceaa nodes

different aame
2.04 ma 2.76 DIS

3.72 ms 4.42 ms

The figures for implicit receipt are larger than those (or explicit
receipt because o(the overhead of creating and destroying
threads. Space considerationa for this paper preclude a detailed
discussion.

Acknowledgment
Thanks to Ken Yap for hie help in portiog LYNX to the

Butterdy.

References
[l) M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid. A.

Tevanian, and M. Young, "Mach: A New Kernel Foundation for
UNIX Development," Proceedin6' of tlac Summer 1986 USENIX
Technical Conference and Ezhibition. June 1986.

[2] G. R. Andrews. R. A. OIl1on. M. Coffin. L J. P. Elabolr. K. Nilsen.
and T. Purdin. "An Overview of the SR Language and Implemen·
tation," ACM TOPLAS. to appear. Available a. TR 86-6a. Depart.
ment of Computer Science, Univeraity of Arizona. 23 June 1986.

[3] Y. Artsy. H.-Y. Chang. and R. Finkel. "Interproceaa Communica·
tion i.n Charlotte." IEEE Software 4:1 (January 1987).

[4] BBN Laboratories. "Butterfly· Parallel ProceslOr Overview." BBN
Report #6149. Version 2. Cambriqe, MA, 16 June 1986.

[5] A. D. Birrell and B. J. NellOn. '1mplementing Remote Procedure
Calls." ACM TOCS 2:1 (February 1984). pp. 39-59. Originally
presented at the Nillth ACM Sympo.ium Oil Operati"6 Sy.teIM
Principle •• 10-13 October 1983.

[6] A. P. Black, "Supporting Distributed Applications: Experience with
Eden," Pro«edifl6' of the Tellth ACM Sympo.ium Oil Operating
S"tem. PrinciplcJ. 1-4 December 1985. pp. 181-193. In ACM
Operati"6 Sy.teIM Reuicw 19:5.

[7] D. R. Cheriton and W. Zwaenepoel. "The Distributed V Kernel and
its Performance for Diskless Workstations." Procccdifl6s of tlac
Ninth ACM Symposium Oil Operatill6 Syrtem. Principle •• 10-13
October 1983. pp. 129-140. In ACM Operating Systems Reuicw
17:5.

[8] D. R. Cheriton and W. Zwaenepoel. "Di.tributed Process Groups in
the V Kernel," ACM TOCS 3:2 (May 1985). pp. 77-107.

[9] D. J. DeWitt. R. Finkel. and M. Solomon. "The CRYSTAL Multi·
computer: Design and Implementation Experience." Computer Sci
ences Technical Report #553. University of Wisconsin - Madison.
September 1984.

[10] C. A. R. Hoare. "Communicating Sequential Processes." CACM
21:8 (August 1978). pp. 666-677.

[11] M. B. Jones. R. F. Rashid. and M. R. ThomplOn. "Matchmaker: An
Interface Specification Language for Distributed Procelling."
Conferellee Rccord of the Twelfth AnnU4l ACM Sympo.ium Oil

Principu, of Programming Lallguage •• January 1985. pp. 225-235.

[12) B. W. LamplOn and D. D. Redell. "Experience with Processes and
Monitors in Mesa.' CACM 23:2 (February 1980). pp. 105-117.

543

[13) R. J. LeBlanc and C. T. Wilkes. "Systems Programming with
Objec:ta and Action Procecdi"6' of the Fi{tJa Interr&a.tior&al COr&(er
ellCC on Diltributcd Computi"6 Sy.tema. 13-17 May 1985 pp. 132-
139. •

(14) T. J. LeBlanc and R. P. Cook. "An Analysis of Language Modele
for High-Performance Communication in Local-Area Networks."
Procecdi,.,. 0(tlac SIGPLAN '83 Sympo.ium Oil Programmillg
La"6UG1e llIuu ill Software Sy.tem •• 27-29 June 1983, pp. 65-72.
In ACM SIGPLAN Notice. 18:6.

[15] B. Liskov and R. ScheUler, "Guardians and Actions: Linguistic
Support for Robust, Distributed Programs," ACM TOPLAS 5:3
(July 1983), pp. 381-404.

(16] B. Liskov. M. Herlihy. and L. Gilbert, "Limitations of Synchronous
Communication with Static Process Structure in Languages for
Distributed Computing," COr&ferellee Record of tlac Thirteenth
AIl"U4l ACM Symporium on PrilU:ipu. of Programmi"6
LaIl6UG1f1. 13-15 January 1986. pp. 150·159.

[17] B. P. Miller, D. L. PrelOtto, and M. L. Powell, "DEMOSlMP: The
Development of a Distributed Operating Syltem." Software
Practice and Ezpericnce 17 (April 1987). pp. 277·290.

[18] J. L. Peterson, "Notes on a Workshop on Distributed Computing."
ACM Operatif16 Sy.tema R,uicw 13:3 (July 1979). pp. 18-27.

[19] R. F. Raahid and G. G. Robertson. "Accent: A Communication
Oriented Network Operating Syltem Kemel," Pro«edi"6' of the
Ei6hth ACII Sympo.ium on Operati"6 Systema PrilU:ipla. 14-16
December 1981, pp. 64-75. In ACM Operati"6 S"tem. Reuicw
15:5.

(20) M. L. Scott, "Design and Implementation of a Distributed Systems
Language," Ph. D. Thelia. Computer Sciences Technical Report
#696. Univenity of Wisconsin - MadilOn. May 1985.

[21] M. L. Scott, "'I'he Interface Between Distributed Operating System
and High-Level Programming Language." Proceedillg. of tlac 1986
InwlI4tior&al Cor&(erence Oil Parallel Procelli,." 19·22 August
1986, pp. 242-249.

[22] M. L. Scott. "Language Support for Loosely-Coupled Distributed
Programs." IEEE Trallloctiolll on Software EfI6illf!erif16 SE-13:1
(special issue on distributed aystems. January 1987). pp. 88-103.

[23) M. L. Scott and a.·A. Finkel. "A Simple Mechanism for Type Secu
rity Across Compilation Units." IEEE Trallloction. Oil Software
En6i_rill6. to .ppear. Earlier vereion available as Computer Sci
enc •• Technical Report #641. University of Wisconsin - MadilOn.
May 1984.

[24] A. Z. Spector. "Performing Remote Operations Efficiently on a
Local Computer Network." CACM 25:4 (April 1982). pp. 246-260.

[25] R. E. Strom and S. Yemini. "The NIL Distributed Systems Pr0-
gramming Language: A Status Report," ACM SIGPLAN Noliea
20:5 (May 1985). pp. 36-44.

[26) United States Department of Defense. "Reference Manual for the
Ada· Programming Language." (ANSIIMIL-STD-1815A-1983), 17
February 1983.

