
Design Rationale for Psyche,
a General·Purpose Multiprocessor Operating System

Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh

University of Rochester
Department DC Computer Science

Rochester, NY 14627

ABSTRACT

The Psyche project at the University of Rochester aims to
develop a high·performance operating system to support a wide
variety of models for parallel programming. It is predicated on
the conviction that DO one model of process state or style of COlD

munication will prove appropriate for all applications, but that
shared-memory multiprocessors (particularly the scalable
"NUMA" variety) can and should support all models. Conven
tional approaches, such as shared memory or message passing,
can be regarded as points on a continuum that redeets the
degree of sbaring between processes. Psyche facilitates dynamic
sharing by providing a user interface based on paaaive data
abstractions in a uniform virtual address space. It ensures that
users pay for protection only when it is required by permitting
lazy evaluation of protection po1icies implemented with keys and
access lists. The data abstractions define conventions for shar·
ing the uniform address space; the tradeoff between protection
and performance determines the degree to which those conven·
tions are enforced. In the absence of protection boundaries,
access to a shared abstraction can be as efficient as a procedure
call or a pointer dereference.

Introduction

Though shared-memory multiprocessors have existed for
over 20 years, the design of operating systems for such machines
has seldom been the subject of research. For one thing, indivi·
dual processors have tended to be very few in number, or leu
than general-purpose. With the notable exception of projects at
eMU [26,33], it is only in recent years that multiprocessors
have been constructed with relatively large numbers of equally
powerful nodes. It is understandable, then, that the parallel
operating systems community has for the past decade focused its
attention on loosely-coupled systems, in which more·or·less con·
ventional processors exchange messages over a local-area net
work.

With the advent of large-scale commercial multiprocessors,
several vendors have adapted the UNIX operating system for
use on parallel machines. Most message-based operating sys
tems can be implemented on shared-memory machines as well
The Mach project [1] at eMU represents, to a large extent, the
merger of Berkeley UNIX with the Accent network operating
system [30). Mach now runs on several multiprocessors, includ
ing DEC, Encore, and Sequent machines.

Our aim in the Psyche project is to develop a program
ming environment (starting with an operating system) that sup
ports truly general-purpose paranel computing. By this we
mean that the operating system wi1l run almost any application

This work was supported in part by NSF CER grant number
DCR-8320136, DARPA ETL contract number DACA76.85-C-0001, and
an IBM Faculty Development Award. We thank the Xerox Corporation
University Grants Program for providing equipment used in the
preparation of this paper.

From: Proceedings, Iepp, August 1988.
\J]I (s.rftIV,,"e.), pf 2Sb-lh;l. 1

for which the hardware is appropriate, and will usually run it
well. As with the parallel UNIX designs, we also mean that
Psyche will not be a back-end system. In addition to individual,
highly·parallel applications, it will support large numbers of
users with smaller applications, in the style of conventional
time-sharing.

We see at least two dangers in adapting an existing
operating system for use on a multiprocessor. First, it may rail
to provide abstractions that are appropriate Cor certain applica
tions. Second, it may Cail to make effective use oC the hardware.
Through the course oC considerable experience with application
and .ystem software, we have become convinced that no one
model of process state or style oC communication will be best for
all parallel applications. Just as a general-purpose operating
system Cor a uniprocessor must support a wide variety of models
(e.g. programming languages) Cor sequential computing, so too
must a general-purpose operating system for a multiprocessor
support a wide variety oC models for parallel computing. Since
parallel computing involves concepts (such as scheduling and
interprocess communication) that have traditionally been the
province oC operating systems, parallel versions of traditional
operating systems are unlikely to provide the flexibility required
by users.

Our first goal for Psyche is therefore flexibility: users
should be able to implement a wide variety of models for inter
process communication and lightweight process structure.
Pieces oC an application written under different models should be
able to interact easily, that is, to arrange dynamically to share
access to arbitrary abstractions. Since Psyche is to be a multi
user system, our second goal is protection: it should be possible
to aasociate a protocol with a shared abstraction in such a way
that access to the abstraction is possible only by executing the
protocol Finally, since multiprocessors are attractive primarily
for speed, our third goal is performance: the cost of a simple
operation on a shared abstraction should be much closer to that
of a procedure call than to that of sending a message in current
network operating systems.

Though protection and performance are conventional
goals, our emphasis on flexibility is distinctive and unusual In
order to permit user-level control over processes and commuyica
lion, we have adopted a kernel/user interface consisting of
unusually low-level primitives. We do not expect this interface
to be easy to use, but the assumption is that most programmers
will never attempt to use it. Instead, they will rely on pre
existing libraries and language support packages for process
management and communication. We have adopted the position
that an operating system kernel should provide only the lowest
common denominator for things that wilJ be built upon it. The
purpose of the kernel is to provide protection and to hide the
most unpleasant idiosyncrasies of the hardware while leaving
the bulk of its power available to the language and library
builder.

This conception of the role of the operating system does
not appear to have guided most recent research projects.

Message-based operating systems, such as Eden [3], Mach (1],
and V [14], have tended to provide a kernel interface that is too
low-level to be used directly (witness the proliferation of remote
procedure call stub generators), yet too high-level to permit
alternative approaches to naming, buffering, error recovery, or
80w control (we argue this point in [31D. Similarly, most imple
mentations of parallel programming languages have either
employed a special-purpose kernel (as in SR [4], StarMod [21], or
Linda (l3)), or have been built on top of an existing uniprocessor
operating system, most often UNIX. We are unaware of any
work specifically addressing the design of a kernel to support
multiple programming models.

Motivation

Shared Memory Versus Messages
Conventional wisdom ho1ds that parallel processes must

communicate either by sharing memory or by exchanging mes
sages. These alternatives are generally viewed as incompatible
opposites. It is our contention, however, that conventional
approaches are better regarded as points on a continuum that
reflects the degree of sharing between processes. The full IpeC

trum includes many different styles of message passing, a8 well
as monitors, path expressions, remote procedure caUs, atomic
and parallel data structures, and unconstrained shared memory.
In a pure shared-memory approach, prOcesses share everything;
in a pure message-passing approach, they share nothing. The
other options lie somewhere in-between.

The continuum has not been widely recognized. Parallel
programming environments have tended to present a single user
view, often one direct1y supported by the underlying hardware.
But a kernel interface is more than just a mechanism for access
ing physical resources. It is also a programming abstraction
that profoundly influences the algorithms that can be imple
mented on top of it.

Three years ago, our department acquired a 12S-node BBN
ButterflyTN Parallel Processor [9], still the largest shared
memory machine available, and one that also provides firmware
support for message passing. Since then, a major thrust of our
work has been the comparison of solutions to common problems
under various programming models [12,22,23,24]. We are con
vinced that no one model of parallelism will prove appropriate
for all applications. Some algorithms' will be easier to imple
ment with fully shared memory. Others are most clearly con
ceived with message passing. Still others need an intermediate
option, such as monitors. Some applications may even benefit
from the ability to use different models in different software
modules. A computer vision system, for example, may be easiest
to construct with shared memory at the lowest levels, where
processes are operating in parallel on Common pixel maps, and
message passing at higher levels, where the 'emphasis is on
feature integration in order to recognize objects.

The need for flexibility in the communication structures of
parallel programs is illustrated by an analogy to the information
structures of sequential programs. In sequential programming,
information can be made available in one of two forms: a data
structure that contains the information or a function that com
putes it. Since either approach can be used to implement the
other, the choice depends on the attributes of the application.
Information that is hard to compute, but easy to store and
access, is encoded in a data structure. A data structure might
also be used in situations where the relationship between data
items, as encoded in the data structure, may be difficult to
recreate. Information that is easy to compute, or would require
too much space to store, is encoded in a function. Complex infor
mation structures, such as the symbol table in a compiler, often
use combinations of both mechanisms.

Message passing is analogous to information exchange via
functions, in that both impose a value-oriented semantics.
Processes may only communicate values, some of which might
require the exchange of an environment in which to interpret
the value. The implicit communication required to establish an
environment will often dominate the cost of interpreting a value
within the environment. In the case of functions, a value
oriented semantics guarantees the absence of side-effects, but
requires the environment to be passed as a parameter. I As with
message passing, the cost of passing the environment as a
parameter can dominate the cost of function execution.

Another property shared by message passing and functions
is that both offer a form of abstraction. A function computes a
value without requiring the caller to know any details of how
the value is computed. Similarly, message passing offers a
recipient the contents of a message without requiring it to know
the details of how the message values were computed, when the
message was sent, or what buffering operations were involved.

On the other hand, communication using shared memory
is analogous to information exchange via data structures. Each
computation (process) has access to the results of previous com
putations that h:ave been stored (cached) in the shared memory,
just aa each procedure may have access to previous results stored
in global data structures. Computation units (processes or pro
cedures) have reduced fixed overhead, since they can inherit a
context implicitly (an address space or a global data structure).
There is little abstraction involved since both shared memory
and data. structure accesa require the user to have detailed
knowledge of the location and format of information.

The analogy between communication structures and infor
mation structures is uaeful because it points out the inadvisabil
ity of any attempt to impoae a single model of communication on
all applications. Sequential programming systems do not
attempt to dictate the choice of information structure; they pro
vide functions, data structures, and hybrid combinations. Exist
ing parallel programming systems tend to allow only a single
communication structure. Psyche is designed to be more flexi
ble, providing shared memory, message passing, and options in
between.

Lightweight Process Models

2

The processes scheduled by an operating system tend to be
bulky objects with a large amount of state. Context switching
between them is relatively expensive. Though many parallel
algorithms are most easily realized with a very large number of
processes, the cost of heavyweight context switches (as well as
the space required for process state) makes straightforward
implementation impossible. Lightweight processes, with a lim
ited amount of explicit state, have been provided by several
operating systems, including Mach [1] and Amoeba [27], and by
an even larger number of parallel programming languages and
library packages. The precise semantics of lightweight
processes, however, differ nearly as much from system to system
as do the semantics of interprocess communication.

As with IPC semantics, we believe that the choice of a
lightweight process model must be left to the writers of indivi
dual applications. Certainly an operating system that intends to
allow the implementation of LISP futures [18], Ada tasks (35],
LYNX threads [32], Emerald objects (ll], Modula-2 corou
tines [37], and SR [4] processes cannot insist on the use of a sin
gle, fixed model for lightweight process management. Psyche
provides a notion of thread that is independent of process
weight, and that eliminates the need for kernel intervention

1 We are assuming pure functions that do not have access to an
implicit environment. Functions that reference global data are
considered a hybrid Corm of information structure.

when switching between mutually·trusting threads.

Psyche Overview

The design of Psyche is based on the observation that
access to shared memory is the fundamental mechanism for
interaction between threads of control on a multiprocessor. Any
other abstraction that can be provided on the machine must be
built from this basic mechanism. An operating system whose
kernel interface is based on direct use of shared memory will
thus in some sense be universal.

Basic Concepts
The realm is the central abstraction provided by the

Psycbe kernel. Each realm includes data and code. The code
constitutes a protocol for manipulating the data and for schedul·
ing threads of control. The intent is that the data should not be
accessed except by obeying the protocol. In effect, a realm is an
abstract data object. Its protocol consists of operations on the
data that define the nature of the abstraction. Invocation of
these operations is the principal mechanism for communication
between parallel threads of controL

The thread is the abstraction for control dow and schedul·
ing. All threads that begin execution in the same realm reside
in a single protection domain. That domain enjoys accen to
the original realm and any other realms for which access rights
have been demonstrated to the kernel. The layout of a thread
context block is defined by the kernel, but threads themselves
are created and scheduled by the user. The kernel time-slices on
each processor between protection domains in which threads are
active, providing upcalls (15] at quantum boundaries and when·
ever else a scheduling decision is required.

The relationship between realms and threads is somewhat
unusual: the conventional notion of an anthropomorphic process
has no analog in Psyche. Realms are passive objects, but their
code controls all execution. Threads merely animate the code;
they have no "volition" of their own.

Depending on the degree of protection desired, an·invoca·
tion of a realm operation can be as fast as an ordinary procedure
call or as slow as a heavyweight process switch. We caU the
inexpensive version an optimized invocation; the safer version is
a protected invocation. In the case of a trivial protocol or truly
minimal protection, Psyche also permits dfrect external access to
the data of a realm. One can think of direct access a8 a mechan·
ism for in· line expansion of realm operations. By mixing the use
of protected, optimized, and in-line invocations, the programmer
can obtain (and pay for) as much or as little protection as
desired.

Keys and access lists are the mechanisms used to imple
ment protection. Eacb realm includes an access list consisting of
<key, right> pairs. The right to invoke an operation of a
realm is conferred by possession of a key for which appropriate
permissions appear in the realm's access list. A key is a large
uninterpreted value affording probabilistic protection. The crea
tion and distribution of keys and the management of access lists
are all under user control, enabling the implementation of many
different protection policies.

Memory Model
If optimized (particularly in·line) invocations are to

proceed quickly, they must avoid modification of memory maps.
Every realm visible to a given thread must therefore occupy a
different location from the point of view of that thread. In addi
tion, if pointers are to be stored in realms, then every realm visi
ble to multiple threads must occupy the same location from the
point of view of each of those threads. Satisfying these two con·
ditions simultaneously constitutes an exercise in bipartite graph
coloring. In order to accommodate arbitrary changes to the

graph at run time, we must generally arrange for all coexistent
realms to occupy diSjoint virtual addresses. Psyche therefore
presents its users (conceptually at least) with a single, global,
virtual address space. Each protection domain may have a
different view of this address space, in the sense that different
subsets may be marked accessible, but the mapping from virtual
to physical addresses will be uniform. Virtual addresses suffice
for naming, and pointers can (with appropriate permissions) be
used without regard to the realm into which they point.

The view of a protection domain is embodied in the
hardware memory map. Execution proceeds unimpeded until an
attempt is made to access something not included in the view.
The resulting protection fault is fielded by the kernel, whose job
it is to either (1) announce an error, (2) update the current view
and restart the faulting instruction, or (3) perform an upcall into
the protection domain associated with the target realm, in order
to create a new thread to perform the attempted operation. In
effect, Psycbe uses conventional memory· management hardware
as a cache for software· managed protection. Case (2)
corresponds to optimized invocation. Future invocations of the
same realm from the same protection domain will proceed
without k.ernel intervention. Case (3) corresponds to protected
invocations. The c~oice between cases is controlled by the keys
and access lists.

3

The major disadvantage of the uniform virtual address
space is that address bits will be a scarce resource on most
current architectures. Neither the 24·bit virtual addresses of
many current machines nor the 32-bit virtual addresses now
becoming available will be sufficient to address every realm of
every program. Therefore, although the conceptual model pro·
vided by Psyche is that of a single, uniform address space, any
practical implementation must take special measures to econom
ize on virtual addresses. As with all scarce resources, it becomes
important to (1) multiplex the resource among different pro·
grams and (2) reclaim the resource when it is not in use.

A Psyche implementation need only maintain the appear·
ance of a uniform virtual address space. It can multiplex
addresses if it knows that certain realms will never be simu}·
taneously visible. Realms that will not be shared at all can
clearly overlap. Substantial amounts of code and data are likely
to fall into this category in practice. Asking the user to identify
unshared realms to the kernel runs counter to the Psyche philo
sophy, but is likely to produce benefits that outweigh its concep·
tual cost. In addition, realms that are accessed only through
protected invocations can be located somewhere other than
where the user thinks they are, and in fact can overlap. Since
the kernel is involved in every invocation, it can map a dense
range of virtual addresses onto the operations of the overlapped
realms.

In order to reuse virtual addresses, a kernel implementa·
tion must be able to tell when a realm is no longer needed.
Since we want to support long· term sharing relationships, we
cannot delete a realm simply because no thread is currently
accessing it. Genuine garbage collection is also impracWcal.
since it presupposes that all references to realms can be found.
Other solutions adopted in traditional operating systems don't
work either because sharing must be established explicitly
beforehand, because long-lived sharing relationships are not
allowed, or because resources that can be shared long-term are
never reclaimed by the system. For example, in most operating
systems memory is reclaimed when a process terminates. The
file system must be used for long·term sharing (often defined to
be any sharing that spans process boundaries) and file space is
reclaimed only by human intervention. In Psyche, we plan to
use a combination of explicit deallocation by the user and impli
cit deallocation via aD ownership hierarchy to reclaim virtual
address space. Explicit deallocation allows the user to micro·
manage the virtual address space; implicit deal1ocation based on

ownership guarantees that the system has ultimate control over
resource reclamation.

Threads and Scheduling
Each realm in Psyche is the root of exactly one protection

domain. AIl threads that begin execution in the same realm
belong to the protection domain rooted in that realm. They
share a common view of memory, that is, a single memory map.
Initially, the view includes only the data of the original realm of
the protection domain. When an attempt is first made to access
another realm from that domain, the kernel checks access rights
and implicitly opens the new realm for access by threads in the
domain.2 If optimized access is permitted, the new realm is
added to the view.

The kernel time-slices on each processor between protec
tion domains in which threads are active, providing each with
an equal percentage of the CPU. On a given processor, each pro
tection domain will be represented by at most one of its threads
at any point in time. The identity of this thread can be cbanged
in user code, so that the thread suspended at the end of a quan
tum may well be different from the one that was resumed at the
beginning of the quantum. In effect, the kernel and user
schedule exactly the same abstraction,

Each realm is required to provide routines for thread
management tasks that involve the kernel. The kernel performs
upcaUs to these routines whenever user-level scheduling may be
required. For example, upcalls occur when (1) an invoc::ation of
one of the realm's operations has occurred in a protection
domain in which the' realm is open for protected access (so that
it may be appropriate to create a new thread to perform the
requested operation), (2) a protected invocation by the current
thread in the realm's own protection domain has caused that
thread to block (so that it may be appropriate to run a different
thread), (3) a protected invocation has completed in some other
protection domain (so that a local thread may be unblocked), (4)
a user-specified time limit has expired (so that preemption of the
current thread may be required), and (5) a hardware fault has
occurred (so that it may be appropriate to raise an exception in
the current thread). None of these upcalls is expected to return.
The state of the machine at the time of the upcall is saved by
the kernel in the context block of the current thread, After per·
forming its scheduling operation, the upcall routine is expected
to jump immediately into the execution of an appropriate thread.

Upcalls execute in user mode, running code provided by
the user. Their work space is allocated out of a static area esta
blished by the kernel when the realm is created. Each realm
exercises complete control over the threads in its own protection
domain. The kernel makes no assumption about the nature (or
even the existence) of stacks for the threads themselves.

Since a realm can be opened for optimized access from
more than one protection domain, it is possible for threads of
many different kinds to be executing in the realm at once. In
order to facilitate synchronization of these threads, each root
realm of a protection domain is expected to provide a pair of rou
tines to be called in user mode to block the current thread and to
unblock a specified thread. These routines are in addition to the
kernel-required upcall interface. When execution of a realm
operation cannot proceed because of a synchronization con·
straint, the approved course of action is to call the thread block
ing routine of the current protection domain, after saving the
address of the unblock routine in an appropriate data structure.
Low-level, architecture-specific pfimitives (such as test-and-set

2 This "lazy evaluation" approach to protection frees the
programmer from keeping track of which realms have been opened, and
allows us to limit the cost of access rights verification to cases in which
the realm in question will actually be used.

or compare-and-swap instructions) can be used to maintain
atomicity of the scheduling operations.

In comparison to the library-based coroutine packages of
traditional operating systems, the parameterized thread manage
ment of Psyche allows a protection domain to schedule other
threads when the current thread has blocked, and permits time
slicing between user threads in a completely natural way. In
comparison to the kernel-supported threads of Mach [1], or
Amoeba [27], the Psyche mechanism provides the speed of a
coroutine package for voluntary context switches within a pro
tection domain and, given sufficient overlap of domains, for
unblock operations that span thread types. [n addition, the
Psyche mechanism allows us to use the syntax and linkage con
ventions of ordinary procedure calls for both protected and
optimized invocations. Once a realm is opened, it allows the
optimized invocations to exhibit the same performance as ordi
nary procedure calls. Finally, the Psyche mechanism provides a
much higher degree of flexibility than is possible with either
other approach. Reference parameters can be used for protected
invocations if the caner trusts the callee. Synchronization of
operations in shared realms can be provided to dissimilar
threads. User specification of the code to be executed by upcaUs
means that a realm can implement an explicitly message-based
style of serving external requests, dispatching invocations to
waiting server threads rather than creating new threads impli
citly,

Keys and Access Lists
From the caller's point of view, protected and optimized

calls will usually look the same. The exception is that a caller
can insist that an invocation be protected when it does not trust
the realm it is calling, In effect, Psyche haa separated the
dimensions of protection and performance from the semantics of
realm invocation. Unless explicitly requested by the caller, the
choice between the two is based on the access list of the realm
being called.

When a thread attempts to invoke an operation of a realm
for the first time, the kernel performs an implicit open operation
on behalf of the protection domain in which the thread is execut
ing, In order to verify access rights, the kernel checks to see
whether the thread possesses a key that appears in the realm's
access list with a right that would permit the attempted opera
tion, Once a realm has been opened from a given protection
domain, access checks are not performed for individual realm
invocations, even those that are protected (and hence effected by
the kernel).

4

Rights contained in access lists include; initialize rea 1m
(change protocol), destroy realm, invoke protected, invoke optim
ized (or in-line), and invoke optimized read-only.

Since the value of a key depends on neither the holder nor
on the realm(s) to which it confers rights, it is possible to (1) pos
sess a key that grants rights to a large number of realms, (2)
change the rights conferred by a key without notifying the
holder(s) and (3) change the holders of a key without notifying
the realm(s) to which the key grants access.

The context block of each thread contains a pointer to the
key list to be used when checking access rights. When a fault
occurs, the kernel matches the key list of the current thread
against the access list of the target realm. The principal draw
back of this strategy is the potential cost of matching when both
the key list and the access list are long. Since matching occurs
only when realms are opened, there is reason to believe that any
cost incurred will be amortized over enough operations to make
it essentially negligible. Moreover, we believe that most pro
grammers will use keys in either a capability or access-list style,
so that either the key list or the access list will generally be
short. In cases where multi-way matching is expected to be
unacceptably slow, programmers will have the option of calling

an explicit open operation, with explicit presentation of a key.

In the early stages of our design work, before adopting our
system of keys, we had planned to use capabilities for protection
in Psyche. This seemed to be a reasonable choice; realm invoca
tions bore a superficial resemblance to mechanisms employing
capabilities in several other systems, including the object invoca
tions of Eden [3] and the procedure calls of Hydra (381. Upon
further examination, however, it became clear that the use of
capabilities in Psyche would pose several serious problems:

(1) The tight association between names and rights within a
capability would require most pointers into realms to be
accompanied in every data structure by an appropriate
capability, resulting in unacceptable space overhead.

(2) Given appropriate rights, our goal for optimized access is to
map a realm into the current address space in such a way
that further proof of rights is never needed. Under these
circumstances we expect accesses to occur frequently enough
to make the cost of presenting a capability on every access
unacceptable, even if no actual verification is performed.

(3) Mandatory use of an explicit open primitive would eliminate
the need to present capabilities for routine access, but would
also force the Psyche user to keep track of which realms are
currently accessible. Our experience with the Chrysalis
operating system [7J has convinced us that this burden will
be unacceptable for ordinary programmers and undesirable
for the implementors of communication models. Opening
realms at the earliest possible moment (rather than waiting
until just before the first access) is also unattractive,
because the set of realms that might potentially be acceued
is likely to be very much larger than the set that will actu
ally be accessed.

Traditional access lists solve these problems, but have
other limitations of their own. They require that we be able to
name the entities to whom access should be granted. They can
require a great deal of space to list all valid names. They make
it difficult or impossible to pass rights on to a third party
without kernel intervention. By introducing keys as an addi
tional level of indirection, we obtain the advantages of access
lists while avoiding their disadvantages. Keys can be moved
from place to place without kernel intervention. A single key
can convey an arbitrarily complex set of rights over an arbitrary
set of realms to an arbitrary set of clients. The rights associated
with a key can even be changed without the knowledge of the
clients. While it is not in general possible to prevent a thread
from passing its keys on to a third party, we see no way to avoid
this problem in any scheme that transfers rights between protec
tion domains without the help of the kernel.

Locality
The fact that Psyche is intended to run on a large-scale

multiprocessor raises locality issues not encountered in unipro
cessors or in bus-based multiprocessors. Machines that will
scale to hundreds or thousands of nodes must clearly have
NUMA (non-uniform memory access) architectures. Current
designs include the BBN Butterfly [8,9]' IBM RP3 [29], Illinois
Cedar (20], and Encore Ultramax [36]. Given hardware or
firmware support for mi~rosecond access to remote memory,
hypercube designs would qualify as well. Optima~ performance
on these NUMA machines depends critically on maximizing
locality, so that data accessed frequently is also accessed quickly.
Unfortunately, the research community has yet to develop any
general purpose memory management strategy that achieves the
desired result. Attacking this so-called "NUMA problem" will
be a crucial task for Psyche.

Psyche realms provide a strong notion of locality in our
current implementation. All the data of a given realm resides at
a single location, equally close or equally far from each

5

individual thread. Applications that need to manage locality
explicitly can create multiple realms, Allowing the data of a
realm to be scattered across the machine would require either
(1) a successful solution to the NUMA problem (in the form of
kernel-managed, automatic, optimal data distribution), or (2) the
introduction of a new abstraction to represent the pieces of a
realm. We are reluctant to accept the latter; we do not yet have
the former. We see our current approach as a reasonable first
cut that will permit further experimentation.

Whether realms span NUMA boundaries or not, protection
domains clearly must do so, since they consist of multiple
realms. As a result, interactions between realms may span
NUMA boundaries. In most cases performance will be maxim
ized by executing realm operations on a processor close to the
data. These operations must be performed by a thread co-located
with the data. In some cases, however, the cost of transferring
control to a thread on an appropriate processor may exceed the
cost of accessing the data remotely. If the appropriate code is
replicated. these operations can be performed by any thread,
which then accesses the data remotely.

In our current implementation, we permit the user to
specify which operations are data-intensive enough to justify the
cost of co-locating code and data. The code for these operations
is kept out of the page table to force the use of protected invoca
tions, thereby transferring control to a thread in a domain -that
is close to the data. As with scattering of data, we consider this
approach to be a first cut that will support later experimentation
with more sophisticated realm or thread migration strategies.

The opportunity to perform migration occurs in several
places. When a realm is first opened for optimized access from a
given protection domain, the kernel can consider moving the
realm to be closer to other realms in the domain. When a pro
tected invocation provides reference parameters, the kernel can
consider moving either the target realm or the realm of the
parameters in order to optimize aceass. When a very large data
structure is incorporated in the views of more than one protec
tion domain, the kernel may use virtual memory techniques to
copy on reference or even move on reference. The optimal mix of
techniques for automatic data (re)location is far from obvious;
the NUMA problem is very much an open research issue.

Although Psyche is not designed explicitly for loosely cou
pled networks, it could be extended to accommodate them in at
least two different ways. The first is to incorporate networks
into the NUMA model by simulating remote operations in
software (Le. in the kernel). This approach has the considerable
advantage of functional transparency. Protected invocations
would be implemented in much the same way as on a shared
memory machine. Optimized invocations would need to make
use of automatic migration in order to obtain acceptable per
formance. Work by Li and Hudak suggests that this first
approach is tractable for certain usage patterns [25]. In other
cases, however, it might serve to hide costs that would be better
kept explicit. An alternative would be to write network inter
face realms to support cross-machine operations. This second
approach would require no kernel modifications. It is simila} in
style to remote procedure call stub generators and to the net·
work server processes of Accent and Mach.

Examples of the Use of Realms
For both locality and communication, the phi1osophy of

Psyche is to provide a fundamental, low-level mechanism from
which a wide variety of higher-level facilities can be built.
Realms, with directly-executed operations, can be used to imple
ment the fonowing:

(1) Pure shared memory in the style of the BBN Uniform Sys
tem [10]. A single large collection of realms would be
shared by all threads. The access protocol, in an abstract
sense, would permit unrestricted reads and writes of

individual memory cells.

(2) Packet-switched message passing. Each message would be
a separate realm. To send a message one would make the
realm accessible to the receiver and inaccessible to the
sender.

(3) Circuit·switched message passing, in the style of
Accent [30}, Charlotte [5], or Lynx [32]. Each communica
tion channel would be realized as a realm accessible to a
limited number of threads, and would contain buffers mani
pulated by protocol operations.

(4) Synchronization mechanisms such as monitors, locks, and
path expressions. Each of these can be written once as a
library routine that is instantiated as a realm by each
abstraction that needs it.

(5) Parallel data structures. Special-purpose locking could be
implemented in a collection of realms scattered across the
nodes of the machine, in order to reduce contention [16, 17].
For certain kinds of data structures, (the Linda tuple
space [2], for example), the entry routines of the data struc
ture as a whole might be funy paranel, able to be executed
without synchronization until access is required to particu
lar pieces of the data.

Machine Requirements
In order to support an implementation of Psyche, a target

multiprocessor must have certain characteristics. All or most of
its memory must be sharable - the architecture may be UMA or
NUMA, but it must be possible to access the code and data of
any realm from any processor. The virtual address space must
be at least as large as, and preferably much larger than, the
physical address space. There must be a very large number of
individually protected segments or pages. Support must be pro
vided for very sparse address spaces.

Commercial multiprocessors that are likely candidates for
Psyche implementations include the Sequent Balance, Encore
Muitimax, multiprocessor VAX, and BBN Butterfly machines:
Of these, the Butterfly has by far the largest number of process
ing nodes and the most interesting memory architecture, in
terms of varying locality. The new Butterfly 1000 series [8] also
provides 32 bit virtual addresses, more than either Sequent or
Encore.3 Even with 32 bits, however, software techniques for
coping with the scarcity of virtual addresses will still be neces·
sary. Our implementation effort has deliberately focused on
issues that are independent of the choice of a particular target
machine.

Relationship to Previous Work

Psyche resembles Hydra [38] in its use of protected pro
cedure calls for the execution of operations in separate protection
domains. Our approach differs in its emphasis on multiple pro
gramming models, its integration of code and data in realms,
and its provision for optimized access. Objects in Hydra caD be
either procedures or data. Realms in Psyche are both. Our
approach is more in keeping with current use of the term
"object-oriented," in that data is never separated from the proto
col for its access.4 Sharable data in Hydra can be accessed only
through the use of capabilities, so very fine-grain operations,
even without the need for protection, cannot be made efficient.

1 The original Butterfly, the Sequent Balance, and the Encore
Multimax all employ 24-bit virtual addresses, enough to access 16
megabytes. A fully·configured, 256·node Butterfly would contain one
gigabyte of physical memory. The Balance can have up to 28
megabytes of memory. the Multimax up to 128 megabytes.

~ The fundamentally passive nature of a realm, the unusual
protection mechanism, and the lack of inheritance lead us to avoid the
adjective "object-oriented."

The structural difference between Hydra objects and
Psyche realms is best viewed as a difference in approaches to
building abstractions. The association between data and pro
cedures in Hydra is established by convention. Protocols are
enforced by giving a procedure the ability to amplify the rights
of capabilities for certain types of data objects. User programs
hold capabilities that do not permit them to access the internals
of the data objects; only the amplifying procedures can do so.
Psyche abstractions, by contrast, are provided directly by the
Psyche kernel. No amplification mechanism is needed in order
to enforce the use of protocols. Where a Hydra user would ask
the "pop" procedure to return an item from stack object X, a
Psyche user would ask the "stack X" object to pop itself and
return the result. By analogy to programming languages, the
Hydra approach to abstraction resembles an Ada package [35]
that exports an opaque type, while Psyche abstractions resemble
Smalltalk objects.

Psyche also bears a resemblance to the StarOS [19] and
Medusa [28] operating systems for Cm·. It is closer to Hydra
than to StarOS, and closer to StarOS than to Medusa. StarOS
emphasizes the asynchronous execution of operations by remote
processes. As in Hydra, code and data comprise separate objects,
but a number of special object types (dequeues, mailhoxes,
events) are built into the kernel and supported with microcode.
A mechanism is provided for mapping an object into one of a
limited number of windows, but the result is much less general
than the inclusion of Psyche realms in views. In any event the
use of a uniform virtual address space would not have been an
option on the Cm· hardware, which only supported 16-bit
addresses. Medusa adopts an essentially message-based
approach to process interaction, with only a limited fonn of data
sharing permitted within multi-process task forces.

Perhaps the best-known current work in multiprocessor
operating systems is the Mach project [1], again at CMU. In
comparison to Mach, Psyche has both a different motivating phi
losophy and a different set of resulting abstractions. Psyche is
not constrained to be UNIX compatible. [t is also not designed
specifically for networks, though it could be extended to run in a
loosely-coupled world. Its real focus is on scalable shared
memory multiprocessors, for which we believe it can make
significantly better use of the hardware than is possible with a
primarily message-based system.

Psyche adopts a passive view of objects, as opposed to the
active view of Mach. Where Mach provides messages as the
basic communication mechanism, Psyche provides data sharing
and protected procedure calls. Where the notion of threads
within a task is built into Mach at the kernel level, the threads
of Psyche can be scheduled in user code and can move between
mutually-accessible realms. Where Mach supports data sharing
primarily between related tasks in the task creation tree, Psyche
facilitates dynamic sharing relationships between arbitrary
threads. Where Mach relies on the kernel to control the use of
capabilities, Psyche provides probabilistic protection with keys
in user space. All of these differences make Psyche a lower
level, less structured operating system, but at the same time 'one
that will admit a wider variety of user applications with a finer
grain of interaction.

We feel that the closest parallels to Psyche can be found in
the so-called open operating systems developed for uniprocessors
by groups at Xerox and MIT. In Cedar [34] (no relation to the
Illinois Cedar project) and Swift [15], all the software of the
machine runs in a single address space, with no protection pro
vided by the kernel. Processes are prevented from interfering
with each other by relying on the compiler for a "safe" program
ming language. Psyche can be regarded as an attempt to pro
vide the advantages of an open operating system without relying
on a single programming language. It is also an attempt to
extend support to multiple processing nodes, though the Cedar

6

group is moving in the same direction (6].

The comparison to Swift is particularly apt. The multi
process modules of Swift are very much like realms. Upcalls
between modules in Swift resemble optimized realm invocations.
Both Psyche and Swift are designed to separate the crossing of
functional boundaries (Le. between realms) from the expense of
context switching. The solution may be more successful in
Swift, since the CLU compiler can provide cost-free protection
when calling an untrusted module. Psyche invocations that go
"down" into a trusted realm like the file system will be easier to
optimize than invocations that go "up" into untrusted user code.

Status and Plans

Design of the low-level kernel routines for Psyche was
completed in the summer of 1987. Implementation of these rou
tines has proceeded in parallel with the design of higher layers.
We have recently acquired a 24-node Butterfly 1000 Parallel
Processor (a.k.a. Butterfly Plus) on which we are continuing
development. With its Motorola 68851-based memory manage
ment system, this new machine permits the large sparse address
spaces we require. Our principal goal for the coming year is to
obtain an environment as quickly as possible in which we can
experiment with multi-model programs.

We expect our work to evolve into a number of interre
lated projects. Interesting research could be performed in
memory management (particularly for the automatic manage
ment of memory with non-uniform access times), lightweight
process structure, implementation and evaluation of communica
tion models, and parallel language design. The latter subject is
of particular interest. We have specifically avoided language
dependencies in the design of the Psyche kernel It is our intent
that many languages, with widely differing process and com
munication models, be able to coexist and cooperate on a Psyche
machine. We are interested, however, in the extent to which the
Psyche philosophy itself can be embodied in a programming
language.

The communications facilities of a language enjoy consid
erable advantages over a simple subroutine library. They can be
integrated with the naming and type structure of the language.
They can employ alternative syntax. They can make use of
implicit context. They can produce language-level exceptions.
For us the question is: to what extent can these advantages be
provided without insisting on a single communication model at
language-design time? Though these questions are beyond the
scope of our current work, we expect them to form the basis of a
future, follow-on project.

Acknowledgments
Many members of the Rochester systems group have con

tributed to the work reported herein. The authors extend their
thanks to Rob Fowler, Bill Bolosky, Alan Cox, Lawrence Crowl,
Peter Dibble, Neal Gafter, John Kerber, and John Mellor
Crummey.

References
[lJ M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A.

Tevanian, and M. Young, "Mach: A New Kernel Founda
tion for UNIX Development," Proceedings of the Summer
1986 USENIX Technical Conference and Exhibition, June
1986. pp. 93·112.

[2J S. Ahuja, N. Carriero, and D. Gelernter, "Linda and
Friends," Computer 19:8 (August 1986), pp. 26-34.

7

(3) G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe,
"The Eden System: A Technical Review," IEEE Transac
tions on Software Engineering SE-ll:1 (January 1985), pp.
43·59.

[4J G. R. Andrew., R. A. Olason, M. Coffin, l. J. P. Elshoff, K.
Nilsen, T. Purdin, and G_ Townsend, "An Overview of the
SR Language and Implementation," ACM TOPLAS 10:1
(January 1988), pp. 51·86.

[5) Y. Artsy, H.-Y. Chang, and R. Finkel, "Interprocess Com
munication in Charlotte," IEEE Software 4:1 (January
1987), pp. 22·28.

[6] R. R. Atkinson and E. M. McCreight, "The Dragon Proces
sor," Proceedings of the Second International Conference on
Architectural Support for Programming Languages and
Operating Sy.tem. (ASPLOS /l), 5·8 Oclobe, 1987, pp. 65·
71.

[7) BBN Advanced Computers Incorporated, "Chrysalis~ Pro
grammers Manual, Version 3_D," Cambridge, MA, 28 April
1987.

[8] BBN Advanced Computers Incorporated, "Inside the
Butterfly Plus," Cambridge, MA, 16 October 1987.

[9] BBN Laboratories, "Butterfly* Parallel Processor Over
view," BBN Report #6149, Version 2, Cambridge, MA, 16
June 1986.

[10] BBN Laboratories, "The Uniform System Approach to Pro
gramming the Butterfly' Parallel Processor," BBN Report
#6149, Version 2, Cambridge, MA, 16 June 1986.

(11] A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object
Structure in the Emerald System," OOPSLA '86 Conference
Proceedings, 29 Septemher - 2 October 1986, pp. 78-86. In
ACM SlGPLAN Notice. 21:11 (November 1986).

[12] C. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L. Scott, M.
Srinivas, and others, "DARPA Parallel Architecture
Benchmark Study," BPR 13, Computer Science Depart
ment, University of Rochester, October 1986.

(13] N. Carriero and D. Gelemter, "The SJNet'e Linda Kernel,"
ACM TOCS 4:2 (May 1986), pp. 110·129. Originally
presented at the Tenth ACM Symposium on Operating
Systems Principles, 1-4 December 1985.

[14] D. R. Cheriton and W. Zwaenepoel, "The Distributed V
Kernel and its Performance for Diskless Workstations,"
Proceedings of the Ninth ACM Symposium on Operating
Systems Principles, 10-13 October 1983, pp. 129-140. In
ACM Operating Systems Review 17:5.

[15] D. Clark, "The Structuring of Systems Using UpcaJIs,"
Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, 1-4 December 1985, pp. 171-180. In
ACM Operating Systems Review 19:5.

[16] C. Ellis, "Concurrent Search and Insertion in 2-3 Trees,"
Acta Informatica 14 (1980), pp. 63-86.

(17J C. Ellis, "Concurrent Search and Insertion in A VL Trees,"
IEEE Transactions on Computers C-29:9 (September
1980), pp. 811·817.

[18] R. H. Halstead, Jr., "Parallel Symbolic Computing," Com
puter 19:8 (August 1986), pp. 35-43.

[19] A. K. Jones, R. J. Chansler, Jr., L Durham, K. Schwans,
and S. R. Vegdahl, "StarDS, a Multiprocessor Operating
System for the Support of Task Forces," Proceedings of the
Seventh ACM Symposium on Operating Systems Princi
ples, December 1979, pp. 117-127.

[20] D. J. KUck, E. S. Davidson, D. H. Lawrie, and A. H.
Sameh, "Parallel Supercomputing Today and the Cedar
Approach," Science 231 (28 February 1986), pp. 967-974.

[21J T. J. LeBlanc, R. H. Gerber, and R. P. Cook, "The StarMod
Distributed Programming Kernel," Software - Practice
and Experience 14:12 (December 1984), pp. 1123-1139.

[22] T. J. LeBlanc, "Sbared Memory Versus Message-Passing
in a Tightly-Coupled Multiprocessor: A Case Study,"
Proceedings of the 1986 International Conference on Paral
lel Processing, 19-22 August 1986, pp. 463-466. Expanded
version available as BPR 3, Computer Science Depart
ment, University of Rochester, January 1986.

[23] T. J. LeBlanc, "Problem Decomposition and Communica
tion Tradeoff's in a Shared-Memory Multiprocessor," in
Numerical Algorithms for Modern Parallel Computer
Architectures, IMA Volumes in Mathematics and its Appli
cations #16, Springer-Verlag, 1988.

[24] T. J. LeBlanc, M. L. Scott, and C. M. Brown, "Large-Scale
Parallel Programming: Experience with the BBN Butterfty
Parallel Processor," Proceedings of the ACM SIGPLAN
Conference on Parallel Programming: Experience with
Applications, Languages, and Systems, July 1988.

(25J K. Li and P. Hudak, "Memory Coherence in Shared Vir
tual Memory Systems," Proceedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing,
11-13 August 1986. pp. 229-239.

[26] H. H. Mashburn, "The C.mmp/Hydra Project: An Architec
tural Overview," pp. 350-370 (chapter 22) in Computer
Structures: Principles and Examples, ed. D. P. Siewiorek,
C. G. Bell, and A. Newell, McGraw-Hill, New York, 1982.

[27] S. J. Mullender and A. S. Tanenbaum, "The Design of a
Capability-Based Distributed Operating System," The
Computer Journal 29:4 (1986), pp. 289-299.

[28] J. D. Ousterhout, D. A. Scelza, and S. S. Pradeep,
"Medusa: An Experiment in Distributed Operating System
Structure," CACM 23:2 (February 1980), pp. 92-104.

[29] G. R. Pfister, W. C. Brantley, D. A. George, S. L. Harvey,
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A.
Norton, and J. Weiss, "The IBM Research Parallel Proces
sor Prototype (RP3): Introduction and Architecture,"
Proceedings of the 1985 International Conference on Paral
lel Processing, 20-23 August 1985, pp. 764-771.

[30] R. F. Rashid and G. G. Robertson, "Accent: A Communica
tion Oriented Network Operating System Kernel,"
Proceedings of the Eighth ACM Symposium on Operating
Systems Principles, 14-16 December 1981, pp. 64-75. In
ACM Operating Systems Reuiew 15:5.

[31] M. L. Scott, "The Interrace Between Distributed Operating
System and High-Level Programming Language," Proceed
ings of the 1986 International Conference on Parallel Pro
cessing, 19-22 August 1986. pp. 242-249.

[32] M. L. Scott, "Language Support ror Loosely-Coupled Dis
tributed Programs," IEEE Transactions on Software
Engi~ering SE-13:1 (January 1987), pp. 88-103.

[33] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm· - A
Modular Mulii-Microprocessor," Proceedings of the AFIPS
1977 NCC 46. AFIPS Pre .. (1977). pp. 637-644.

[34] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann,
"A Structural View of the Cedar Programming Environ
ment," ACM TOPLAS 8:4 (October 1986). pp. 419-490.

[351 United States Department of Defense, "Reference Manual
for the Ada" Progr.mming L.ngu.g.... (ANSI/MIL-STD-
1815A-1983), 17 February 1983. Available as Lecture
Notes in Computer Science #106, Springer-Verlag, New
Y"rk. 1981.

[36] A. W. Wilson, Jr., "Hierarchical Cache/Bus Architecture
for Shared Memory Multiprocessors," Fourteenth Annual
lnternaticnal Symposium on Computer Architecture, 2-5
June 1987. pp. 244-252.

[37] N. Wirth, Programming in Modula-2, Third, Corrected
Edition. Texts and Monographs in Computer Science, ed.
D. Gries, Springer-Verlag, Berlin, 1985.

[38] W. A. Wulf, R. Levin, and S.P. Harbison, HydraIC.mmp:

8

All. Experimental Computer System, McGraw-Hill, New
York. 1981.

