
Psyche: A General-Purpose Operating System 
for Shared-Memory Multiprocessors 

Michael L. Scott 
(716) 275-7745 

scott@cs.rochester.edu 

Thomas J. LeBlanc 
(716) 275-5426 

leblanc@cs.rochester.edu 

University of Rochester 
Computer Science Department 

Rochester, NY 14627 

July 1987 

ABSTRACT 

The Psyche project at the University of Rochester aims to develop a high-performance operating 

system to support a wide variety of models for parallel programming on a shared-memory multiprocessor. 

It is predicated on the assumption that no one model of process state or style of communication will prove 

appropriate for all applications, but that a shared-memory machine can and should support all models. 

Conventional approaches, such as shared memory or message passing, can be regarded as points on a con

tinuum that reflects the degree of sharing between processes. Psyche enables fully dynamic sharing by pro

viding a user interface based on passive data abstractions in a unifonn virtual address space. It ensures that 

users pay for protection only when it is required by permitting lazy evaluation of protection using keys and 

access lists. The data abstractions define conventions for sharing the unifonn address space; the tradeoff 

between protection and performance detennines the degree to which those conventions are enforced. In 

the absence of protection boundaries, access to a shared abstraction can be as efficient as a procedure calI 

or a pointer dereference. 

This work was supported in part by NSF CER grant number DCR-8320136, DARPA ElL contract number DACA 76-8S...c· 
0001, and an mM Faculty Development Award. 



2 

1. Introduction 

Though shared-memory multiprocessors have existed for over 20 years, the design of operating sys

tems for such machines has seldom been the subject of research. For one thing, individual processors have 

tended to be very few in number, or less than general-purpose. With the notable exception of projects at 

CMU [27,38], it is only in recent years that mUltiprocessors have been constructed with relatively large 

numbers of equally powerful nodes. It is understandable, then, that the parallel operating systems com

munity has for the past decade focused its attention on loosely-coupled systems, in which more-or-less con

ventional processors exchange messages over a local area network. 

With the advent of large-scale commercial multiprocessors, several vendors have adapted the UNIX 

operating system for use on parallel machines. The IBM RP3 project [33] has adopted a similar approach, 

with a parallel version of UNIX to be produced by the Ultracomputer group at NYU's Courant Insti

tute [15]. Most message-based operating systems can be implemented on shared-memory machines as 

well. The Mach project [1] at CMU represents, to a large extent, the merger of Berkeley UNIX with the 

Accent network operating system. Mach now runs on several multiprocessors, including DEC, Encore, and 

Sequent machines. 

As we see it, the principal danger in adapting an existing operating system for use on a multiproces

sor is that it may fail to realize the full potential of the hardware. Though messages and shared memory 

can each be used to implement the other, the simulation is efficient in one direction only. Implementations 

of message-passing using hardware-supported shared memory can be every bit as fast as the interprocess 

messages of a hypercube (for example), but the simulation of shared memory on a fundamentally 

message-based machine is invariably too slow to use for fine-grained access. The principal advantage of a 

shared-memory machine is its ability to support fast implementations of a wide variety of models for pro

cess and communication structure. Valuable opportunities will be lost if the operating system provides a 

single model and precludes the use of others. 

The Psyche project at the University of Rochester is founded on the conviction that there are many 

useful paradigms for process interaction, ranging from loosely-coupled message passing to tightly-coupled 

shared memory. No one of these paradigms will be best for all applications. Our goal is to allow each 

application, or part of an application, to be written under the model of parallelism most appropriate for its 

own particular needs. 

Psyche is, conceptually, a layered operating system. Its lowest, kernel layer provides those opera

tions that must execute in a privileged state in order to provide protection and to access hardware 

resources. The surrounding supervisor layer provides abstractions that facilitate the implementation of 

communication mechanisms and establish conventions for interaction between pieces of an application that 

rely on different mechanisms. A pilot implementation is under construction. 

This paper discusses the principles on which Psyche is based. Section 2 explains the motivation for 

our work. It is followed by a description of Psyche primitives (section 3) and implementation issues (sec

tion 4). Section 5 contains additional discussion and comparison to other projects. The conclusion sum

marizes our current status and plans. 



3 

2. Motivation 

2.1. Shared Memory and Messages 

Conventional wisdom holds that parallel processes must communicate either by sharing memory or 

by exchanging messages. These alternatives are generally viewed as incompatible opposites. It is our con

tention, however, that conventional approaches are better regarded as points on a continuum that reflects 

the degree of sharing between processes. The full spectrum includes many different styles of message 

passing, as well as monitors, path expressions, remote procedure calls, atomic and parallel data structures, 

and unconstrained shared memory. In a pure shared-memory approach, processes share everything; in a 

pure message-passing approach, they share nothing. The other options lie somewhere in-between. 

The continuum has not been widely recognized. Parallel programming environments have tended to 

present a single user view, often one directly supported by the underlying hardware. But a kernel interface 

is more than just a mechanism for accessing physical resources. It is also a programming abstraction that 

profoundly influences the algorithms that can be implemented on top of it 

Two years ago, our department acquired a l28-node BBN Butterfly Parallel Processor, still the larg

est shared-memory machine avai1able, and one that also provides firmware support for message passing. 

Since then, a major thrust of our work has been the comparison of solutions to common problems under 

various programming models (see for example [9] and [24]). We are convinced that no one model of 

parallelism will prove appropriate for all applications. Some algorithms will be easier to implement with 

fully shared memory. Others are most clearly conceived with message passing. Still others need an inter

mediate option, such as monitors. Some applications may even benefit from the ability to use different 

models in different software modules. A computer vision system, for example, may be easiest to construct 

with shared memory at the lowest levels, where processes are operating in parallel on common pixel maps, 

and message passing at higher levels, where the emphasis is on feature integration in order to recognize 

objects. 

The need for flexibility in the communication structures of parallel programs is illustrated by an 

analogy to the information structures of sequential programs. In sequential programming, information can 

be made available in one of two forms: a data structore that contains the information or a function that 

computes it Since either approach can be used to implement the other, the cboice depends on the attributes 

of the application. Information that is hard to compute, but easy to store and access, is encoded in a data 

structure. Information that is easy to compute, or would require too much space to store, is encoded in a 

function. A data structure might also be used in situations where the raw data is easy to compute, but the 

relationship between data items, as encoded in the data structure, may be difficult to recreate. Complex 

information structures, such as the symbol table in a compiler, often use combinations of both mechanisms. 

Message passing is analogous to information exchange via functions, in that both impose a value

oriented semantics. Processes may only communicate values, some of which might require the exchange 

of an environment in which to interpret the value. The implicit communication required to establish an 

environment will often dominate the cost of interpreting a value within the environment In the case of 



4 

functions, a value-oriented semantics guarantees the absence of side-effects, but requires the environment 

to be passed as a parameter.! As with message passing, the cost of passing the environment as a parameter 

can dominate the cost of function execution. 

Another property shared by message passing and functions is that both offer a form of abstraction. 

A function computes a value without requiring the caller to know any details of how the value is computed. 

Similarly, message passing offers a recipient the contents of a message without requiring it to know the 

details of how the message values were computed, when the message was sent, or what buffering opera

tions were involved. 

On the other hand, communication using shared memory is analogous to information exchange via 

data structures. Each computation (process) has access to the results of previous computations that have 

been stoted (cached) in the shared memory, just as each procedure may have access to previous results 

stored in global data structures. Computation units (processes or procedures) have reduced fixed overhead, 

since they can inherit a context implicitly (an address space or a global data structure). There is little 

abstraction involved since both shared memory and data structnre access require the user to have detailed 

knowledge of the location and format of information. 

The analogy between communication structures and information structures is useful because it 

points out the inadvisability of any attempt to impose a single model of communication on all applications. 

Sequential programming systems do not attempt to dictate the choice of information structure; they provide 

functions, data structures, and hybrid combinations. Existing parallel programming systems tend to allow 

only a single communication structure. Psyche is designed to be more flexible, providing shared memory, 

message passing, and options in-between. 

2.2. Lightweight Process Models 

The processes scheduled by an operating system tend to be bulky objects with a large amount of 

state. Context switching between them is relatively expensive. Though many parallel algorithms are most 

easily realized with a very large number of processes, the cost of heavyweight context switches (as well as 

the space required for process state) makes straightforward implementation impossible. Lightweight 

processes, with a limited amount of explicit state, have been provided by several operating systems, includ

ing Mach [1) and Amoeha [31], and by an even larger number of parallel programming languages and 

library packages. The precise semantics of lightweight processes, however, differ nearly as much from 

system to system as do the semantics of interprocess communication. 

As with !PC semantics, we believe that the choice of a lightweight process model must be left to the 

writers of individnal applications. Certainly an operating system that intends to allow the implementation 

of LISP futures [20], Ada tasks [40], LYNX threads [36], Emerald objects [8], Modula-2 coroutines [41], 

and Argus [26] or SR [4] processes cannot insist on the use of a single, fixed model for lightweight process 

management. Psyche provides a notion of thread that is independent of process weight, and that eliminates 

I We are assuming pure functions that do not have acce.s to an implicit environment Ftmctions that reference global data are 
considered a hybrid fonn of infonnation structure. 



s 

the need for kernel intervention when switching between mutually-trusting threads. 

2.3. Project Goals 

The overall aim of Psyche is to support "general-purpose" parallel computing. By this we mean 

that the operating system will run almost any application for which the hardware is appropriate, and will 

usually run it well. We also mean that Psyche will not be a back-end system. In addition to individual, 

highly-parallel applications, it will suppurt large numbers of users with smaller applications, in the style of 

conventional time-sharing. 

Our work to date has focused on the abstractions provided by Psyche. Their design is an attempt to 

balance three competing goals: 

Flexibility 

It should be pussible to implement a wide variety of models for interprocess communication and 

lightweight process structure. It should be easy for processes using different models to interact, 

that is to arrange dynamically to share access to arbitrary abstractions. 

Protection 

It should be possible to associate a protocol with a shared abstraction in such a way that access 

to the abstraction is possible only by executing the protocol. 

Performance 

The cost of a simple operation on a shared abstraction should be much closer to that of a pro

cedure call than to that of a sending a message in current network operating systems. 

Protection and performance are rather conventional goals (though the techniques we have adopted 

to pursue them are not). By contrast, our emphasis on flexibility is somewhat unusual. We are driven by 

the observation that an operating system kernel must provide a lowest common denominator for the things 

that will be built upun it. For general-purpuse parallel computing, the kernel interface must be fairly low

level. It may not be especially convenient to use in its raw form, but the assumption is that most program

mers will never attempt to do so. Instead, they will rely on a collection of standard libraries and language 

support packages for process management and communication. The operating system may facilitate the 

construction of higber-level software by promoting the use of conventions (as in the Psyche supervisor), 

but the lowest-level primitives must remain available. The purpose of the kernel is to provide protection 

and to hide the most unpleasant idiosyncrasies of the hardware, while leaving the bulk of its power avail

able to the language and library builder. 

This conception of the role of the operating system does not appear to have guided most recent 

research projects. Message-based operating systems, such as Eden [3], Mach [1], and V [11], have tended 

to provide a kernel interface that is too low-level to be used directly (witness the proliferation of remote 

procedure call stub generators), yet too high-level to permit alternative approaches to naming, buffering, 

error recovery, or flow control (we argue this point in [35]). Similarly, most implementations of parallel 

programming languages have either employed a special-purpose kernel (as in Argus [26], SR [4], Star

Mod [23], Linda [10], or NIL [37]), or have been built on top of an existing uniprocessor operating system, 



6 

most often UNIX. We are unaware of any work specifically addressing the design of a kernel or supervisor 

to support multiple programming models. 

3. Psyche Overview 

The kernel layer of Psyche is intended to be minimal. It provides operations to create, destroy, and 

manipulate three basic abstractions: the segment, the address space, and the thread of control. The rest of 

this section is concerned with the interface provided by the Psyche supervisor layer. Though this interface 

is considerably higher level than that of the underlying kernel, we do not expect ordinary programmers to 

make use of it on a regular basis. The preferred technique is to rely on a library package or compiler that 

implements the conventions of a favorite parallel programming model. Direct use of the supervisor layer 

allows programmers to circumvent these conventions in order to communicate between models. 

3.1. Basic Concepts 

The realm is the central abstraction provided by the supervisor layer. Each realm includes data and 

code. The code constitutes a protocol for manipulating the data. The intent is that the data should not be 

accessed except by obeying the protocol. In effect, a realm is an abstract data object Its protocol consists 

of operations on the data that define the nature of the abstraction. Invocation of these operations is the 

principal mechanism for communication between parallel threads of control. 

The thread is the principal abstraction for control flow and scheduling. Each thread is represented 

by a context realm that contains a stack and space to store registers and other volatile information when 

the thread is blocked. The relationship between realms and threads is somewhat unusual: the conventional 

notion of an anthropomorphic process has no analog in Psyche. Realms are passive objects, but their code 

controls all execution. Threads merely animate the code; they have no "volition" of their own. 

Depending on the degree of protection desired, an invocation of a realm operation can be as fast as 

an ordinary procedure call or as slow as a heavyweight process switch. We call the inexpensive version an 

optimized invocation; the safer version is a protected invocation. In the case of a trivial protocol or truly 

minimal protection, Psyche also permits direct external access to the data of a realm. One can think of 

direct access as a mechanism for in-line expansion of realm operations. By mixing the use of protected, 

optimized, and in-line invocations, the programmer can obtain (and pay for) as much or as little protection 

as desired. 

Keys and access lists are the mechanisms used to implement protection. Each realm includes an 

access list consisting of <key, right> pairs. The right to invoke an operation of a realm is conferred by pos

session of a key for which appropriate permissions appear in the realm's access list. A key is a large unin

terpreted value. New keys, with a pseudo-random distribution affording probabilistic protection, can be 

obtained from the supervisor. The distribution of keys and the management of access lists is under user 

control, enabling the implementation of many different protection policies. 



7 

3.2. Memory Management 

If optimized (particularly in-line) invocations are to proceed quickly, they must avoid modification 

of memory maps. Every realm visible to a given thread must therefore occupy a different location from the 

point of view of that thread. In addition, if pointers are to be stored in realms, then every realm visible to 

multiple threads must occupy the same location from the point of view of each of those threads. Since we 

want threads to be able, at run time, to obtain access to arbitrary realms, we must generally arrange for all 

coexistent realms to occupy disjoint virtual addresses. Psyche therefore presents its users (conceptually at 

least) with a single, global, virtual address space. Each thread may run with a different view of this address 

space, in the sense that different subsets may be marked accessible, but the mapping from virtual to physi

cal addresses will be uniform. Virtual addresses suffice for naming, and pointers can (with appropriate per

missions) be used without regard to the realm into which they point 

The view of an executing thread is embodied in the hardware memory map. It always includes both 

the context realm of the thread and the realm in which the thread is executing (the "current realm "). Exe

cution proceeds unimpeded until an attempt is made to access something not included in the view. The 

kernel passes the resulting protection fault upward into the supervisor, whose job it is to either (I) 

announce an error, (2) update the current view and restart the faulting instruction, or (3) create a new 

thread to perform the attempted operation in a separate protection domain (Le., with a separate view). 

In effect, Psyche uses conventional memory-management hardware as a cache for software

managed protection. Case (2) above corresponds to optimized invocation. Future invocations of the same 

realm from the same view will proceed without kernel or supervisor intervention. Case (3) corresponds to 

protected invocations. The choice between cases is controlled by the keys and access lists. 

A protected invocation of a realm operation creates a new thread of control. The stack of the thread 

contains a copy of the top frame on the calling stack, making value parameters accessible. The view of the 

new thread includes, at minimum, the context realm of the thread, the realms in which reference parame

ters reside, and the realm of the invoked operation. The view may grow over time as the thread invokes 

operations in realms to which optimized access is permitted. 

In general, the right to invoke an operation is verified at the latest possible moment This "lazy 

evaluation" approach to protection allows us to use the same syntax for both optimized and protected invo

cations. It also allows those invocations to use the same linkage conventions as ordinary procedure calls. 

In the optimized case, all but the first invocation can execute the same sequence of instructions as an ordi

nary procedure call. Callers need not know wbether a given invocation will be optimized or protected, 

although they can insist on protection if desired. 

3.3. Threads and Scheduling 

A protected invocation creates a new thread and suspends the old thread Information about the old 

thread is placed at the bottom of the stack of the new thread, along with a copy of the invocation's parame

ters. Under most circumstances the new thread win want to resume the old one when its work is com

pleted. There are no general restrictions, however, on when threads execute. The supervisor keeps a ready 



8 

list of threads that can execute in parallel, possibly on different physical processors. It does not insist that 

all mnnable threads appear on this list. In particular, execution can move without the assistance of the ker

nel or supervisor to any thread visible in the current view, simply by changing a pointer to the current 

thread and using that thread's stack. Mutually-accessible threads can therefore be scheduled with light

weight, user-level code. 

The context realm of each thread contains the addresses of realm operations to block and unblock 

the thread. Arbitrary realms can invoke these operations to enforce synchronization constraints. The 

supervisor provides default routines that switch between threads on its own ready list, but more lightweight 

mechanisms can be implemented by providing block and unblock routines in user-level "scheduler 

realms." A scheduler can keep its own ready list of mutually-accessible threads and can switch between 

them very quickly. Simplistic threads can always use the standard routines that manipulate the supervisor's 

ready list Any user-level routine, moreover, will want to call the supervisor when it can find nothing else 

to do. 

3.4. Access Lists, Keys, and Protection 

From the caller's point of view, protected and optimized calls will usually look the same. The 

exception is that a caller can insist that an invocation be protected when it does not trust the realm it is cal

ling. In effect, Psyche has separated the dimensions of protection and performance from the semantics of 

realm invocation. Unless explicitly requested by the caller, the choice between the two is based on the 

access list of the realm being called. 

When a thread attempts to invoke an operation of a realm that is not in the current view, the supervi

sor checks to see whether the thread possesses a key that appears in the realm's access list with a right that 

would permit the attempted operation. The same protection mechanism is used when creating and destroy

ing realms. Rights contained in access lists include: 

invoke operation X 
invoke operation X optimized 
fork new thread executing operation X 
read/write data of realm directly 
copy realm (to create a new realm) 
destroy realm 

Since the value of a key depends on neither the holder nor on the realm(s) to which it confers rights, it is 

possible to (1) possess a key that grants rights to a large number of realms, (2) change the rights conferred 

by a key without notifying the holder(s) and (3) change the holders of a key without notifying the realm(s) 

to which the key grants access. 

The precise mechauism used by the supervisor for checking keys has not yet been determined. We 

are considering a scheme in which each realm contains a list of keys at a location known to the supervisor. 

When a fault occurs the supervisor can compare the key lists of the current realm and the current thread's 

context against the access list of the realm in question. The principal drawback of this strategy is that with 

long key lists the cost of the comparison could be quite high. An alternative would be for the supervisor to 



9 

perform an upcall [13] to a key manager that could use thread-specific knowledge to find an appropriate 

key. The address of an appropriate key manager could be kept with the block and unblock routines in each 

thread. 

4. Implementation Considerations 

In order to support an implementation of Psyche, a target multiprocessor architecture must have a 

number of characteristics. These characteristics are assumed by the overview above. 

(I) Allor most of the memory of the machine must be sharable. All memory may be equally distant from 

all processors, or there may be a hierarchy of locality, but in any event it must be possible to access 

the code and data of any realm from any processor. 

(2) The virtual address space of the machine must be at least as large as, and preferably much larger than, 

the physical address space. The memory management hardware must support sparse address spaces 

efficiently. 

(3) There must be a very large number of segments or pages, with hardware access rights that can be 

altered individually. 

(4) It must be possible to change quickly into and out of a privileged state in which hardware access 

rights can be changed. 

Commercial multiprocessors that are likely candidates for Psyche implementations include the 

Sequent Balance, Encore Multimax, multiprocessor VAX, and BBN Butterfly machines. Of these, the 

Butterfly has by far the largest number of processing nodes and the most interesting memory architecture, 

in terms of varying locality. Unfortunately, the Butterfly, like many other commercial machines, currently 

supports only 24-bit virtual addresses, too narrow to address all of physical memory at once.2 Although 

announced successors to the current generation of multiprocessors wiII reduce the severity of this problem 

by supporting larger virtual address spaces, software techniques for coping with the scarcity of virtual 

addresses will still be necessary; they are discussed in section 5.1. 

Our implementation effort has deliberately focused on issues that are independent of the choice of a 

particular target machine. These include: 

• Facilities for passing protection information between realms and for specifying which realms remain 

accessible during a realm.operation must be designed in such a way that performance does not suffer. 

For example, interpretation of a large number of parameters during each realm operation is unlikely to 

prove acceptable. 

• Protection mechanisms must allow the kernel to limit access to both memory and the CPU. Even with 

full protection of currently-accessible memory, an invoked operation must be trusted to retum the 

processor. Clock interrupts provide a mechanism for implementing preemption, which can be used to 

1 The Balance, Multimax, and Butterfly currently have 24-bit virtual addresses. enough to access 16 megabytes. A fully
configured, 2S6-node Butterfly would contain one gigabyte of memory. The Balance can have up to 28 megabytes of memory. the 
Multimax up to 128 megabytes. 



10 

enforce supervisor control of the processor without requiring the kernel to implement scheduling. 

• Linkage information for realm operations must be managed in such a way that users cannot 

compromise protection. The supervisor cannot trust information stored in the user's stack. Informa

tion stored in protected space may interact with lightweight process management. 

• Mechanisms for resource recovery will be needed to ensure that both physical memory and virtual 

address space is reclaimed when no longer needed. The flexibility of sharing relationships in Psyche 

will make it difficult to determine precisely when recovery should happen. 

• Facilities such as the determination of an appropriate address for a newly-created realm (and reloca

tion of the load image to run at that address) will require non-trivial "engineering" solutions, if not 

original research. 

As with most wode in operating systems, the proof of concept for Psyche will lie in the implementa

tion. It remains to be seen whether the mechanisms required for protection will indeed permit the most 

conservative realm invocations to perform significantly better than the higher-level facilities of, say, a 

message-based operating system. It will be important to ensure that common, optimized operations do not 

pay for the full generality of the protected case. 

5. Discussion 

The design of Psyche is based on the observation that access to shared memory is the fundamental 

mechanism for interaction between processes on a multiprocessor. Any other abstraction that can be pro

vided on the machine must be built from this basic mechanism. An operating system whose kernel inter

face is based on direct use of shared memory will thus in some sense be universal. The task of the kernel is 

to make sharing convenient and to provide facilities to guarantee protection. 

5.1. The Uniform Virtual Address Space 

A uniform virtual address space is a consequence of our assumptions about sharing. Active entities 

(by whatever name) must be able to arrange, at run time, to share access to arbitrary realms. For at least 

certain applications, specification of what is shared cannot occur before run time. For a very large class of 

applications, sharing must be as efficient as the hardware makes possible. In particular, pointers into 

shared realms must be permitted. As a result: 

(I) Any two realms that are to be accessible to the same thread at the same time must occupy different 

virtual addresses. 

(2) Each realm must occupy the same virtual addresses in every thread that uses it. Otherwise compilers 

will have to generate position-independent code, and addresses will not be usable as pointers.' 

Any attempt to squeeze active realms into an address space smaller than their total physical size will result 

in overlaps. The assignment of addresses to realms will then become an exercise in graph coloring, an 

] In fact, we must generate positioo-independent code anyway if we wish to share code segments among separate instances of 
the same type of reahn. 



11 

exercise that will often have no solution. To make matters worse, it is unlikely that the operating system 

will be able to predict at realm creation time just which other realms must be avoided. The graph to be 

colored may not even be known. 

The simplest solution to the graph coloring problem is to give each realm a different color (i.e., vir

tual address). That is, realms reside in a uniform virtual address space shared by all users. Not all portions 

of that space will be accessible at all times, but the mapping between virtual addresses and realms will be 

the same from everyone's point of view. This simple solution has one major disadvantage: virtual 

addresses will be a limiting factor on most current architectures. Neither the 24-bit virtual addresses 

currently available nor the 32-bit virtual addresses expected soon will be sufficient to address every realm 

of every program. Therefore, although the conceptual model provided by Psyche is that of a single, uni

form address space, any practical implementation must treat virtual addresses as a scarce resource. Two 

important teclmiques for managing a scarce resource are (I) multiplex the resource among different pro

grams and (2) reclaim the resource when it is not in use. 

Traditional operating systems multiplex both physical memory and virtual addresses among 

processes. Paging allows two different processes to occupy the same physical memory over time. Virtual 

memory allows two different processes to use the same virtual address for two different purposes. In con

trast, Psyche requires that two different threads use the same virtual address for the same purpose. 

Nevertheless, the implementation can choose to violate this assumption, as long as it remains transparent to 

the user. That is, a portion of the virtual address space must be dedicated to any realm that might be 

shared, but two realms that are never simultaneously accessible can be placed at the same virtual address. 

For example, stacks and some code may never be shared. The stack and non-shared code of one program 

may overlap the stack and code of another in the virtual address space. We expect in practice to be able 

statically to identify significant portions of most programs as non-sharable. 

No system can run indefinitely while allowing resources to be consumed and never released. The 

critical resources to be reclaimed in Psyche are virtual addresses. The problem is that we wish to support 

long-lived sharing relationships; we cannot delete a realm simply because no thread is currently accessing 

it Garbage collection presupposes that all references to realms can be found, an assumption we are not 

willing to make. Other solutions adopted in traditional operating systems don't work because either shar

ing must be established explicitly beforehand, long-lived sharing relationships are not allowed, or resources 

that can be shared long-term are never reclaimed by the system. For example, in most operating systems 

memory is reclaimed when a process terminates. The file system must be used for long-term sharing (often 

defined to be any sharing that spans process boundaries) and file space is reclaimed only by human inter

vention. In Psyche, we plan to use a combination of explicit deallocation by the user and implicit dealloca

tion via an ownership hierarchy to reclaim virtual address space. Explicit deallocation allows the user to 

micro-manage the virtual address space; implicit deallocation based on ownership guarantees that the sys

tem has ultimate control over resource reclamation. 

One outgrowth of the uniqueness of rea1m locations in Psyche is that it becomes trivial for threads 

to share copies of common libraries. Each such library constitutes a rea1m without data (except, of course, 



12 

for read-only structures and constants). The sharing of library realms avoids the all-to-common situation in 

which traditional processes are linked to individual copies of the file system, language support routines, 

mathematical libraries, and other subroutine packages. Of course, on machines like the Butterfly the 

slower speed of remote memory references will encourage the creation of local copies, but each copy can 

be shared by all threads on one node. Moreover, the existence of copies need not be visible to the user. 

We expect our Butterfly implementation to make extensive use of automatic replication for code and read

only data. From the point of view of a user, every thread in existence will be able to share a single copy of, 

say, the trigonometry package. 

5.2. Keys and Access Lists 

Psyche realm invocations resemble both Eden object invocations [3] and Hydra procedure 

calls [14]. Eden and Hydra both use capabilities to implement protection. For Psyche, however, the use of 

capabilities would have several serious problems: 

(I) The tight association between names and rights within a capability would require most pointers into 

realms to be accompanied in every data structure by an appropriate capability. 

(2) Given appropriate rights, our goal for optimized access is to map a realm into the current address 

space in such a way that further proof of rights is never needed. Under these circumstances we 

expect accesses to occur frequently enough to make even the presentation of a capability unaccept

able. 

(3) The use of an explicit open primitive, while eliminating the need to present capabilities for routine 

access, would force the Psyche user to keep track of which realms are currently accessible. Our 

experience with the Butterfly's Chrysalis operating system [6] has convinced us that this burden will 

be unacceptable for ordinary programmers and undesirable for the implementors of communication 

models. Opening realms at the earliest possible moment (rather than waiting until just before the first 

access) is also unattractive, because the set of realms that might potentially be accessed is likely to be 

very much larger than the set that will actnally be accessed. 

(4) While the rights over a memory block are essentially limited to read, write, and execute permissions, 

the rights to an arbitrary realm are much more difficult to describe. They are significantly easier to 

represent in data structures associated with the realm itself than in a standard format capability. 

Traditional access lists solve these problems, but have other limitations of their own. They require 

that we be able to name the entities to whom access should be granted. They can require a great deal of 

space to list all valid names. They make it difficult or impossible to pass rights on to a third party without 

kernel intervention. By introducing keys as an additional level of indirection, we obtain the advantages of 

access lists while avoiding their disadvantages. Keys can be moved from place to place without kernel 

intervention. A single key can convey an arbitrarily complex set of rights over an arbitrary set of realms to 

an arbitrary set of clients. Tbe rights associated with a key can even be changed without the knowledge of 

the clients. The primary disadvantage of keys is that they make it impossible to control distribution, but we 

see no way to avoid this problem in any scheme that transfers rights between protection domains without 



13 

the help of the kernel. 

5.3. Locality 

The fact that Psyche will run on a multiprocessor raises locality issues not encountered in uniproces

sor systems. Some of the architectures currently available (the Sequent and Encore machines, for example) 

make all memory equally accessible from all places. This equality is extremely convenient - it facilitates 

automatic load balancing, for example, in parallel versions of UNIX - but it is not likely to be feasible in 

machines with hundreds or thousands of processors. We are committed in the Psyche group to developing 

software that will scale comfortably to very large machines with non-uniform memory access times. 

Architectures such as the Butterfly, the IBM RP3, and the Illinois Cedar machine [22] recognize that while 

it may be possible to make all memory equally distant from a large number of processors, it is not possible 

to make it all equally close. The former option is no less expensive than an intermediate solution in which 

each processor is close to some of the memory, and distant from the rest. 

It is tempting to suggest that an operation should always execute on the processor closest to its data, 

but such a suggestion ignores the fact that in some cases the cost of transferring control to a thread on the 

appropriate processor may exceed the cost of accessing the data remotely, or even of executing the code 

itself out of non-local memory. A system that provides remote procedure calls as the basic communication 

mechanism on a multiprocessor precludes the more primitive option. Psyche, on the other hand, retains 

both options by permitting direct execution when appropriate. 

We fully expect that Psyche will make use of memory management techniques to maximize locality 

whenever possible. The code for a realm operation will probably be replicated on most of the nodes that 

invoke it Where operating systems like Accent make heavy use of copy-on-write techniques [18], Psyche 

is likely to provide for copy on remote access. Where machines like the Butterfly already provide a block 

transfer operation for high-speed copying between local memories, Psyche may add a copy-on-write block 

transfer. 

For use in a network environment, we see competing approaches to accommodating Psyche. The 

first is to support realm invocations and even direct access across machines by simulating memory sharing. 

This approach has the advantage of functional transparency, but serves to hide costs that we believe should 

be explicit. Our inclination at present is to pursue a second option, in which cross-machine operations are 

supported by a local realm that serves as a network interface. This approach is similar in style to remote 

procedure call stub generators and to the network server processes of Accent and Mach. It reHects, rather 

than hides, the costs involved in inter-machine communication. 

5.4. Synchronization 

Given the provision for direct execution, we expect that more than one thread, and indeed more than 

one processor, may be running in a realm at once. As with locaIity, Psyche addresses the issue of syn

chronization by permitting each individual rea1m to adopt the mechanism most appropriate to its own 

semantics. It would be possible, for example, to insist that each realm be a monitor, and that only one 



14 

thread at a time be allowed to execute inside. Such an approach would preclude useful parallelism in many 

applications. Since the requirements for synchronization vary greatly from program to program [12], it 

seems better to provide the hooks with which to implement various policies than to force a particular model 

on every application. 

Each multiprocessor architecture will provide some sort of atomic memory-level operations. From 

these basic operations, users will be able to construct a variety of synchronization routines. Once libraries 

(realms) exist for the basic synchronization mechanisms, such as semaphores, monitors, path expressions, 

and read/write locks, it should be straightforward to incorpomte the appropriate mechanism in each more 

complicated realm. Exotic paraIlel data structures may require the construction of special-purpose syn

chronization routines, but this requirement should not be regarded as a liability. An opemting system that 

insisted on a single synchronization model would not support the code at all. 

5.5. Examples of the Use of Realms 

For both locality and synchronization, the philosophy of Psyche is to provide a fundamental, low

level mechanism from which a wide variety of higher-level facilities can be buill Realms, with directly

executed opemtions, can be used to implement the following: 

(I) Pure shared memory in the style of the BBN Uniform System [7]. A single, large, static realm would 

be shared by all threads. The access protocol, in an abstmct sense, would permit unrestricted reads 

and writes of individual memory cells. 

(2) Packet-switched message passing. Each message would be a separate realm. To send a message one 

would make the rea1m accessible to the receiver and inaccessible to the sender. 

(3) Circnit-switched message passing, in the style of Demos [29], Accent [34], Charlotte [5], or 

LYNX [36]. Each communication channel would be realized as a realm accessible to a limited 

number of threads, and would contain buffers manipulated by protocol opemtions. 

(4) Synchronization mechanisms such as monitors, locks, and path expressions. As described above, 

each can be written once as a Iibmry routine that is instantiated as a realm by each abstraction that 

needs it. 

(5) Parallel data structures. Special-purpose locking could be implemented in a collection of realms scat

tered across the nodes of the machine, in order to reduce contention [16, 17]. For certain kinds of data 

structures, (the Linda tuple space [2], for example), the entry routines of the data structure as a whole 

might be fully parallel, able to be executed without synchronization until access was required to par

ticular pieces of the data. 

5.6. Relationship to Previous Work 

Psyche resembles Hydm [42] in its use of protected procedure calls for the execution of opemtions 

in sepamte protection domains. Our approach differs in its emphasis on multiple programming models, its 

integmtion of code and data in realms, and its provision for optimized access. Objects in Hydra can be 

either procedures or data. Realms in Psyche are both. Our approach is more in keeping with current use of 



15 

the tenn "object-oriented," in that data is never separated from the protocol for its access.4 Sharable dala 

in Hydra can be accessed only through the use of capabilities, so very fine-grain operations, even without 

the need for protection, cannot be made efficient. 

The structural difference between Hydra objects and Psyche realms is best viewed as a difference in 

approaches to building abstractions. The association between data and procedures in Hydra is eslablished 

by convention. Protocols are enforced by giving a procedure the ability to amplify the rights of capabilities 

for certain types of dala objects. User programs hold capabilities that do not penn it them to access the 

internals of the dala objects; only the amplifying procedures can do so. Psyche abstractions, by contrast, 

are provided directly by the Psyche supervisor. No amplification mechanism is needed in order to enforce 

the use of protocols. Where a Hydra user would ask the "pop" procedure to return an item from SlaCk 

object X, a Psyche user would ask the "slaCk X" object to pop itself and return the result. By analogy to 

programming languages, the Hydra approach to abstraction resembles an Ada package that exports an 

opaque type, while Psyche abstractions resemble Small1alk objects [19]. 

Psyche also bears a resemblance to the StarOS [21] and Medusa [32] operating systems for em". It 

is closer to Hydra than to StarOS, and closer to StarOS than to Medusa. StarOS emphasizes the asynchro

nous execution of operations by remote processes. As in Hydra, code and dala comprise separate objects, 

but a number of special object types (dequeues, mailboxes, events) are built into the kernel and supported 

with microcode. A mechanism is provided for mapping an object into one of a limited number of windows, 

but the result is much less general than the inclusion of Psyche realms in views. In any event the use of a 

unifonn virtual address space would not have been an option on the em" hardware, which only supported 

I6-bit addresses. Medusa adopts an essentially message-based approach to process interaction, with only a 

limited fonn of dala sharing pennitted within multi-process !ask forces. 

Perhaps the best-known current work in multiprocessor operating systems is the Mach project [1], 

again at eMU. In comparison to Mach, Psyche has both a different motivating philosophy and a different 

set of resulting abstractions. Psyche is not meant to be UNIX compatible. It is also not meant to run on 

networks, though it could be extended to do so. Its real focus is on shared-memory multiprocessors, for 

which we believe it can make significantly better use of the hardware than is possible with a primarily 

message-based system. 

Psyche adopts a passive view of objects, as opposed to the active view of Mach. Where Mach pro

vides messages as the basic communication mechanism, Psyche provides data sharing and protected pro

cedure calls. Where the notion of threads within a !ask is built into Mach at the kernel level, the threads of 

Psyche can be scheduled in user code and can move between mutually-accessible reabns. Where dala can 

be shared in Mach only between related tasks in the lask creation tree, Psyche pennits realms to be shared 

among arbitrary groups of threads. All of these differences make Psyche a lower-level, less structured 

operating system, but at the same time one that will admit a wider variety of user applications with a finer 

grain of interaction. 

4 The fundamentally passive nature of a realm, the unusual protection mechanism. and the lack of inheritance lead us to avoid 
the adjective "object-oriented" ourselves. 



16 

We feel that the closest parallels to Psyche can be found in the so-called open operating systems 

developed for uniprocessors by groups at Xerox and MIT. In Cedar [39] (no relation to the Illinois Cedar 

project) and Swift [13], all the software of the machine runs in a single address space, with no protection 

provided by the kernel. Processes are prevented from interfering with each other by relying on the com

piler for a "safe" programming language. The Cedar system was built with the Cedar language, a succes

sor to Mesa [30]; Swift was built with CLU [25]. Psyche can be regarded as an attempt to provide the 

advantages of an open operating system without relying on a single programming language. It is also an 

attempt to extend support to multiple processing nodes, though the Cedar group is moving in the same 

direction [28]. 

The comparison to Swift is particularly apt The notion of an upcalI corresponds directly to the 

invocation of a realm operation. The multi-process modules of Swift are very much like realms. Both 

Psyche and Swift are designed to separate the crossing of functional boundaries (i.e. between realms) from 

the expense of context switching. The solution may be more successful in Swift, since the CLU compiler 

can provide cost-free protection when calling an untrusted module. Psyche invocations that go "down" 

into a trusted realm like the file system will be easier to optimize than invocations that go "up" into 

untrusted user code. 

6. Status and Plans 

As of summer 1987, we have finished designing the Psyche kernel and have begun a pilot imple

mentation, while continuing design work on the supervisor. Our principal goal for the short term is to 

obtain an environment as quickly as possible in which we can experiment with multi-model programs. 

We expect our worl< to evolve into a number of interrelated projects. Interesting research could be 

performed in memory management, lightweight process structure, implementation and evaluation of com

munication models, and parallel language design. The latter subject is of particular interest. We have 

specifically avoided langnage dependencies in the design of the Psyche kernel and supervisor. It is our 

intent that many languages, with widely differing process and communication models, be able to coexist 

and cooperate on a Psyche machine. We are interested, however, in the extent to which the Psyche philo

sophy itself can be embodied in a programming language. 

The communications facilities of a language enjoy considerable advantages over a simple subrou

tine library. They can be integrated with the naming and type structure of the language. They can employ 

alternative syntax. They can make use of implicit context. They can produce language-level exceptions. 

For us the question is: to what extent can these advantages be provided without insisting on a single com

munication model at language-design time? Though these questions are beyond the scope of our current 

work, we expect them to form the basis of a future, follow-on project 



17 

Acknowledgments 

The work reported herein owes much to the efforts of the entire Psyche group: Rob Fowler, Alan 

Cox, Lawrence Crowl, Peter Dibble, Neal Gafter, John Kerber, Brian Marsh, and John Mellor-Crummey. 

Jerry Feldman provided useful comments on an earlier draft of this paper. 

References 
[I] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, "Mach: A 

New Kernel Foundation for UNIX Development," Proceedings of rhe Summer 1986 USENlX 
Technical Co1!ference and Exhibition, June 1986. 

[2] S. Ahuja, N. Carriero, and D. Gelernter, "Linda and Friends," Compurer 19:8 (August 1986), pp. 
26-34. 

[3] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, "The Eden System: A Technical 
Review," IEEE Transacrions on Software Engineering SE-11: 1 (January 1985), pp. 43-59. 

[4] G. R. Andrews, R. A. Olsson, M. Coffin,l. J. P. Elshoff, K. Nilsen, and T. Purdin, "An Overview 
of the SR Language and Implementation," ACM TOPLAS, to appear. Available as TR 86-6a, 
Department of Computer Science, University of Arizona, 23 June 1986. 

[5] Y. Artsy, H.-Y. Chang, and R. Finkel, "Interprocess Communication in Charlotte," IEEE 
Software 4: 1 (January 1987), pp. 22-28. 

[6] BBN Advanced Computers Incorporated, "ChrysaJis® Programmers Manual, Version 3.0," 28 
April 1987. 

[7] BBN Laboratories, "The Uniform System Approach to Programming the Butterlly® Parallel Pro
cessor," BBN Report #6149, Version 2, Cambridge, MA, 16 June 1986. 

[8] A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object Structure in the Emerald System," 
OOPSLA' 86 Conference Proceedings, 29 September - 2 October 1986, pp. 78-86. In ACM SlG
PLAN Notices 21: 11 (November 1986). 

[9] C. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L. Scott, M. Srinivas, and others, "DARPA Parallel 
Architecture Benchmark Study," BPR 13, Computer Science Department, University of Roches
ter. 

[10] N. Carriero and D. Gelernter, "The S/Net's Linda Kernel," ACM TOCS 4:2 (May 1986), pp. 
110-129. Originally presented at the Temh ACM Symposium on Operaring Sysrems Principles, 
1-4 December 1985. 

[11] D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Performance for Diskless 
Workstations," Proceedings of rhe Nimh ACM Symposium on Operating Sysrems Principles, 
10-13 October 1983, pp. 129-140. InACM Operaring Sysrems Review 17:5. 

[12] D. R. Cheriton, "Problem-oriented Shared Memory: A Decentralized Approach to Distributed 
System Design," Proceedings of rhe Sixrh Imernational Co1!ference on Distribured Computing 
Sysrems, 19-23 May, 1986, pp. 190-197. 

[13] D. Clark, "The Structuring of Systems Using Upcalls," Proceedings of rhe Tenrh ACM Sympo
sium on Operating Sysrems Principles, 1-4 December 1985, pp. 171-180. In ACM Operaring Sys
rems Review 19:5. 

[14] E. Cohen and D. Jefferson, "Protection in the Hydra Operating System," Proceedings ofrhe Fifrh 
ACM Symposium on Operating Sysrems Principles, November 1975, pp. 141-160. 

[15] J. Edler, A. Gottlieb, and 1. Lipkis, "Considerations for Massively Parallel UNIX Systems on the 
NYU Ultracomputer and IBM RP3," Ultracomputer Note #91, Courant institute, N. Y. 0., 
December 1985. 



18 

[16] C. Ellis, "Concurrent Search and Insertion in 2-3 Trees," Acta Informatica 14 (1980), pp. 63-86. 

[17] C. Ellis, "Concurrent Search and Insertion in AVL Trees," IEEE Transactions on Computers C-
29:9 (September 1980), pp. 811-817. 

[18] R. Fitzgerald and R. Rashid, "Tbe Integration of Virtual Memory Management and Interprocess 
Communication in Accent," ACM TOCS 4:2 (May 1986), pp. 147-177. Originally presented at 
the Tenth ACM Symposium on Operating Systems Principles, 1-4 December 1985. 

[19] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation, Addison
Wesley, Reading, MA, 1983. 

[20] R. H. Halstead, Ir., "Parallel Symbolic Computing," Computer 19:8 (August 1986), pp. 35-43. 

[21] A. K. lones, R. 1. Chansler, Ir., I. Durham, K. Schwans, and S. R. Vegdahl, "StaIOS, a Multipro
cessor Operating System for the Support of Task Forces," Proceedings of the Seventh ACM Sym
posium on Operating Systems Principles, December 1979, pp. 117-127. 

[22] D. 1. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sarneh, "Parallel Supercomputing Today and 
the Cedar Approach," Science 231 (28 February 1986), pp. 967-974. 

[23] T. 1. LeBlanc, R. H. Gerber, and R. P. Cook, "The StarMod Distributed Programming Kernel," 
Software-Practice and Experience 14:12 (December 1984), pp. 1123-1139. 

[24] T. 1. LeBlanc, "Shared Memory Versus Message-Passing in a Tightly-Coupled Multiprocessor: A 
Case Study," Proceedings of the 1986 International Coriference on Parallel Processing, 19-22 
August 1986, pp. 463-466. Expanded version available as BPR 3, Computer Science Department, 
University of Rochester, Ianuary 1986. 

[25] B. Liskov, R. Atkinson, T. Bloom, E. Moss, 1. C. Schaffert, R. Scheifler, and A. Snyder, CLU 
Reference Manual, Lecture Notes in Computer Science # 16, Springer-Verlag, Berlin, 1981. 

[26] B. Liskov and R. Scheifler, "Guardians and Actions: Linguistic Support for Robust, Distributed 
Programs," ACM TOPLAS 5:3 (July 1983), pp. 381-404. 

[27] H. H. Mashburn, "The C.mmp/HydraProject An Architectural Overview," pp. 350-370 (chapter 
22) in Computer Structures: Principles and Examples, ed. D. P. Siewiorek, C. G. Bell, and A. 
Newell, McGraw-Hill, New York, 1982. 

[28] E. McCreight, "The DRAGON CPU," Second International Conference on Architectural Sup
portfor Programming Languages and Operating Systems, 5-8 October 1987. To appear. 

[29] B. P. Miller, D. L. Presotto, and M. L. Powell, "DEMOS/MP: The Development of a Distributed 
Operating System," Software-Practice and Experience 17 (April 1987), pp. 277-290. 

[30] 1. G. Mitchell, W. Maybury, R. Sweet, and 1. R. HelZ, Ir., "Mesa Language Manual, version 
11.0," Xerox Office Systems Division, Iune 1984. 

[31] S. 1. Mullender and A. S. Tanenbaum, "The Design of a Capability-Based Distributed Operating 
System," The Computer 10urna129:4 (1986), pp. 289-299. 

[32] 1. D. Ousterhout, D. A. Scelza, and S. S. Pradeep, "Medusa: An Experiment in Distributed 
Operating System Structure," CACM 23:2 (February 1980), pp. 92-104. 

[33] G. R. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. 1. Kleinfelder, K. P. McAuliffe, E. 
A. Melton, V. A. Norton, and 1. Weiss, "The IBM Research Parallel Processor Prototype (RP3): 
Introduction and Architecture," Proceedings of the 1985 International Conference on Parallel 
Processing, 20-23 August 1985, pp. 764-771. 

[34] R. F. Rashid and G. G. Robertson, "Accent A Communication Oriented Network Operating Sys
tem Kernel," Proceedings of the Eighth ACM Symposium on Operating Systems Principles, 14-16 
December 1981, pp. 64-75. In ACM Operating Systems Review 15:5. 



19 

[35] M. L. Scott, "The Interface Between Distributed Operating System and High-Level Progrnmming 
Language," Proceedings of the 1986 International Conference on Parallel Processing, 19-22 
August 1986, pp. 242-249. 

[36] M. L. Scott, "Language Support for Loosely-Coupled Distributed Progrnms," IEEE Transactions 
on Software Engineering SE-13: I (January 1987), pp. 88-103. 

[37] R. E. Strom and S. Yemini, "The NIL Distributed Systems Progrnmming Language: A Status 
Report," ACM SIGPLAN Notices 20:5 (May 1985), pp. 36-44. 

[38] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm* - A Modular Multi-Microprocessor," 
Proceedings of the AFIPS 1977 NCC 46, AFlPS Press (1977), pp. 637-644. 

[39] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann, "A Structural View of the Cedar Pro
grnmming Environment," ACM TOPLAS 8:4 (October 1986), pp.419-490. 

[40] United States Department of Defense, "Reference Manual for the Ada® Progrnmming 
Language," (ANSI/MIL-STD-1815A-1983), 17 February 1983. Available as Lecture Notes in 
Computer Science #106, Springer-Verlag, New York, 1981. 

[41] N. Wirth, Programming in Modula-2, Third, Corrected Edition. Texts and Monographs in Com
puter Science, ed. D. Gries, Springer-Verlag, Berlin, 1985. 

[42] W. A. Wulf, R. Levin, and S.P. Harbison, HydralC.mmp: An Experimental Computer System, 
McGraw-Hill, New York, 1981. 


