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ABSTRACT 

An effective user interface requires a dialogue layer that 
can handle multiple threads of interaction simultane- 
ously. We propose a notation for specifying dialogues 
based on context-free attributed grammars with two 
extensions: fork operators for specifying sub-dialogues 
and co&e& attributes for dispatching tokens. The no- 
tation is useful both as a means of communicating the 
behavior of the dialogue layer to designers and as input 
to a dialogue compiler that generates program code. In 
this paper we explain the motivation for our work and 
provide practical examples of the use of fork and con- 
text. In addition, we outline algorithms for parsing and 
for generating parser tables. 

KEYWORDS: User interfaces, human factors, interac- 
tion techniques, grammars, parsing. 

INTRODUCTION 

The proliferation of computers among unsophisticated 
users, together with the availability of high-quality 
graphic displays, has focused increasing attention in re- 
cent years on the human factors of computing. Other- 
wise excellent programs can be rendered unsuccessful, 
or even useless, by the lack of an effective user interface. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Unfortunately, high-quality ad-hoc interfaces tend to be 
among the most complex, subtle, and tedious portions 
of traditional programs. Like other researchers in User 
Interface hlanagement Systems, we believe strongly in 
the need for formal specification of user interfaces, both 
as an aid to understanding program behavior, and as 
a technique to permit automatic generation of large 
amounts of code. 

Our work is based on the Seeheim Model [20], which 
divides programs into an application layer, a dialogue 
layer, and a presentation layer. The application layer 
handies the “real work” of the program. The presenta- 
tion layer hides device dependencies and performs low- 
level input and output processing. The dialogue layer 
is the heart of the user interface. It controls the flow of 
information between the outer two layers, ensuring its 
consistency and determining its structure and timing. 

In this model the dialogue plays both an imperative 
and a declarative role. In addition to providing the al- 
gorithm for handling input and output tokens as they 
arrive, the dialogue also describes the valid sequences 
of such tokens from both the application and presen- 
tation points of view. We use grammars to specify 
this dialogue layer. In contrast to such notations as 
augmented transition diagrams and systems of event 
handlers, grammars are comparatively concise and ab- 
stract. They can enhance the intelligibility of an in- 
terface significantly by separating the specification of 
what constitutes a valid conversation between program 
and user from the details of how such a conversation 
is implemented. In addition, the large difference in ab- 
straction level between grammar and programming lan- 
guage means that automatic generation of code consti- 
tutes a significant savings of programmer effort. Expe- 
rience with programming language compiler compilers 
suggests that a user interface dialogue compiler could 
be a very useful tool. 

Unfortunately, ordinary context-free grammars are 
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inadequate for the interactive, multi-threaded dialogues 
of modern interfaces. Two principal problems arise. 
First, users will often wish to conduct several concur- 
rent conversations with an application, conversations 
that may or may not be nested. The dialogue’s parsing 
algorithm must be able to handle arbitrary interleav- 
ings of concurrent conversations, dispatching each to- 
ken to the appropriate production. Second, input must 
often be parsed differently depending on the window, 
or context in which it was entered. Since the number 
of contexts cannot generally be predicted at dialogue- 
generation time, a notation for specifying dialogues re- 
quires a mechanism for expanding the input alphabet 
in a regular way at run time. 

The need for multi-threading arises not only in con- 
current conversations, but also in the management of in,- 
put from multiple devices. Buxton and Myers [3] found 
two-handed input for user tasks to be an improvement 
over single-handed input. Projects such as the Sassafras 
UIMS [11,12] already provide support for both types of 
concurrency, but existing work has yet to combine such 
support with the conceptual advantages of grammar- 
based notation. 

We address the shortcomings of context-free gram- 
mars with a pair of additional concepts. For concur- 
rent conversations, we allow productions to fork off sub- 
parsers that continue in parallel. For multiple contexts, 
we introduce a special synthetic attribute for tokens 
that can assist in driving the parse. Fork productions 
and context attributes are related in the sense that sep- 
arate conversations will usually take their input from 
separate contexts. However, a single-threaded conver- 
sation may use several contexts, and a multi-threaded 
conversation may only require a single context. For this 
reason, we present the notions of fork and context as es- 
sentially independent. 

FORK OPERATORS 

In order to support concurrent, interleaved conversa- 
tions, we augment context-free grammars’ with two 
new operators: the parallel and operator: &&I, and the 
parallel or operator: 1 I. Both operators cause the cre- 
ation of sub-parsers which work in parallel. 

Two productions joined by && are a pro- 
duction. The combined production suc- 
ceeds when both of the sub-productions suc- 
ceed. More formally, the combined pro- 
duction generates all interleavings of strings 
generated by the sub-productions. 

1 We use a hopefully self-esplanatory extended Backus-Naur 
Form notation. 

Two productions joined by I I are a pro- 
duction. The combined production succeeds 
when either of the sub-productions suc- 
ceeds. More formally, the combined produc- 
tion genera,tes all interleavings of a string 
generated b’y one sub-production with a pre- 
fix of a string generated by the other sulb- 
production. 

The && operator is useful when the order of input is 
immaterial. Filling in a form is one example: 

form + A && B 

Both A and B must appear in the input for form to 
succeed. The tok.ens that A and B derive may appear in 
any order in the input. 

The 1 1 operator is useful when the completion of one 
sub-production obviates the need for the other. User- 
generated interrupts (e.g. from hitting the DELETE 
key) are one exa:mple: 

getnumber --f interrupt 11 readdigits 

The completion of either interrupt or 
read-digits will cause getnuxnber to succeed.. Differ- 
ent levels of interrupts can be used to back the parser 
out to arbitrary pre-arranged positions. 

Together, the parallel and and or operators allow 
us to construct a hierarchy of sub-parsers to manage a 
conversation with multiple levels of aborts, nested par- 
allel conversations (e.g. for interactive help), and other 
useful structure.zz More detailed examples can be found 
in the section on USAGE. 

We impose one additional rule on the use of fork 
operators: it must always be possible to predict their 
use without lookahead. In other words, if A is the left 
hand side of a fork production and aA is a prefix of a 
valid sentential form, then every valid sentent,ial form 
beginning with a must in fact begin with cr,4, or be 
derivable from a. sentential form that begins with aA. 
This amounts to insisting that concurrent conversations 
must be started explicitly by user or application action, 
and need not be detected in response to the arrival of 
input from one of the branches. This rule simplifies 
parsing considerably. We also believe it to be consistent 
with natural dialogue structure. 

21t is worth noting that our augmented grammars .are not in 
general context free. The language generated by 

A+Bt&C 

is one example; :its intersection with the regular set a*b*c*d* 
is a”bmcndm. 
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CONTEXT AlTRIBUTES 

In a multi-window application, otherwise indistinguish- 
able inputs originating from different windows of the 
presentation layer must generally be passed through to 
the dialogue as distinct tokens. If an unbounded num- 
ber of windows can be created at run time, it becomes 
impossible to enumerate all tokens in a finite gram- 
mar at dialogue-generation time. We therefore propose 
that all tokens possess at least two synthetic attributes: 
value and context. Value captures the usual notion of 
token type. Context allows the dialogue to differentiate 
between tokens of the same value from different sources. 

For managing the use of context we adopt a nota- 
tion based on left-attributed LL( 1) grammars in simple- 
assignment form [2,15]. The inherited attributes of a 
symbol X in a production of an L-attributed grammar 
depend only on attributes of RHS symbols to the left of 
X or on inherited attributes of the LBS of the produc- 
tion. In an LL(l) g rammar, all attributes can be evalu- 
ated left-to-right, in the course of the parse itself. The 
simple-assignment property requires that all dependen- 
cies be copy rules; computation is performed solely in 
action routines. The restriction to one token of looka- 
head is consistent with intuitive behavior for interactive 
systems. 

We augment the usual predictive parsing algorithm 
to use context to guide the parse. In addition to 
matching in value, each token must also match in con- 
text. Actual context values are not known at dialogue- 
generation time, but the locations in which those values 
will appear at run time can be predicted. Each parse 
table entry describes where to find, at run time, the 
context for which the entry is valid. Value attributes 
index into the parse tables; context attributes are used 
to dispatch tokens to the appropriate sub-parser. 

Attributes that contain context values must be iden- 
tified to the dialogue compiler. Rules for the dialogue 
notation ensure that whenever parallel sub-parsers are 
able to accept tokens with the same value, those tokens 
will appear in different contexts. First, action routines 
that return context values in synthetic attributes are 
required to create new, unique values for each call. Sec- 
ond, the copy rules for a given production are not per- 
mitted to assign the same context value into two differ- 
ent inherited attributes of a non-terminal on the RHS or 
two different synthetic attributes of the non-terminal on 
the LHS. Furthermore, no context value may be copied 
into both branches of a fork unless the value alphabets 
of the two sub-productions are disjoint. Simply put, the 
branches of a fork either (1) partition the token value 
alphabet between them, or (2) only know the names of 
different contexts. 

An alternative parsing algorithm results from im- 

posing the further restriction that sub-parsers inherit a 
fixed and statically determinable number of contexts. 
This means that synthesized contexts may not be used 
within the sub-dialogue in which the action appears, but 
may only be passed to an inferior sub-dialogue. With 
this rule it is possible to re-write each sub-dialogue as 
a conventional context-free grammar, without context 
attributes. Arbitrary (e.g. LR) parsing algorithms can 
then be employed. 

Limiting sub-dialogues to a fixed number of contexts 
is not as serious a restriction as it might at first appear. 
Artificial sub-dialogues may be introduced in order to 
change to a new and different context: 

s -+ ,*. x I.. 
X + Y kk c 

For convenience we can introduce a unary operator 
! , that serves to begin a new sub-dialogue for the follow- 
ing symbol, without the necessity of creating a trivial 
branch: 

s --+ . . . ! Y . . . 

Both of the parsing techniques (predictive and gen- 
eral) are discussed in the section on ALGORITHMS. 

Example 

Consider a simple dialogue that creates two new sub- 
windows upon receipt of a special key. In the following, 
inheritance rules are shown in brackets. W. ctx = S . ctx 
means that the ctx attribute of W is copied from the ctx 
attribute of S. 

s+w 

CW.ctx = S.ctxl 
W + chart kk new N 

[char.ctx = W.ctx, 
new.ctx = W. ctxl 

N + #create (X I1 Y) 
CX.ctx = #create.ctxl, 
Y.ctx = #create. ctx21 

new is a token that is not generated by char (for 
example, a special key), obeying rule (1). The action 
#create produces two new windows and passes their 
contexts to X and Y, obeying rule (2). 

ALGORITHMS 

Our predictive parsing algorithm differs from that of a 
standard LL(l) parser in two important ways. First, 
prediction of a forked production suspends the current 
parser and creates sub-parsers that continue in parallel, 
using their own parse tables. Completion of one (for I 1) 
or all (for kk) sub-parsers allows the suspended parent 
to continue. Second, each parse table entry contains 
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context information that is used to determine which 
of several running parsers should receive each input or 
output token. 

The production X + (Y may appear in entry [X, u] 
of a parse table for either of two reasons. It may be 
that a is in FIRST, in which case the context ex- 
pected for a can be found in one of the attributes of 
X. The appropriate attribute can be determined at 
dialogue generation time (via a straightforward exten- 
sion of the algorithm for building FIRST sets), and the 
choice between parallel parsers can be made by inspect- 
ing the symbol at the top of each stack. 

Alternatively, (Y may generate E, and a may be in 
FOLLOW(X), in which case the context expected for 
o can be found in an attribute of some symbol farther 
down the parse stack. Unfortunately, the identity of this 
deeper symbol may not be uniquely determined by X 
and a; it may depend on the production in which X was 
originally predicted. One obvious remedy is to arrange 
for unique context information by using exact lookahead 
information instead of FOLLOW sets when building 
parse tables. In the worse case, this solution is equiv- 
alent to modifying the grammar so that every symbol 
that can generate e appears on the RHS of only one pro- 
duction. The result is a potentially enormous increase 
in parse table sizes. If typical grammars approach this 
worst-case behavior, it may be preferable to maintain 
conventional tables and cope dynamically with multi- 
valued context information. The rules described in the 
section on CONTEXT ensure that the context of the a 
will be acceptable to at most one of the currently-active 
parsers. We can tentatively pursue e productions in all 
those parsers at once; resulting attempts to match the 
a will fail in all but one. 

In order to ensure that the expected context of a 
token is known when the token is first encountered, we 
must insist that no action routine produce the context 
value for the token used to predict that action routine. 
Since it is arguably counter-intuitive for any action rou- 
tine in an interactive program to require examination 
of a following token, it might be appropriate to enforce 
the stricter rule that we never need to look through an 
action routine to see the token that predicts it. 

Alternative approach 

If input to a sub-dialogue is limited to a fixed number of 
contexts, it becomes possible to transform an extended 
grammar with context attributes into a conventional 
context-free grammar without context attributes. Any 
standard parsing algorithm can then be employed. The 
idea is to replace each symbol X in the extended gram- 
mar with a new symbol for every possible set of val-- 
ues of X’s context, attributes. The dialogue compiler 

can assign a name to each of the contexts of the sub- 
dialogue even though the actual context values will not 
be known until run time. A table created when the sub- 
parser begins execution can be used to translate from 
<token value, context value> pairs to token values in the 
alphabet of the new, conventional grammar. 

If a sub-dialogue inherits c contexts, a token in the 
original extended grammar may be replaced by up to c 
tokens in the new grammar. A non-terminal A with t 
inherited context attributes may be replaced by up to 
c* non-terminals in the new grammar. Each of t‘he pro- 
ductions for whiclh A forms the LHS will be replicated 
up to ct times. As with the use of exact lookahead sets 
in the predictive parsing algorithm, this technique has 
the potential to increase parse table sizes dramatically. 
It is not yet clear how much storage would be required 
for typical dialogue grammars. 

The predictive parsing algorithm (with regular 
FOLLOW sets) has the advantage of small, conven- 
tional tables. Either the exact lookahead sets or the al- 
ternative algorithm would save time on e productions, 
but with potentially unacceptable space requirements. 
The alternative algorithm can be used with a shift- 
reduce parser, but but this may not be much of an 
advantage; predictive parsing seems ideally suited to 
interactive programs. 

USAGE 

We illustrate the use of our grammar notation with two 
applications: a source level debugger and a rudimentary 
TTY driver. 

Dbxtool 

We describe a simplified version of the dbztool source 
debugger for Sun Workstations [l]. Dbxtool has a com- 
mand window, a button window, a status window and 
a source window.. Assume that the command window 
parses its input stream and sends only complete tokens 
such as print or continue to the dialogue. The button 
window provides many of the commands of the com- 
mand window in the form of radio buttons for u:ser con- 
venience. 

The initial production starts up all windows: 

S + #create (C+ 11 status+ 11 source+) 
[C.cmd = #create.cmd, 
C.but = #create.but, 

status. ctx = #create. st , 
source. ctx = #create. srcl 

The action #c:reate starts up all four windows. In- 
puts from both the command and button wind.ows are 
accepted by the sub-productions of C. For each radio 
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button, c derives two productions, one starting with the 
command typed in and the other with the command 
clicked on. In the productions below, the capitalized 
tokens are associated with and derive context from the 
button window. The actions triggered have been elided. 
The triggered actions are different in print and PRINT 
as the latter uses the currently highlighted entity. 

C + print entityname . . . 
C + PRINT #checkselection . . . 
C -t stop location . . . 
C --t STOP #checkselection . . . 
C --+ next 1 NEXT I step i STEP 

One point not apparent from the grammar frag- 
ments above is that the dialogues for the sub-windows 
need not be grouped together. Productions can be 
placed close to related data structures and program ac- 
tions to form interaction modules. With appropriate 
tools for building libraries and encapsulating modules, 
sub-grammars can provide an extremely effective form 
of dialogue abstraction. 

TTY driver 

Our second example is a TTY driver that obeys the 
XOFF/XON convention for suspending output. This 
example shows how a grammar can handle input from 
more than one source, in this case the program and the 
user. It also demonstrates that although we have used 
examples drawn from windowing systems, the notation 
is general enough to describe any kind of dialogue that 
handles information as tokens. 

TTY -* (char #copy 1 XOFF+ XON)+ 11 ABORT 
[char. ctx = TTY.out. XOFF.ctx = TTY.in, 
XON.ctx = TTY.in, ABORT.ctx = TTY.inl 

#copy is an action that sends the character to be 
output to the presentation. 

PREVIOUS WORK 

In addition to context-free grammars, two other major 
classes of notation have been proposed for specifying 
dialogues [6]: transition diagrams and event handlers. 

Transition diagrams have been used by Newman, 
Edmonds, Guest, Jacob and Wasserman [4,8,14,17,22]. 
Nodes in the network correspond to states in the pro- 
gram and arcs to actions that cause a change in state. 
Actions are triggered by user input. Recursive transi- 
tion diagrams are needed to represent nested interac- 
tions. Transition diagrams provide an excellent means 
of presenting information visually; Hare1 [lo] uses them 
as the basis of a visual programming notation called 
statecharts. The major drawback with transition dia- 
grams is the verbosity of the representation. A typi- 

cal textual representation of a transition diagram enu- 
merates for each state: the input tokens, the successor 
states resulting from acceptance of tokens, and actions, 
if any. 

Event handlers were proposed by Green [7] and have 
been used in the U. of Alberta UIMS [7] and ALGAE [5]. 
The dialogue layer is divided into event handlers. Each 
handler contains internal state which may be altered by 
the execution of actions upon the receipt of events from 
outside. The source of events may be the application, 
the presentation, or another handler. Event handlers 
may choose the types of event they are willing to accept. 
The entire collection of handlers resembles an object- 
oriented system such as Smalltalk-80, except that in- 
heritance of properties is not generally required. Event 
handlers have the drawback that the input/output lan- 
guage cannot readily be determined without inspecting 
handler code. Clarity also suffers from the fact that an 
event may activate more than one handler. It may not 
be easy to determine which handlers will be active at 
any given time. Finally, because they so closely resem- 
ble program code themselves, event handlers provide 
relatively little opportunity for labor-saving compila- 
tion. The abstraction level of grammars is significantly 
higher. 

Context-free grammars have been used by Banau 
and Lenorovitz [9], and Olsen [18,19]. The Input Tools 
notation of Van den Bos [21] can in some sense be con- 
sidered a cross between event handlers and CFG nota- 
tions. Our work borrows the fork operators from In- 
put Tools. To our knowledge, no previous work has 
approached the problem of providing multi-threading 
and token dispatch in CFGs by extending the notation 
and hence the class of languages accepted. Unlike Input 
Tools, our method does not require prohibitive run-time 
overhead [16]. 

When arbitrary actions with side effects are allowed 
in the dialogue, all three major models have the same 
descriptive power as a Turing machine. In fact, a dia- 
logue that does not require Turing-equivalent power is 
likely to be trivial. We prefer grammars because the no- 
tation is both concise and abstract, the input language 
is specified explicitly and the separation between input 
specification and action is clear. 

STATUS OF WORK 

We have completed the design of the dialogue language 
of our UZMS. We will begin soon to build a dialogue 
compiler that generates parse tables from grammars 
written in the notation described. 

To gain acceptance by designers, a notation must al- 
low hierarchical composition of dialogues, starting with 

77 



CHI ‘88 

system-provided primitives. Libraries of often used 
interaction techniques will minimize redundant effort. 
Recent work has focused on object-oriented approaches 
to dialogue objects. Jacob [13] has described a system 
in which each object is specified with a single-threaded 
state diagram, and objects are combined to form the 
overall dialogue. 

Our next goal is to design a language in which dia- 
logue grammars, private data, and executable code are 
grouped into modular dialogue objects. We will provide: 
the interface designer with a design tool to compose 
these interaction objects to form the user interface. 
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