
Bridge: A High-Performance File System for Parallel Processors ∗

Peter C. Dibble Michael L. Scott

Department of Computer Science

University of Rochester

Rochester, NY 14627

Carla Schlatter Ellis

Department of Computer Science

Duke University

Durham, NC 27706

Abstract

Faster storage devices cannot solve the I/O bottleneck problem
for large multiprocessor systems if data passes through a file sys-
tem on a single processor. Implementing the file system as a par-
allel program can significantly improve performance. Selectively
revealing this parallel structure to utility programs can produce
additional improvements, particularly on machines in which in-
terprocessor communication is slow compared to aggregate I/O
bandwidth.
We have designed and prototyped a parallel file system that dis-

tributes each file across multiple storage devices and processors.
Naive programs are able to access files just as they would with a
conventional file system, while more sophisticated programs may
export pieces of their code to the processors managing the data,
for optimum performance. Theoretical and early empirical data
indicate nearly linear speedup on critical operations for up to sev-
eral dozen devices.

1 Introduction

Parallel operation is a widely-applicable technique for maximizing
computer performance. Within limits imposed by algorithms and
interprocessor communication, the computing speed of a multiple-
processor system is directly proportional to the number of pro-
cessing nodes. As processing speed increases, however, programs
that perform I/O become increasingly I/O bound. For all but the
most compute-intensive applications, overall system throughput
cannot increase without corresponding improvements in the speed
of the I/O subsystem. From the point of view of parallel process-
ing, any performance limit on the path between secondary storage
and application program must be considered an I/O bottleneck.
The current state of the art in parallel storage device hardware

can deliver effectively unlimited data rates to the file system. A
bottleneck remains, however, if the file system itself uses sequen-
tial software or if interaction with the file system is confined to
only one process of a parallel application. Ideally, one would
write parallel programs so that each individual process accessed
only local files. Such files could be maintained under separate file
systems, on separate processors, with separate storage devices.
Such an approach, unfortunately, would force the programmer
to assume complete responsibility for the physical partitioning
of data among file systems, destroying the coherence of data logi-

∗This research was supported by NSF CER grant DCR8320136,
DARPA/ETL contract number DACA76-85-C-0001, and an IBM Faculty De-
velopment Award.

cally belonging to a single file. In addition, frequent restructuring
might be required if the same data was to be used in several ap-
plications, each of which had its own idea about how to organize
explicit partitions.
The thesis of this paper is that it is possible to have one’s cake

and eat it too, by designing a file system as a parallel program
that maintains the logical structure of files while physically dis-
tributing the data. Our approach is based on the notion of an
interleaved file, in which consecutive logical blocks are assigned
to different physical nodes. Following a bit of background infor-
mation, we introduce the notion of interleaving in section 3 and
(in section 4) describe its realization in an experimental file sys-
tem known as Bridge. Our prototype runs on a BBN Butterfly
parallel processor [1], but the ideas on which it is based are equally
applicable to a large number of other parallel architectures and
to locally-distributed collections of conventional machines.
For the most critical file operations, early analytical and ex-

perimental results indicate that Bridge will deliver good parallel
speedup for configurations in excess of 32 nodes with disks. High
performance is achieved by exporting the I/O-related portions of
an application into the processors closest to the data. Section 5
presents a pair of applications that illustrate this technique. Sec-
tion 6 discusses general issues in the design of algorithms for
Bridge. The final section describes the status of our work and
discusses future plans.

2 Background

I/O bottlenecks have been a source of concern for computer sys-
tem designers since at least the early 1950’s [2]. Since that time,
parallelism has been built into most of the individual components
of the I/O data path. Busses, for example, have transferred bits
in parallel for many years. Similar “trivial parallelism” in hard-
ware can increase the performance of controllers and connecting
cables almost indefinitely.
Parallelism in storage devices can be achieved in several ways.

Traditional memory interleaving can be employed in solid-state
“RAM disks” to produce very high transfer rates. Mechanical
disks that read several heads at once are available from such ven-
dors as CDC and Fujitsu [3, 4]. Other manufacturers have intro-
duced, or are at least investigating, so-called storage arrays that
assemble multiple drives into a single logical device with enormous
throughput [5, 6]. Unlike multiple-head drives, storage arrays can
be scaled to arbitrary levels of parallelism, though they have the
unfortunate tendency to maximize rotational latency: each oper-
ation must wait for the most poorly positioned disk.
As an alternative to storage arrays, Salem and Garcia-Molina

have studied the notion of disk striping [7], in which conventional

mls
ICDCS '88



devices are joined logically at the level of the file system soft-
ware. Consecutive blocks are located on different disk drives, so
the file system can initiate I/O operations on several blocks in
parallel. Striped files are not limited by disk or channel speed,
but like storage arrays and parallel devices they are limited by
the throughput of the file system software.
Our work may be seen as an attempt to eliminate the remain-

ing serialization points on the path between storage devices and
a parallel application. To this end, we address the possibility
that the communication channels between the components of the
application program and the components of the file system may
also constitute a bottleneck, even if no individual process is over-
loaded. This is certainly the case for locally distributed processors
on a broadcast network like the Ethernet. Ideally, each applica-
tion process would be located on the same node as the file system
processes that perform its I/O. This would allow the application
to run without transferring data between nodes. Though there is
no way to ensure this locality in general, we can encourage local
access by allowing the file system to execute complex operations
provided by the user.
The Bridge File System distributes the blocks of each file across

p disks using an interleaving scheme, and gives application pro-
grams access to the blocks both sequentially and in parallel. In
addition, Bridge allows any program to become part of the file
system by requesting a package of information from the main
directory server. There is sufficient information in the package
to allow the new program to find the processors attached to the
disks, and to arrange for subprocesses to read and write blocks
locally.
In its emphasis on distribution of data, parallel file system

code, and the local execution of application-specific operations,
Bridge shares a number of ideas with the Gamma project at the
University of Wisconsin [8]. The fundamental difference is that
Bridge is a general-purpose file system while Gamma is a rela-
tional database system. Our interest in traditional file operations
requires that we present a more general-purpose interface. In
addition, as described in the following section, our anticipated
access patterns suggest a different file distribution strategy, with
different algorithms for common operations.

3 Interleaved Files

An interleaved file can be regarded as a two dimensional array of
blocks in row major order (see figure 1). Each column of the array
is placed on a separate storage device attached to a separate pro-
cessor, and managed by a separate local file system (LFS). The
main file system directory lists the names of the constituent LFS
files for each interleaved file. Given that blocks are distributed
in round-robin order, this information suffices to map an inter-
leaved file name and block number to the corresponding local file
name and block number. Formally, with p instances of the LFS,
the nth block of an interleaved file will be block (n div p) in the
constituent file on LFS (n mod p) (assuming that processor and
block numbering starts at zero). If the round-robin distribution
can start on any node, then the nth block will be found on pro-
cessor ((n + k) mod p), where block zero belongs to LFS k.
Of course, round-robin distribution is not the only possible

strategy for allocating blocks to nodes. Gamma [8], for exam-
ple, allows a file to be divided into exactly p equal-size chunks of
contiguous blocks. Each chunk is allocated to a processor in its
entirety. Gamma also allows the blocks of a file to be scattered

Figure 1: Interleaved File Structure

LFS2 LFS9LFS8LFS7LFS6LFS5LFS4LFS3LFS1

randomly among nodes according to a hash function. The argu-
ment of the function can be any appropriate database key; in our
world it could just as well be the number of the block. Both of
these approaches appear to be more attractive in the context of
a relational database than they are for general files.
The principal disadvantage of chunking is that it requires a

priori information on the ultimate size of a file being written.
Significant changes in size (when appending, for example) require
a global reorganization involving every LFS. The principal ad-
vantage of hashing is that it tends to randomize the locations of
blocks required by any particular query. This advantage is much
less compelling for ordinary files (where sequential access is the
usual case) than it is for database files. The usual hashing algo-
rithms cannot guarantee that p consecutive blocks can be accessed
in parallel. If placement of blocks on processors were controlled by
a hash function, the probability that two consecutive blocks would
be on different processors would be high, but with p processors in
the file system the probability that p consecutive blocks would be
on p different processors would be extremely low. Round-robin
interleaving guarantees that consecutive blocks will all be on dif-
ferent nodes. For parallel execution of sequential file operations
this guarantee is optimal.
At the other extreme from chunking, one can imagine distribut-

ing data at a level of granularity smaller than the block. Think-
ing Machines Corporation is pursuing bit-level distribution for its
second-generation Connection Machine [9]. The number of pro-
cessors with disks is slightly larger than half the number of bits
in a block. Each block 1 has two bits on each drive. The extra
drives contain error-correction bits, so that loss of any one drive
will leave the data intact. Such a strategy may well make sense
for a massively-parallel SIMD machine with one-bit ALUs. For a
more conventional multiprocessor it certainly does not. Our sys-
tem of block distribution provides a relatively fine granularity of
distribution without always forcing the programmer to reassemble
logical records from multiple sources.
The most appropriate distribution strategy for parallel files will

ultimately depend on the role that files assume in parallel applica-
tions. Unfortunately, the information that is currently available
about file usage patterns [10, 11, 12] in uniprocessor systems does
not necessarily apply to the multiprocessor environment. Prelim-
inary experience allows us to make some educated guesses about
what to expect. The principal role of sequential file systems,

1Blocks on the Connection Machine are called “chunks” and contain 64
bits of data and 14 bits of ECC. Each chunk is subdivided into two 32-bit
words, with each word spanning 39 disk drives.



Figure 2: Hardware Layout

Communication Network and Other Processors

P1 P2 P3 P4 P5

D1 D2 D3 D5D4

Communication Network and Other Processors

P1 P2 P3 P4 P5

D1 D2 D3 D5D4

namely long-term storage of large amounts of data, is likely to be
even more predominant. Given the generally large size of parallel
applications and the tendency to confine program development
activity to a front-end machine, files should generally be larger
than on an interactive system. Large amounts of main memory
should also reduce the need for temporary files on disk, either by
means of packages such as the Butterfly RAMFile system [13] or
as a result of extensive caching.
These considerations lead us to believe that sequential access

to relatively large files will overwhelm all other usage patterns.
It therefore appears that round-robin interleaving will support
common operations well. Given the sorts of performance results
reported in section 5, we are hopeful that this distribution strat-
egy will be all we ever need. If the potential gain in efficiency
of some alternative ordering is large enough, files can always be
sorted by the user.
Our only serious concern with strict interleaving is that it may

result in unreasonable amounts of inter-processor data movement
for certain applications. Deleting a block from the middle of a file,
for example, would require all subsequent blocks to be moved.
Traditional file systems do not usually support deletion in the
middle, but that is not necessarily an excuse for precluding it
in interleaved files as well. We are considering the relaxation of
interleaving rules for a limited class of files, possibly with off-
line reorganization. Our prototype implementation supports an
explicit linked-list representation of files that permits arbitrary
scattering of blocks at the expense of very slow random access.
We will assume in the following sections that every file is strictly
interleaved. A full exploration of “disordered files” is beyond the
scope of this paper.

4 Bridge System Structure

The Bridge file system has three main functional layers. The top
layer consists of the Bridge Server and a group of special purpose
programs we call tools. The middle layer consists of local file
systems on individual nodes. The lowest layer manages physical
storage devices.
Our implementation runs under the Chrysalis operating system

[1] on the BBN Butterfly Parallel Processor [14]. The components
of the file system are implemented as user processes; no changes
to the operating system were required. All components commu-
nicate via message passing. Messages are implemented on the
Butterfly with atomic queues and buffers in shared memory, but
could be realized equally well on any local area network.

Table 1: Bridge Server Commands

Command Arguments Returns

Create File File id
Delete File File id
Open File id LFS file ids
Sequential Read File id Data
Random Read File id, Block number Data
Sequential Write File id, Data
Random Write File id, Block number, Data
Parallel Open File id, Worker list
Get Info LFS handles

4.1 Bridge Server

The Bridge Server is the interface between the Bridge file system
and user programs. Its function is to glue the local file systems
together into a single logical structure. In our implementation
the Bridge Server is a single centralized process, though this need
not be the case. If requests to the server are frequent enough to
cause a bottleneck, the same functionality could be provided by
a distributed collection of processes. Our work so far has focused
mainly upon the tool-based use of Bridge, in which case access to
the central server occurs only when files are opened.
In order to meet the needs of different types of users, the Bridge

Server implements three different system views. The simplest
view supports operations reminiscent of an ordinary sequential
file system: open, 2 read, and write (see table 1). Users who want
to access data without bothering with the interleaved structure
of files can use this simple interface. The Bridge Server transpar-
ently forwards requests to the appropriate LFS.
The second view of Bridge supports parallel reading and writ-

ing of multiple blocks of a file. A parallel open operation groups
several processes into a “job.” The process that issues the paral-
lel open becomes the job controller. It provides the Bridge Server
with the names of all its workers. Suppose there are t such work-
ers. When the job controller performs a read operation, t blocks
will be transferred (one to each worker) with as much parallelism
as possible. When the job controller performs a write operation,
t blocks will be received from the workers in parallel.
Although the performance of parallel operations is limited by

the number of nodes in the file system (p), the Bridge Server
will simulate any degree of parallelism. If the width of a parallel
open is greater than p, the server will perform groups of p disk
accesses in parallel until the high-level request is satisfied. Ap-
plication programs may thus be ignorant of the actual amount of
interleaving in a file while still taking advantage of its parallelism.
The hidden serialization that can be introduced by specifying

too many workers in a parallel open cannot cause incorrect results,
but it may lead to unexpected performance. More importantly, it
forces the workers to proceed in lock step, and does not increase
the speed of random access. In order to take full advantage of the
interleaved structure of files, sophisticated users can construct so-
called tools that use the Get Info operation to view the third of
the Bridge Server interfaces.

2The open operation is interpreted by Bridge as a hint. The Bridge Server
responds by setting up an optimized path to the file. There is no close oper-
ation. This semi-stateless interface is not particularly significant, or intrinsic
to interleaved files; it was adopted for the sake of consistency with our local
file systems, which are also stateless (see below).



Figure 3: Software Connectivity

LFSLFSLFS

1

2

3

Bridge Server

Tool

Tool

Tool

4.2 Bridge Tools

Bridge tools are applications that become part of the file system.
A standard set of tools (copy, sort, grep, ...) can be viewed as
part of the top layer of the file system, but an application need
not be a standard utility program to become a tool. Any process
with knowledge of the middle-layer structure is a tool. Tools com-
municate with the Bridge Server to obtain structural information
from the Bridge directory. Thereafter they have direct access to
the LFS level of the file system (see figure 3). We insist that
all accesses to the Bridge directory (Create, Delete, and Open)
be performed only by the Bridge Server in order to ensure con-
sistency by providing what amounts to a monitor around all file
management operations. In essence, Bridge tools communicate
with the Server as application programs, but they communicate
with the local file systems as if they were the Server.
Since tools are application-specific and may be written by users,

they are likely to be structured in a wide variety of ways. We ex-
pect, however, that most tools will use their knowledge of the
low-level structure of files to create processes on the nodes where
the LFS instances are located, thereby minimizing interprocessor
communication. Typical interaction between tools and the other
components of the system involves (1) a brief phase of commu-
nication with the Bridge Server to create and open files, and to
learn the names of the LFS processes, (2) the creation of subpro-
cesses on all the LFS nodes, and (3) a lengthy series of interactions
between the subprocesses and the instances of LFS. The Open op-
eration provides the tool with LFS local names for all the pieces
of a file, allowing it to translate between global and local block
names.
Many operations on files (copying is the obvious example) re-

quire communication between nodes only for startup and com-
pletion. Where a sequential file system requires time O(n) to
copy an n-block file, the Bridge tool described in section 5.1 can
accomplish the same thing in time O(n/p), plus O(log(p)) for
startup and completion. Any one-to-one filter will display the
same behavior; simple modifications to the copy tool allow us to
perform character translation, encryption, or lexical analysis on
fixed-length lines. By returning a small amount of information
at completion time, we can also perform sequential searches or
produce summary information. The implementation and perfor-
mance of a sorting tool are discussed in section 5.2.

4.3 Local File System

The local file servers for Bridge are an adaptation of the Elemen-
tary File System (EFS) constructed for the Cronus distributed
system project at BBN [15, 16]. EFS is a simple, stateless file
system with a flat name space and no access control. File names
are numbers that are used to hash into a directory. Files are rep-
resented as doubly linked circular lists of blocks. A pointer to the
first block of a file can be found in the file’s EFS directory entry.
In addition to its neighbor pointers, each block also contains its
file number and block number.
Every request to EFS can provide a disk address hint. In order

to find a given block, EFS searches through the linked list from
the closest of three locations: the beginning, the end, and the
hint (assuming, of course, that the hint points into the correct
file). A cache of recently-accessed blocks makes sequential access
more efficient by keeping neighboring blocks (and their pointers)
in memory.
The decision to use EFS was made for both pragmatic and tech-

nical reasons. On the pragmatic side, the simplicity, availability,
and portability of the Cronus code made it easy to get our proto-
type up and running quickly. On the technical side, the level of
functionality provided was almost exactly what we needed. Ac-
cess control, for example, could be provided by the Bridge Server,
and is unneeded in the LFS. Statelessness is also an advantage.
Individual LFS instances must be informed when a Bridge file is
created, but not when it is opened. The Bridge Server softens
the potential performance penalty of statelessness by including
an appropriate hint in each call to EFS.
EFS has been modified to fit into Bridge, but most of the modi-

fications have involved adding instrumentation, improving perfor-
mance, or adapting to the Butterfly and Chrysalis. An additional
40 bytes for Bridge-related header information have been taken
from the data storage area of each block (leaving 960 bytes for
data). The pointers in the original 24 byte EFS header lead to
blocks that are interpreted as adjacent within the local context.
In other words, the block pointed to by the next pointer is p blocks
away in the Bridge file.
The revised version of EFS can still be used by a program

that knows nothing about Bridge. In particular, the portion of a
Bridge file controlled by one EFS server can be viewed locally as
a complete file. The EFS server can ignore the fact that it holds
every pth block of a more global abstraction. The instances of
EFS are self-sufficient, and operate in ignorance of one another.

4.4 Physical Storage Management

The lowest layer of Bridge consists of device drivers that manage
physical data storage. In principle, we see no reason why this
layer should not be entirely conventional. For practical reasons,
we have chosen in our implementation to simulate the disks in
memory. Since our goal is simply to demonstrate feasibility there
was no need to purchase real drives. Our large Butterfly has 120
Megabytes of RAM; we use part of that memory to simulate 64
Megabytes of “disk” on which to test our programs.
Our device driver code includes a variable-length sleep interval

to simulate seek and rotational delay for different types of disk
drives. For the performance figures in this paper, the delay has
been set to 15 ms, to approximate the performance of a CDC
Wren-class hard disk. Back-of-the-envelope calculations suggest
that such disks are near the knee of the price/performance curve
for currently-available hardware.



Table 2: Bridge Operations

Delete 20 · filesize/p ms

Create 145 + 17.5p ms

Open 80 ms

Read 9.0 + 500p/filesize ms

Write 31 ms

4.5 Basic Benchmarks

The figures in table 2 are taken from a simple program that uses
the naive interface to the Bridge server in order to read and write
files sequentially. The performance of Open and Write operations
is essentially independent of p (the number of file system nodes).
Read operations pay an amortized price for startup tasks that
would be borne by the Open operation in a more traditional LFS,
including initial reads of file header and directory information.
Average read time for typical files is substantially less than disk
latency because of full-track buffering in our version of EFS. 3

The Delete operation runs in parallel on all instances of the
LFS, but it takes time O(n/p) where n is the size of the file
being deleted. The original Cronus version of EFS included a
substantial amount of code to increase resiliency to failures. One
remnant of this code is a file deletion algorithm that traverses the
file sequentially, explicitly freeing each block.
The Create operation must create an LFS file on each disk.

Bridge gets some parallelism for this operation by starting all the
LFS operations before waiting for them, but the initiation and
termination are sequential, leading to an almost linear increase
in overhead for additional processors. Performance could be im-
proved somewhat by sending startup and completion messages
through an embedded binary tree.

5 Example Tools

5.1 Copy Tool

Copying is in practice the most common file operation. It is also
one of the simplest. An ordinary file system can copy a file of
length n in time O(n). If the copy program is written as a Bridge
tool, files can be copied in time O(n/p+log(p)) with p-way inter-
leaving. The code looks something like this:

Send Get Info () to Bridge; Receive (LFS Names)
Send Open (source) to the Bridge Server; Receive (source information)
Send Create () to the Bridge Server; Receive (destination)
Send Open (destination) to the Bridge Server;

Receive (destination information)
Start an instance of ecopy on each LFS node
Wait for all ecopies to complete

ecopy (LFS, local src, local dest)
Send Read (local src) to LFS; Receive (data)
while not end of file

Send Write (local dest, data) to LFS
Send Read (local src) to LFS; Receive (data)

endwhile
exit ecopy

3Write operations actually pay an amortized startup price as well, but its
effect on average time is almost negligible, partly because writes take so much
longer than reads, and partly because of EFS peculiarities that make caching
of directory information less effective for writes than it is for reads.

Table 3: Copy Tool Performance (10 Mbyte file)

Processors Copy Time

2 311.6 sec
4 156.0 sec
8 79.3 sec
16 41.0 sec
32 21.6 sec

Records
per second

0 Processors 32

475

r

r

r

r

r

The copy tool ignores the Bridge headers in the file it is copy-
ing. Since all the header pointers are block-number/LFS-instance
pairs, the pointers are still valid in the new file. The while loop
in ecopy could contain any transformation on the blocks of data
that preserves their number and order. Any of the filter programs
produced by inserting such transformations should run within a
constant factor of the copy tool’s time.
The copy tool displays nearly linear speedup as processors are

added.

5.2 Sort Tool

The standard algorithm for external sorting is the merge sort.
It makes no unusual demands on the file system and runs in
O(n log(n)) time without pathological special cases. Given a par-
allel merging algorithm, a log-depth parallel merge sort is easy
to write. With p processors and n records, a parallel merge sort
builds p sorted runs of length n/p in parallel. It merges the sorted
runs in a log(p)-depth merge tree.
The basic structure of the algorithm is as follows:

In parallel perform local external sorts on each LFS.
Consider the resulting files to be “interleaved” across

only one processor
x := p
while x > 1

Merge pairs of files in parallel
x := x/2
Consider the new files to be interleaved across p/x processors
Discard the old files in parallel

endwhile

Each pass of the merge sort has different parallel behavior, but
they all use p processors. Pass k of the sort runs p/2k merges, each
of which uses 2k processors to merge 2kn/p records. On the first
pass the sort will provide p/2-way parallelism, and the merge will
provide 2-way parallelism. On the last pass the sort will provide
no parallelism, but the merge will provide p-way parallelism.
The best possible performance for a parallel sorting algorithm

is O(n log(n)/p). For a conventional merge sort, the time is con-
sumed by log(n) passes through merge at O(n) total time per
pass. We have developed a parallel merge algorithm that runs
in time O(n/p) for limited values of p. An optimal sorting al-
gorithm (for limited p) can be built from this merge. For the
sake of simplicity we assume that the records to be sorted are the
same size as a disk block. Odd-sized records make the algorithm
significantly messier, but do not affect its asymptotic complexity.



Figure 4: Merge Pseudo Code

type token = {StartFlag, EndFlag, Key, Originator, SeqNum}

Read a record
loop

Receive token
if token.StartFlag then

Build a token {false, false, K, MyName, 0}
where K is the first key in the local file
and MyName is the name of this process

Send token to first process of other input file
elsif token.EndFlag then

if End of file then
DONE

else
Increment token.SeqNum
Send token to next process of current input file
Send record to destination process for token.SeqNum - 1
Read a new record

end if
else (usual case)

if End of file then
Build a token {false, true, 0, MyName, token.SeqNum}
Send new token to token.Originator

else if record.key ≤ token.key then
Increment token.SeqNum
Send token to next process of current input file
Send record to destination process for token.SeqNum - 1
Read a new record

else
Build a token {false, false, record.key,

MyName, token.SeqNum}
Send new token to token.Originator

endif
end if

end loop

The algorithm to merge two t/2-way interleaved files into one
t-way interleaved file involves three sets of processes. The first set
contains t/2 processes and is devoted to reading one of the input
files. The second set also contains t/2 processes and is devoted to
reading the other input file. The third set contains t processes to
write the destination file.
The algorithm proceeds by passing a token among the proces-

sors controlling the two files to be merged. When received by a
given process, the token contains the least unwritten key from the
other input file, the name of the process that holds the record with
that key, and the sequence number of the next destination record
to be written, from which we can derive the name of the process
ready to write that destination record. When a process receives
the token it compares the key inside to the least unwritten key in
its local file. If the key in the token is greater than or equal to
its local key, the process forwards the token to the next process
for its input file and sends an output record to the appropriate
process for the destination file. If the key in the token is less than
the local key, the process builds a new token with its own key and
name, and sends this new token to the originator of the token it
received.
Special cases are required to deal with termination, but the

algorithm always follows the above outline. Except for the fact
that records are scattered among a collection of communicating
processes, the logical flow of control is directly analogous to the
standard sequential merge. Correctness can be proven by observ-
ing that the token is never passed twice in a row without writing,
and all records are written in nondecreasing order. The code for

a process handling the input-file part of a merge can be found in
figure 4.
Sorting proceeds in two distinct phases. The first phase sorts

the records of each LFS locally. The second phase performs a
series of successively global merges. For reasonable values of p,
the merge phase should take time O(n log(p)/p), for log(p) passes
at n/p per pass. Speedup in practice is nearly linear, and improves
as p increases. With sufficiently large p, the token will eventually
be unable to complete a circuit of the nodes in the time it takes to
read and write a record. At that point performance should begin
to taper off, but only in the merge phase of the tool, and only
for the final pass of the merge (since earlier passes involve shorter
circuits). 32 nodes is clearly well below the point at which the
merge phase of the sort tool would be unable to take advantage
of additional parallelism.
The local sorting phase consumes the bulk of the sort tool’s

time for small values of p. It improves much more than lin-
early as processors are added. The expected time for local sorting
is the sum of the times for in-core sorting and local merges, or
O((n/p)(1+log c)+(n/p) log(n/cp))), where c is the size of the in-
core buffer (in our case 512 records). Doubling the number of pro-
cessors not only doubles the number of disks that can be reading
or writing at once (which would explain nearly linear speedup),
but also moves one pass of merging out of the local sorting phase
and into the global merging phase. In our implementation the
constant for a local merge is higher than the constant for a global
merge, with the net result that the sort tool as a whole displays
super-linear speedup. With a faster (e.g. multi-way) local merge,
this anomaly should disappear.

6 Algorithm Design Considerations

The primary design goal for the Bridge file system is high perfor-
mance for common operations in a multiprocessor environment.
A second goal is that the system perform well enough even on un-
common operations that it could be used as the only file system
on a parallel machine. We are particularly anxious to ensure that
Bridge never perform significantly worse than a conventional file
system on any operation. This concern has played a major role in
several of our design decisions, including the adoption of a state-
less LFS and the rejection of data distribution via chunking. It
has also led us to provide the three different user views described
in section 4.1.
Programs can take advantage of the parallelism in Bridge to

differing degrees, depending on the view they use. For naive pro-
grams that use the conventional interface, Bridge offers the same
advantage as storage arrays or disk striping: its aggregate trans-
fer rate from disk can be arbitrarily high. Assuming that the
local file systems perform read-ahead and write-behind, virtually
any program that uses the naive interface will be compute- or
communication-bound.
For applications that read or write files sequentially (in pre-

dictable chunks), the parallel open can eliminate computational
bottlenecks by transferring data to and from multiple processes.
The parallel-open access method offers true parallelism up to the
interleaving breadth of the Bridge file or the bandwidth of inter-
processor communication, whichever is least. It also offers virtual
parallelism to any reasonable degree, thus freeing the user from
the need to know about implementation details. Unfortunately,
the hiding of low-level details also means that users are unable to



Table 4: Merge Sort Tool Performance (10 Mbyte file)

Processors Local Sort Merge Total

2 350 min 17 min 367 min
4 98 min 16 min 111 min
8 24 min 11 min 35 min
16 6 min 7 min 13 min
32 0.67 min 4.45 min 5.12 min

Records
per second

0 Processors 32

35

r
r

r

r

r

Parallel Merge

Local Sort

Total Time

Min.

Processors
32

360

place their workers on appropriate LFS nodes. Communication is
likely to remain a bottleneck in many situations. 4

The Bridge tool-level interface addresses the limitation of com-
munication bandwidth by allowing the user to move functionality
across the bottleneck toward the data. Even if processing cannot
be completed on the LFS node, the exportation of user-level code
allows data to be filtered (and presumably compressed) before it
must be moved. Since tools communicate directly with the LFS
instances, they also gain a modest performance benefit by avoid-
ing indirection through the Bridge Server. Finally, unrestricted
access to the LFS constituents of a file frees the programmer from
the constraints of lock-step multi-block access, allowing workers
to proceed at their own rate of speed and permitting random
access. The penalty, of course, is that access to the file system
becomes vastly less abstract.
An application for a parallel interleaved file system is in some

sense “trivially parallel” if the processing for each block of the file
is independent of activities on other processors. From a research

4In order to prevent arbitrary programs from competing with the file sys-
tem for cycles, we suggest that user processes never run on an LFS node
unless they are part of a tool.

point of view, the most interesting problems for Bridge are those
in which data movement and inter-node cooperation are essential.
The critical observation is that algorithms will continue to scale
so long as all the disks are busy all the time (assuming they are
doing useful work). In theory there is a limit to the parallelism
that can be exploited in any algorithm with a sequential compo-
nent, but the time scale difference between disk accesses and CPU
operations is large enough that one can hope to run out of money
to buy disks before reaching the point of diminishing returns. In
the merge sort tool, the token is generally able to pass all the
way around a ring of several dozen processes before a given pro-
cess can finish writing out its previous record and reading in the
next. It is clear that the tool can offer “only” a constant factor of
speedup, but this observation misses the point entirely. Constant
factors are all one ever looks for when replicating hardware.
Our current impression is that the limiting factor for speedup

in interleaved files (given infinite financial resources) is not Am-
dahl’s law but rather Murphy’s law: interleaved files (like striped
files and storage arrays) are inherently intolerant of faults. A
failure anywhere in the system is fatal; it ruins every file. Repli-
cation helps, but only at very high cost. Storage capacity must
be doubled in order to tolerate single-drive failures. One might
hope to reduce the amount of space required by using an error-
correcting scheme like that of the Connection Machine, but we see
no obvious way to do so in a MIMD environment with block-level
interleaving.

7 Conclusion

In this paper we have discussed the design and initial implemen-
tation of a file system based on interleaved files and exported user
code. Interleaving appears to be a natural approach to providing
I/O parallelism, but previous experience with systems built upon
this idea has been minimal. The prototype version of Bridge
provides a concrete implementation that can be measured and
used experimentally. It serves as a testbed for investigating de-
sign tradeoffs and for studying how interleaved files can be put
to good use in parallel applications. The success of interleaving
for unsophisticated users is likely to depend on the popularity of
the parallel open feature. It is already clear that for critical tool-
based applications there are significant benefits to making the
interleaved structure explicit. Although the current implemen-
tation has not been tuned for high performance, the empirical
measurements so far are encouraging.
Our early decision to build upon the Cronus elementary file

system has worked out fairly well. The linked structure of files,
inherited from EFS and expanded upon with global pointers, pro-
vides a degree of flexibility that is important in a testbed. The
resulting system remains relatively simple, yet rich enough to al-
low us to explore alternative data-distribution strategies.
We expect over the course of the upcoming year to develop

several additional tools. We have developed an unconventional
mathematical analysis of the merge sort algorithm that expresses
the maximum available degree of parallelism in terms of the rel-
ative performance of processors, communication channels, and
physical devices [17]. The results we obtain for the constants on
the Butterfly agree quite nicely with empirical data. We hope to
produce a similar analysis for future tools as well.



References

[1] “ButterflyTM parallel processor overview,” Tech. Rep. 6149,
Version 2, BBN Laboratories, June 1986.

[2] C. J. Bashe, W. Buchholz, B. V. Hawkins, J. J. Ingram, and
N. Rochester, “The architecture of IBM’s early computers,”
IBM Journal of Research and Development, vol. 25, pp. 363–
375, September 1981.

[3] M. Gamerl, “Maturing parallel transfer disk technology finds
more applications,” Hardcopy, vol. 7, pp. 41–48, February
1987.

[4] H. Boral and D. J. DeWitt, “Database machines: An idea
whose time has passed: A critique of the future of database
machines,” Tech. Rep. 288, Technion, August 1983.

[5] J. Voelcker, “Winchester disks reach for a gigabyte,” IEEE
Spectrum, vol. 24, pp. 64–67, February 1987.

[6] T. Manuel and C. Barney, “The big drag on computer
throughput,” Electronics, vol. 59, pp. 51–53, November 1986.

[7] K. Salem and H. Garcia-Molina, “Disk striping,” Tech. Rep.
332, EECS Department, Princeton University, December
1984.

[8] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens,
K. B. Kumar, and M. Muralikrishna, “Gamma: A high per-
formance dataflow database machine,” Tech. Rep. 635, De-
partment of Computer Sciences, University of Wisconsin –
Madison, March 1986.

[9] “Connection machine model CM-2 technical summary,”
Tech. Rep. HA87-4, Thinking Machines Inc., April 1987.

[10] R. Floyd, “Short-term file reference patterns in a UNIX envi-
ronment,” Tech. Rep. 177, Department of Computer Science,
University of Rochester, March 1986.

[11] J. Porcar, “File migration in distributed computer systems,”
Tech. Rep. LBL-14763, Lawrence Berkeley Laboratory, July
1982.

[12] J. Ousterhout, H. DaCosta, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson, “A trace driven analysis of
the UNIX 4.2 BSD file system,” Proceedings of 10th Sym-

posium on Operating Systems Principles, Operating Systems

Review, vol. 19, pp. 15–24, December 1985.

[13] “The Butterfly RAMFile system,” Tech. Rep. 6351, BBN
Advanced Computers Incorporated, September 1986.

[14] BBN Advanced Computers Inc., Chrysalis Programmers

Manual, April 1987.

[15] R. F. Gurwitz, M. A. Dean, and R. E. Schantz, “Program-
ming support in the Cronus distributed operating system,”
in Sixth International Conference on Distributed Computing

Systems, pp. 486–493, May 1986.

[16] R. Schantz, “Elementary file system,” Tech. Rep. DOS-79,
BBN, April 1984.

[17] P. C. Dibble and M. L. Scott, “Analysis of a parallel disk-
based merge sort,” tech. rep., Department of Computer Sci-
ence, University of Rochester. In preparation.




