
CHI ‘88

A GRAMMAR-BASED APPROACH TO THE AUTOMATIC
GENERATION OF USER-INTERFACE DIALOGUES

Michael L. Scott and Sue-Ken Yap

Department of Computer Science,
University of Rochester,

Rochester, NY 14627.
scott@cs.rochester.edu, ken@cs.rochester.edu

ABSTRACT

An effective user interface requires a dialogue layer that
can handle multiple threads of interaction simultane-
ously. We propose a notation for specifying dialogues
based on context-free attributed grammars with two
extensions: fork operators for specifying sub-dialogues
and co&e& attributes for dispatching tokens. The no-
tation is useful both as a means of communicating the
behavior of the dialogue layer to designers and as input
to a dialogue compiler that generates program code. In
this paper we explain the motivation for our work and
provide practical examples of the use of fork and con-
text. In addition, we outline algorithms for parsing and
for generating parser tables.

KEYWORDS: User interfaces, human factors, interac-
tion techniques, grammars, parsing.

INTRODUCTION

The proliferation of computers among unsophisticated
users, together with the availability of high-quality
graphic displays, has focused increasing attention in re-
cent years on the human factors of computing. Other-
wise excellent programs can be rendered unsuccessful,
or even useless, by the lack of an effective user interface.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Unfortunately, high-quality ad-hoc interfaces tend to be
among the most complex, subtle, and tedious portions
of traditional programs. Like other researchers in User
Interface hlanagement Systems, we believe strongly in
the need for formal specification of user interfaces, both
as an aid to understanding program behavior, and as
a technique to permit automatic generation of large
amounts of code.

Our work is based on the Seeheim Model [20], which
divides programs into an application layer, a dialogue
layer, and a presentation layer. The application layer
handies the “real work” of the program. The presenta-
tion layer hides device dependencies and performs low-
level input and output processing. The dialogue layer
is the heart of the user interface. It controls the flow of
information between the outer two layers, ensuring its
consistency and determining its structure and timing.

In this model the dialogue plays both an imperative
and a declarative role. In addition to providing the al-
gorithm for handling input and output tokens as they
arrive, the dialogue also describes the valid sequences
of such tokens from both the application and presen-
tation points of view. We use grammars to specify
this dialogue layer. In contrast to such notations as
augmented transition diagrams and systems of event
handlers, grammars are comparatively concise and ab-
stract. They can enhance the intelligibility of an in-
terface significantly by separating the specification of
what constitutes a valid conversation between program
and user from the details of how such a conversation
is implemented. In addition, the large difference in ab-
straction level between grammar and programming lan-
guage means that automatic generation of code consti-
tutes a significant savings of programmer effort. Expe-
rience with programming language compiler compilers
suggests that a user interface dialogue compiler could
be a very useful tool.

Unfortunately, ordinary context-free grammars are

01988 ACM-O-89791-265-9/88/0004/0073 $00.75

73

CHI ‘88

inadequate for the interactive, multi-threaded dialogues
of modern interfaces. Two principal problems arise.
First, users will often wish to conduct several concur-
rent conversations with an application, conversations
that may or may not be nested. The dialogue’s parsing
algorithm must be able to handle arbitrary interleav-
ings of concurrent conversations, dispatching each to-
ken to the appropriate production. Second, input must
often be parsed differently depending on the window,
or context in which it was entered. Since the number
of contexts cannot generally be predicted at dialogue-
generation time, a notation for specifying dialogues re-
quires a mechanism for expanding the input alphabet
in a regular way at run time.

The need for multi-threading arises not only in con-
current conversations, but also in the management of in,-
put from multiple devices. Buxton and Myers [3] found
two-handed input for user tasks to be an improvement
over single-handed input. Projects such as the Sassafras
UIMS [11,12] already provide support for both types of
concurrency, but existing work has yet to combine such
support with the conceptual advantages of grammar-
based notation.

We address the shortcomings of context-free gram-
mars with a pair of additional concepts. For concur-
rent conversations, we allow productions to fork off sub-
parsers that continue in parallel. For multiple contexts,
we introduce a special synthetic attribute for tokens
that can assist in driving the parse. Fork productions
and context attributes are related in the sense that sep-
arate conversations will usually take their input from
separate contexts. However, a single-threaded conver-
sation may use several contexts, and a multi-threaded
conversation may only require a single context. For this
reason, we present the notions of fork and context as es-
sentially independent.

FORK OPERATORS

In order to support concurrent, interleaved conversa-
tions, we augment context-free grammars’ with two
new operators: the parallel and operator: &&I, and the
parallel or operator: 1 I. Both operators cause the cre-
ation of sub-parsers which work in parallel.

Two productions joined by && are a pro-
duction. The combined production suc-
ceeds when both of the sub-productions suc-
ceed. More formally, the combined pro-
duction generates all interleavings of strings
generated by the sub-productions.

1 We use a hopefully self-esplanatory extended Backus-Naur
Form notation.

Two productions joined by I I are a pro-
duction. The combined production succeeds
when either of the sub-productions suc-
ceeds. More formally, the combined produc-
tion genera,tes all interleavings of a string
generated b’y one sub-production with a pre-
fix of a string generated by the other sulb-
production.

The && operator is useful when the order of input is
immaterial. Filling in a form is one example:

form + A && B

Both A and B must appear in the input for form to
succeed. The tok.ens that A and B derive may appear in
any order in the input.

The 1 1 operator is useful when the completion of one
sub-production obviates the need for the other. User-
generated interrupts (e.g. from hitting the DELETE
key) are one exa:mple:

getnumber --f interrupt 11 readdigits

The completion of either interrupt or
read-digits will cause getnuxnber to succeed.. Differ-
ent levels of interrupts can be used to back the parser
out to arbitrary pre-arranged positions.

Together, the parallel and and or operators allow
us to construct a hierarchy of sub-parsers to manage a
conversation with multiple levels of aborts, nested par-
allel conversations (e.g. for interactive help), and other
useful structure.zz More detailed examples can be found
in the section on USAGE.

We impose one additional rule on the use of fork
operators: it must always be possible to predict their
use without lookahead. In other words, if A is the left
hand side of a fork production and aA is a prefix of a
valid sentential form, then every valid sentent,ial form
beginning with a must in fact begin with cr,4, or be
derivable from a. sentential form that begins with aA.
This amounts to insisting that concurrent conversations
must be started explicitly by user or application action,
and need not be detected in response to the arrival of
input from one of the branches. This rule simplifies
parsing considerably. We also believe it to be consistent
with natural dialogue structure.

21t is worth noting that our augmented grammars .are not in
general context free. The language generated by

A+Bt&C

is one example; :its intersection with the regular set a*b*c*d*
is a”bmcndm.

74

CHI ‘88

CONTEXT AlTRIBUTES

In a multi-window application, otherwise indistinguish-
able inputs originating from different windows of the
presentation layer must generally be passed through to
the dialogue as distinct tokens. If an unbounded num-
ber of windows can be created at run time, it becomes
impossible to enumerate all tokens in a finite gram-
mar at dialogue-generation time. We therefore propose
that all tokens possess at least two synthetic attributes:
value and context. Value captures the usual notion of
token type. Context allows the dialogue to differentiate
between tokens of the same value from different sources.

For managing the use of context we adopt a nota-
tion based on left-attributed LL(1) grammars in simple-
assignment form [2,15]. The inherited attributes of a
symbol X in a production of an L-attributed grammar
depend only on attributes of RHS symbols to the left of
X or on inherited attributes of the LBS of the produc-
tion. In an LL(l) g rammar, all attributes can be evalu-
ated left-to-right, in the course of the parse itself. The
simple-assignment property requires that all dependen-
cies be copy rules; computation is performed solely in
action routines. The restriction to one token of looka-
head is consistent with intuitive behavior for interactive
systems.

We augment the usual predictive parsing algorithm
to use context to guide the parse. In addition to
matching in value, each token must also match in con-
text. Actual context values are not known at dialogue-
generation time, but the locations in which those values
will appear at run time can be predicted. Each parse
table entry describes where to find, at run time, the
context for which the entry is valid. Value attributes
index into the parse tables; context attributes are used
to dispatch tokens to the appropriate sub-parser.

Attributes that contain context values must be iden-
tified to the dialogue compiler. Rules for the dialogue
notation ensure that whenever parallel sub-parsers are
able to accept tokens with the same value, those tokens
will appear in different contexts. First, action routines
that return context values in synthetic attributes are
required to create new, unique values for each call. Sec-
ond, the copy rules for a given production are not per-
mitted to assign the same context value into two differ-
ent inherited attributes of a non-terminal on the RHS or
two different synthetic attributes of the non-terminal on
the LHS. Furthermore, no context value may be copied
into both branches of a fork unless the value alphabets
of the two sub-productions are disjoint. Simply put, the
branches of a fork either (1) partition the token value
alphabet between them, or (2) only know the names of
different contexts.

An alternative parsing algorithm results from im-

posing the further restriction that sub-parsers inherit a
fixed and statically determinable number of contexts.
This means that synthesized contexts may not be used
within the sub-dialogue in which the action appears, but
may only be passed to an inferior sub-dialogue. With
this rule it is possible to re-write each sub-dialogue as
a conventional context-free grammar, without context
attributes. Arbitrary (e.g. LR) parsing algorithms can
then be employed.

Limiting sub-dialogues to a fixed number of contexts
is not as serious a restriction as it might at first appear.
Artificial sub-dialogues may be introduced in order to
change to a new and different context:

s -+ ,*. x I..
X + Y kk c

For convenience we can introduce a unary operator
! , that serves to begin a new sub-dialogue for the follow-
ing symbol, without the necessity of creating a trivial
branch:

s --+ . . . ! Y . . .

Both of the parsing techniques (predictive and gen-
eral) are discussed in the section on ALGORITHMS.

Example

Consider a simple dialogue that creates two new sub-
windows upon receipt of a special key. In the following,
inheritance rules are shown in brackets. W. ctx = S . ctx
means that the ctx attribute of W is copied from the ctx
attribute of S.

s+w

CW.ctx = S.ctxl
W + chart kk new N

[char.ctx = W.ctx,
new.ctx = W. ctxl

N + #create (X I1 Y)
CX.ctx = #create.ctxl,
Y.ctx = #create. ctx21

new is a token that is not generated by char (for
example, a special key), obeying rule (1). The action
#create produces two new windows and passes their
contexts to X and Y, obeying rule (2).

ALGORITHMS

Our predictive parsing algorithm differs from that of a
standard LL(l) parser in two important ways. First,
prediction of a forked production suspends the current
parser and creates sub-parsers that continue in parallel,
using their own parse tables. Completion of one (for I 1)
or all (for kk) sub-parsers allows the suspended parent
to continue. Second, each parse table entry contains

75

CHI ‘88

context information that is used to determine which
of several running parsers should receive each input or
output token.

The production X + (Y may appear in entry [X, u]
of a parse table for either of two reasons. It may be
that a is in FIRST, in which case the context ex-
pected for a can be found in one of the attributes of
X. The appropriate attribute can be determined at
dialogue generation time (via a straightforward exten-
sion of the algorithm for building FIRST sets), and the
choice between parallel parsers can be made by inspect-
ing the symbol at the top of each stack.

Alternatively, (Y may generate E, and a may be in
FOLLOW(X), in which case the context expected for
o can be found in an attribute of some symbol farther
down the parse stack. Unfortunately, the identity of this
deeper symbol may not be uniquely determined by X
and a; it may depend on the production in which X was
originally predicted. One obvious remedy is to arrange
for unique context information by using exact lookahead
information instead of FOLLOW sets when building
parse tables. In the worse case, this solution is equiv-
alent to modifying the grammar so that every symbol
that can generate e appears on the RHS of only one pro-
duction. The result is a potentially enormous increase
in parse table sizes. If typical grammars approach this
worst-case behavior, it may be preferable to maintain
conventional tables and cope dynamically with multi-
valued context information. The rules described in the
section on CONTEXT ensure that the context of the a
will be acceptable to at most one of the currently-active
parsers. We can tentatively pursue e productions in all
those parsers at once; resulting attempts to match the
a will fail in all but one.

In order to ensure that the expected context of a
token is known when the token is first encountered, we
must insist that no action routine produce the context
value for the token used to predict that action routine.
Since it is arguably counter-intuitive for any action rou-
tine in an interactive program to require examination
of a following token, it might be appropriate to enforce
the stricter rule that we never need to look through an
action routine to see the token that predicts it.

Alternative approach

If input to a sub-dialogue is limited to a fixed number of
contexts, it becomes possible to transform an extended
grammar with context attributes into a conventional
context-free grammar without context attributes. Any
standard parsing algorithm can then be employed. The
idea is to replace each symbol X in the extended gram-
mar with a new symbol for every possible set of val--
ues of X’s context, attributes. The dialogue compiler

can assign a name to each of the contexts of the sub-
dialogue even though the actual context values will not
be known until run time. A table created when the sub-
parser begins execution can be used to translate from
<token value, context value> pairs to token values in the
alphabet of the new, conventional grammar.

If a sub-dialogue inherits c contexts, a token in the
original extended grammar may be replaced by up to c
tokens in the new grammar. A non-terminal A with t
inherited context attributes may be replaced by up to
c* non-terminals in the new grammar. Each of t‘he pro-
ductions for whiclh A forms the LHS will be replicated
up to ct times. As with the use of exact lookahead sets
in the predictive parsing algorithm, this technique has
the potential to increase parse table sizes dramatically.
It is not yet clear how much storage would be required
for typical dialogue grammars.

The predictive parsing algorithm (with regular
FOLLOW sets) has the advantage of small, conven-
tional tables. Either the exact lookahead sets or the al-
ternative algorithm would save time on e productions,
but with potentially unacceptable space requirements.
The alternative algorithm can be used with a shift-
reduce parser, but but this may not be much of an
advantage; predictive parsing seems ideally suited to
interactive programs.

USAGE

We illustrate the use of our grammar notation with two
applications: a source level debugger and a rudimentary
TTY driver.

Dbxtool

We describe a simplified version of the dbztool source
debugger for Sun Workstations [l]. Dbxtool has a com-
mand window, a button window, a status window and
a source window.. Assume that the command window
parses its input stream and sends only complete tokens
such as print or continue to the dialogue. The button
window provides many of the commands of the com-
mand window in the form of radio buttons for u:ser con-
venience.

The initial production starts up all windows:

S + #create (C+ 11 status+ 11 source+)
[C.cmd = #create.cmd,
C.but = #create.but,

status. ctx = #create. st ,
source. ctx = #create. srcl

The action #c:reate starts up all four windows. In-
puts from both the command and button wind.ows are
accepted by the sub-productions of C. For each radio

76

CHI ‘88

button, c derives two productions, one starting with the
command typed in and the other with the command
clicked on. In the productions below, the capitalized
tokens are associated with and derive context from the
button window. The actions triggered have been elided.
The triggered actions are different in print and PRINT
as the latter uses the currently highlighted entity.

C + print entityname . . .
C + PRINT #checkselection . . .
C -t stop location . . .
C --t STOP #checkselection . . .
C --+ next 1 NEXT I step i STEP

One point not apparent from the grammar frag-
ments above is that the dialogues for the sub-windows
need not be grouped together. Productions can be
placed close to related data structures and program ac-
tions to form interaction modules. With appropriate
tools for building libraries and encapsulating modules,
sub-grammars can provide an extremely effective form
of dialogue abstraction.

TTY driver

Our second example is a TTY driver that obeys the
XOFF/XON convention for suspending output. This
example shows how a grammar can handle input from
more than one source, in this case the program and the
user. It also demonstrates that although we have used
examples drawn from windowing systems, the notation
is general enough to describe any kind of dialogue that
handles information as tokens.

TTY -* (char #copy 1 XOFF+ XON)+ 11 ABORT
[char. ctx = TTY.out. XOFF.ctx = TTY.in,
XON.ctx = TTY.in, ABORT.ctx = TTY.inl

#copy is an action that sends the character to be
output to the presentation.

PREVIOUS WORK

In addition to context-free grammars, two other major
classes of notation have been proposed for specifying
dialogues [6]: transition diagrams and event handlers.

Transition diagrams have been used by Newman,
Edmonds, Guest, Jacob and Wasserman [4,8,14,17,22].
Nodes in the network correspond to states in the pro-
gram and arcs to actions that cause a change in state.
Actions are triggered by user input. Recursive transi-
tion diagrams are needed to represent nested interac-
tions. Transition diagrams provide an excellent means
of presenting information visually; Hare1 [lo] uses them
as the basis of a visual programming notation called
statecharts. The major drawback with transition dia-
grams is the verbosity of the representation. A typi-

cal textual representation of a transition diagram enu-
merates for each state: the input tokens, the successor
states resulting from acceptance of tokens, and actions,
if any.

Event handlers were proposed by Green [7] and have
been used in the U. of Alberta UIMS [7] and ALGAE [5].
The dialogue layer is divided into event handlers. Each
handler contains internal state which may be altered by
the execution of actions upon the receipt of events from
outside. The source of events may be the application,
the presentation, or another handler. Event handlers
may choose the types of event they are willing to accept.
The entire collection of handlers resembles an object-
oriented system such as Smalltalk-80, except that in-
heritance of properties is not generally required. Event
handlers have the drawback that the input/output lan-
guage cannot readily be determined without inspecting
handler code. Clarity also suffers from the fact that an
event may activate more than one handler. It may not
be easy to determine which handlers will be active at
any given time. Finally, because they so closely resem-
ble program code themselves, event handlers provide
relatively little opportunity for labor-saving compila-
tion. The abstraction level of grammars is significantly
higher.

Context-free grammars have been used by Banau
and Lenorovitz [9], and Olsen [18,19]. The Input Tools
notation of Van den Bos [21] can in some sense be con-
sidered a cross between event handlers and CFG nota-
tions. Our work borrows the fork operators from In-
put Tools. To our knowledge, no previous work has
approached the problem of providing multi-threading
and token dispatch in CFGs by extending the notation
and hence the class of languages accepted. Unlike Input
Tools, our method does not require prohibitive run-time
overhead [16].

When arbitrary actions with side effects are allowed
in the dialogue, all three major models have the same
descriptive power as a Turing machine. In fact, a dia-
logue that does not require Turing-equivalent power is
likely to be trivial. We prefer grammars because the no-
tation is both concise and abstract, the input language
is specified explicitly and the separation between input
specification and action is clear.

STATUS OF WORK

We have completed the design of the dialogue language
of our UZMS. We will begin soon to build a dialogue
compiler that generates parse tables from grammars
written in the notation described.

To gain acceptance by designers, a notation must al-
low hierarchical composition of dialogues, starting with

77

CHI ‘88

system-provided primitives. Libraries of often used
interaction techniques will minimize redundant effort.
Recent work has focused on object-oriented approaches
to dialogue objects. Jacob [13] has described a system
in which each object is specified with a single-threaded
state diagram, and objects are combined to form the
overall dialogue.

Our next goal is to design a language in which dia-
logue grammars, private data, and executable code are
grouped into modular dialogue objects. We will provide:
the interface designer with a design tool to compose
these interaction objects to form the user interface.

ACKNOWLEDGMENT

David Sher provided the proof that fork operators can
generate non-context-free languages.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

Evan Adams and Steven S. Muchnick. Dbxtool:
a window-based symbolic debugger for Sun work-
stations. Soflware Practice and Experience, July
1986.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1986.

William Buxton and Brad A. Myers. A study in
two-handed input. In CHI’86 Conference Proceed-
ings, pages 321-326, April 1986.

E. A. Edmonds. Adaptive Man-Computer Inter-
faces, pages 389-426. Academic Press, London,
1981.

Mark A. Flecchia and Daniel R. Bergeron. Spec-
ifying complex dialogs in ALGAE. In Conjer-
ence Proceedings of Human Factors in Conapufing
Systems and Graphics Interface, Toronto, Canada,
April 1987.

Mark Green. A survey of three dialogue mod-
els. ACM Transactions on Graphics, 5(3):244-275,
July 1986.

Mark Green. The University of Alberta user in-
terface management system. Computer Graphics,
July 1985.

Stephen P. Guest. The use of software tools for
dialogue design. International Journal of Man-
Machine Studies, 16:263-285, 1982.

Paul. R. Hanau and David. R. Lenorovitz. Pro-
totyping and simulation tools for user/computer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

20.

21.

22.

dialogue design. In SIGGRAPH ‘80 Conference
Proceedings, pages 271-278, 1980.

David Harel.. Statecharts: a visual formalism fox
complex systems. Science of Computer Program-
ming, 8(3):231-274, June 1987.

Ralph D. Hill. Event-response systems - a tech-
nique for specifying multi-threaded dialogues. In
Conference Proceedings of Human Factors in Com-
puting Systems and Graphics Interface, Toronto,
Canada, April 1987.

Ralph D. Hill. Supporting concurrency, commu-
nication and. synchronization in human-ca,mputer
interaction -- the Sassafras UIMS. ACM Transac-
tions on Graphics, 5(3):179-210, July 1986.

Robert J. K. Jacob. A specification language for
direct-manipulation user interfaces. ACM Trans-
actions on Graphics, 5(4):283-317, October 1986.

Robert J. K. Jacob. Using formal specifications in
the design of a human-computer interface. Cona-
munications of the ACM, 26(4):259-264, April
1983.

Donald E. Knuth. Semantics of context-free lan-
guages. Mathematical Systems Theory, 2(2):127-
145, June 1968.

J. Matthys. Recent experiences with input han-
dling at PM.A. In User Interface Managem,ent Sys-
tems, Springer-Verlag, 1985.

W. M. Newman. A system for interactive graphical
programming. In SJCC 1968, 1968.

Dan R. Olsen Jr. Automatic generation of interac-
tive systems. Computer Graphics, January 1983.

Dan R. Olsen Jr. and Elizabeth P. Dempsey. Syn-
graph: a graphical user interface generator. Com-
puter Graphics, July 1983.

Giinther E. Pfaff, editor. User Interface Manage-
ment Systems. Springer-Verlag, 1985.

Jan van den Bos. Input tools - a new language con-
struct for input-driven programs. In Proceedings of
the European Conference on Applied Information
Technology of IFIP, September 1979.

Anthony I. Wasserman. Extending state transition
diagrams for the specification of human-computer
interaction. IEEE Transactions on Software Engi-
neering, SE-11(8):699-713, August 1985.

78

