
676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 15. NO 6. JUNE 1989

Experience with Charlotte: Simplicity and Function in
a Distributed Operating System

RAPHAEL A. FINKEL, MICHAEL L. SCOTT, MEMBER, IEEE, YESHAYAHU ARTSY, A N D

HUNG-YANG CHANG

Abstract-This paper presents a retrospective view of the Charlotte
distributed operating system, a testbed for developing techniques and
tools to solve computation-intensive problems with large-grain paral-
lelism. The final version of Charlotte runs on the Crystal multicom-
puter, a collection of VAX-111750 computers connected by a local-area
network. The kernellprocess interface is unique in its support for sym-
metric, bidirectional communication paths (called links), and syn-
chronous nonblocking communication.

Our experience indicates that the goals of simplicity and function
are not easily achieved. Simplicity in particular has dimensions that
conflict with one another. Although our design decisions produced a
high-quality environment for research in distributed applications, they
also led to unexpected implementation costs and required high-level
language support.

We learned several lessons from implementing Charlotte. Links have
proven to be a useful abstraction, but our primitives do not seem to be
at quite the right level of abstraction. Our implementation employed
finite-state machines and a multitask kernel, both of which worked well.
I t also maintains absolute distributed information, which is more ex-
pensive than using hints. The development of high-level tools, partic-
ularly the Lynx distributed programming language, has simplified the
use of kernel primitives and helps to manage concurrency at the pro-
cess level.

Index Terms-Charlotte, Crystal, distributed computing, kernel in-
terface design, links, Lynx, message passing.

I. INTRODUCTION
HARLOTTE is a distributed operating system in pro-
duction use at the Department of Computer Sciences

of the University of Wisconsin-Madison [4], [5] . Char-
lotte is intended as a testbed for developing techniques
and tools to exploit large-grain parallelism in computa-
tion-intensive problems. Charlotte was constructed over
the course of approximately five years, going through
several distinct versions as the underlying hardware and
our ideas for implementation changed. The final version
runs on the Crystal multicomputer [17], a collection of 20
VAX-111750 computers connected by an 80 Mbitlsecond
Proteon token ring. This paper presents a retrospective
view of the Charlotte project.

Manuscript received February 27, 1987; revised October 30, 1987.
R. A. Finkel is with the Department of Computer Science, University

of Kentucky, Lexington, KY 40506.
M. L. Scott is with the Department of Computer Science, University of

Rochester, Rochester, NY 14627.
Y. Artsy is with Digital Equipment Corporation, 550 King Street, Lit-

tieton, MA 01460.
H.-Y. Chang is with the IBM Thomas J . Watson Research Center, P.O.

Box 218, Yorktown Heights, NY 10598.
IEEE Log Number 8927379.

Although it seems clearer in hindsight than it was in the
early stages, we now regard our work as the result of 1)
the axioms that defined the available design space, 2) the
goals that provided direction, and 3) the design decisions
that established the final structure. Our experience indi-
cates that the goals of simplicity and function are difficult
to attain simultaneously. Simplicity is particularly trou-
blesome: quests for simplicity in different areas of a proj-
ect may conflict with one another. The purpose of this
paper is to explain the lessons we learned from Charlotte
and to motivate the steps we took while learning those
lessons.

The axioms for Charlotte were as follows:
The underlying hardware will be a multicomputer. A

multicomputer is a collection of conventional computers
(called nodes), each with its own memory, connected by
a communicative device. The tradeoffs between multi-
computers and multiprocessors, in which memory is
shared, include scalability (multicomputers have greater
potential), grain of parallelism (multicomputers are suited
only to a large-grain parallelism), and expense (multi-
computers appear to be more economical). At the time our
project began, the department was heavily committed,
both in research orientation and hardware resources, to
parallel computing without shared memory.

The project will support a wide variety of message-
based applications. The design of distributed algorithms
has been an important area of research in our department
for many years. Our prospective user community would
not have been willing to adopt a single programming lan-
guage or a single paradigm for process interaction (client-
server, master-slave, or pipeline, for example). Ideally,
we would have liked to support a variety of shared-mem-
ory paradigms as well, but our commitment to a multi-
computer environment made such support impractical.

Policies and mechanisms will be separated clearly.
In addition to supporting distributed applications, it was
imperative that our work permit experimentation with dis-
tributed systems software. The Charlotte kernel needed to
provide sufficient mechanisms to make good use of the
machine, but could not afford to embed policies in the
core of the operating system. A fundamental assumption,
then, was that the majority of operating system services
would be provided by user-level server processes, outside
the (replicated) kernel.

0098-558918910600-0676$01.00 @ 1989 IEEE

FINKEL el a / : EXPERIENCE WITH CHARLOTTE 677

We have labeled the preceding items "axioms" be-
cause, in retrospect, it is clear that they were never ques-
tioned in the course of the Charlotte project. To a large
extent, they were imposed by outside factors. They were
also objective enough that little interpretation was re-
quired. By contrast, our goals were much more vaguely
stated:

Charlotte will provide adequate function. The facil-
ities available to application programs must be expressive
enough to support the needs of our user community (ax-
iom 2). In its attempt to provide a pleasant virtual ma-
chine, the kernel must not hide too much of the power of
the underlying hardware. Graceful degradation of service
must occur when individual nodes of the multicomputer
fail.

Charlotte will be simple. Simplicity is largely aes-
thetic, although it has a number of more concrete dimen-
sions. We intended Charlotte to be minimal, in the sense
that it would not provide features that were not needed,
and efficient, in the sense that the primitives it did provide
would require little code and could be executed quickly.
We were also concerned that Charlotte be both easily im-
plemented and easily used. We hoped to describe its prim-
itives with short, concise semantics. As discussed below,
we were successful in only some of these dimensions.

Our axioms and goals are not unique to Charlotte. Ac-
cent [30], Amoeba [28], DemosIMP [27], Eden [2], V
[13], and a host of other operating systems have started
with similar intentions. Other projects have tried to sup-
port distributed algorithms with languages instead of op-
erating systems. Ada [40], Argus [26], NIL [39], and SR
[3] are examples of this approach. It is the combination

that continues execution after making a request may be in
an arbitrary state when problems arise. Charlotte ad-
dresses these concerns by allowing a process to discover
the status of its messages explicitly, at a time of its own
choosing.

A final version of Charlotte fulfils our goals of function
and simplicity in some ways but not in others. We are
hopeful that our experience will prove useful to future de-
signers of similar systems, who may wish to emulate our
successes and avoid our mistakes. We describe the Char-
lotte IPC semantics in Section 11. Although these seman-
tics were intended to be simple, supposedly orthogonal
features were found to interact in unexpected ways. The
kernel/process interface come'; close to our goal of mini-
mality, but the implementation is large and complex.
Careful efforts to keep the kernel modular and structured
made it relatively easy to build and maintain, despite its
size, but the goal of efficiency suffered badly in the pro-
cess. We describe the implementation in Section 111.

Above the level of the kernellprocess interface, expe-
rience with the first generation of server processes con-
vinced us that high-level language support would be re-
quired to make Charlotte easy to use. Vhile the IPC
semantics made it possible to write highly concurrent pro-
grams, they also required a distasteful amount of user code
and make it easy to commit subtle programming errors.
Section IV describes some classes or errors and explains
how they arise. Section V describes the language we de-
veloped to regularize the use of Charlotte primitives, han-
dle exceptional conditions, and manage concurrent con-
versations. Section VI describes the lessons we have
learned from our experience.

of design decisions we made in building Charlotte that 11. CHARLOTTE INTERPROCESS COMMUNICATION
makes our work unique. Our earliest, most influential de-
cisions are summarized below. These set the stage for the For reference purposes~ we this with a

many smaller decisions described in Section 11. summary of the most import?-t Charlott' communication

Processes do not share memory, even within a single primitives. The list may be skimmed on first reading and

node of the machine. This decision allows us to make in- then consulted when appropriate later. Complete descrip-

terprocess communication (IPC) completely location in- tions of the Charlotte kernel/process interface can be

dependent. It mirrors the fact that Charlotte runs on a found in other Papers I4I3 [517 t221.
multicomputer.

Communication is on reliable, symmetric, bidirec-
tional links named by capabilities. Two-way links are jus-
tified below. The use of capabilities (described more fully
below) provides a useful abstraction for distributed re-
sources. Processes exercise control over who may send
them messages. An action by one process cannot damage
another, so long as the second takes basic precautions.
Capability-based naming also facilitates experimentation
with migration for load balancing.

Communication is nonblocking, but synchronous. A
server process must often have conversations in progress
with a large number of clients at once. It is imperative
that sending and receiving be nonblocking operations.
Unfortunately, it is also imperative that processes know
when communication fails. The kernel cannot always be
trusted to deliver a message successfully, and a process

MakeLink (var end 1, end2 : link)
Create a link and return references to its ends.

Destroy (myend : link)
Destroy the link with a given end.

Send (L : link; buffer : address; length : integer;
enclosure : link)

Post a send request on a given link end, optionally en-
closing another link end.

Receive (L : link; buffer : address; length : integer)
Post a receive request on a given link end. L can be a
specific link or an "any link" flag.

Cancel (L : link; d : direction)
Attempt to cancel a previously-posted Send or Receive
request. The attempt will fail if the request has already
completed, even if it has not yet been awaited.

67 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 15. N O 6. JUNE 1989

Wait (L : link; d : direction; var e : description)
Wait for a request to complete. L can be a specific link
or an "any link" flag. The direction can be Sent, Re-
ceived, or Either. The description returns the success or
failure of the awaited request, as well as its link, direc-
tion, number of bytes transferred, and the enclosed link
(if any).

GetResult (L : link; d : direction; var e : description)
Ask for the information returnedby Wait, but do not
block if the request has not completed. GetResult is a
polling mechanism.

The kernel matches Send and Receive requests. A match
occurs if a Send and a Receive have been posted (and not
canceled) on opposite ends of the same link. Charlotte
allows only one outstanding request in each direction on
a given link. This restriction makes it impossible for an
over-eager producer to overwhelm the kernel with re-
quests. Completion must be reported through Wait or
GetResult before another similar request can be posted.
Buffers are managed by user processes in their own ad-
dress spaces. Results are unpredictable if a process ac-
cesses a buffer between posting a request and receiving
notification of its completion.

All kernel calls return a status code. All but Wait are
guaranteed to complete in a bounded amount of time.

A. Connections

Charlotte processes communicate with messages sent
on links. A link is a software abstraction that represents a
communication channel between a pair of processes.
Messages may be sent in either direction on a link. They
can even be sent simultaneously in both directions. Each
process has a capability to its end of the link. This capa-
bility confers the right to send and receive messages on
the link. These rights cannot be duplicated, restricted or
amplified. They can be transferred to another process (see
below), but the kernel guarantees that only one capability
for each link end exists at a given time.

Among other things, the status codes returned form ker-
nel calls allow a process to determine when one of its
links has been destroyed at the other end. The kernel de-
stroys all the links connected to a process automatically
when the process terminates. It also destroys all the links
connected to processes on a particular node when it de-
tects that the node has crashed.

The decision to use duplex links was something of an
experiment. Experience with Arachne (Roscoe) 1381, a
predecessor to Charlotte, indicated several shortcomings
of unidirectional links, in which messages can be sent in
one direction only. First, client-server, master-slave, and
remote-procedure-call situations all require information to
flow in both directions. Even pipelines may require re-
verse flow for exception reporting. With unidirectional
links, processes must manage link pairs or must create
reply links to be used once and then discarded. Bidirec-

tional links allow reverse traffic with no such penalty.
Second, the kernel at a receiving end sometimes needs to
know the location of the sending end(s), to warn them,
for example, that the receiving end has moved or been
destroyed. In Arachne, Demos [9], and DemosIMP [27],
all of which use unidirectional links, the information
stored at the receiving end of a link is not enough to find
the sending ends. Bidirectional links offer the opportunity
to maintain information at both ends about the location of
the other.

A Charlotte process can transfer possession of one of
its link ends to another process by enclosing the end in a
message on another link. The receiver of the message
gains possession of the moving end. The sending process
loses its possession. While one end of a link is moving,
the process at the other end may still post Send or Receive
requests and can even move or destroy its end. Transfer
of a link end is an atomic operation from the user's point
of view. This atomicity, particularly in the presence of
canceled requests and simultaneously moving ends, was
achieved at the expense of a rather complicated imple-
mentation, as discussed in Section 111.

B. Buffering and Synchronization

An unlimited number of kernel buffers would offer the
highest degree of concurrency between senders and re-
ceivers. In practice, a message-passing system can only
provide a finite amount of storage. Management of a pool
of buffers requires flow control and deadlock prevention
or recovery. Rather than accept the resulting complexity,
we decided in Charlotte to manage buffers in user space.
This decision is in keeping with the goals of minimality
and ease of implementation. As described in the following
section, a cache of (semantically invisible) buffers in the
kernel permits an efficient implementation as well. More-
over, the use of user-provided buffers allows Charlotte to
handle messages of arbitrary size.

C. Synchronization

Wait is the only communication primitive that blocks.
Send and Receive initiate communication but do not wait
for completion. A process may therefore post Send or Re-
ceive requests on many links before waiting for any to
finish. It may also perform useful work while communi-
cation is in progress. Servers in particular need not fear
that one slow client will compromise the service provided
to others.

Posting a Send or Receive is synchronous (a process
knows the time at which the request was posted), but
completion is inherently asychronous (the data transfer
may occur at any time in the future). Charlotte allows a
user process to poll for completion status, with GetResult,
or to block, with Wait, until that status is available. For
processes that want to wait immediately after posting a
request, there are also combined Send/Wait and Receive/
Wait kernel calls (not listed in Section 11) that avoid the
extra context switches. We consider a mechanism for

FINKEL el a t . : EXPERIENCE WITH CHARLOTTE

software completion interrupts, but had no applications in
mind for which the additional functionality would have
justified the complexity of semantics and implementation.
By contrast, the ability to cancel an outstanding Send or
Receive request appeared to be useful in several common
situations.

A server may wish to cancel a Send if its message to a
client has not been accepted after a reasonable amount of
time. Likewise, a process may wish to cancel a Send when
it discovers a more up-to-date version of the data it is
trying to transmit. A receiver may decide it is willing to
accept a message that requires a buffer larger than the one
provided by its current Receive. A server that keeps Re-
ceives posted as a matter of course may decide it no longer
wants messages on some particular link. These last two
scenarios arise in the run-time support routines for the
Lynx language, described in Section V. Naturally, a Can-
cel request will fail if its Send or Receive has already been
paired with a matching request at the other end of the link.

D. Message Screening

The Receive and Wait requests can specify a particular
link end, or can indicate than any end will do. Wait can
specify whether a Send request, a Receive request, or
Either is awaited. We considered allowing more general
sets of link ends, but as with software interrupts had no
applications in mind for which the added complexity was
essential. The ability to specify an arbitrary set of ends
would have had a negative impact on all five of our mea-
sures of simplicity.

Since only a single Send and a single Receive can be
outstanding on a given link end, the combination of link
number and direction suffices to specify a request to be
canceled, polled, or awaited. We considered a scheme in
which Send and Receive would each return a request iden-
tifier to be used when referring to the pending request.
Such a scheme would have made it easier to support mul-
tiple requests (for double buffering, for example). It would
also have simplified the specification of sets of requests
for Wait had we permitted them. It was our original
impression that the provision of request identifiers would
have increased both the complexity of the kernellprocess
interface and the size and overhead of the kernel. In hind-
sight, it appears that this impression was mistaken; re-
quest identifiers would probably have made life easier for
both the user and the kernel.

On the Crystal multicomputer [17], Charlotte resides
above a communication package called the nugget [15],
which provides a reliable, packetized, intermachine trans-
mission service. Charlotte's kernel implements the ab-
stractions of processes and links. In order to provide the
facilities described in the previous section, copies of the
kernel on separate nodes communicate with a lower-level
protocol. Significant events for this protocol include mes-

sages received from remote kernels and requests from lo-
cal processes.

A. Protocol
In general, the kernel attempts to match Send and Re-

ceive requests on opposite ends of a link. When it suc-
ceeds in doing so, it transfers the contents of the message
and moves the enclosed link end, if any. The simplest
case arises when a Send is posted with no enclosure, and
the matching Receive is already pending. In this case, the
sending kernel transmits one packet to the receiving ker-
nel and the latter responds with an acknowledgment. If
the matching Receive is posted after the packet arrives,
the message may still be held in a cache in the receiving
kernel, so the acknowledgment can still be sent. If the
message is no longer in the cache, the receiving kernel
asks the sending kernel to retransmit it.

Very large messages may require multiple packets,
since the nugget imposes a maximum size of approxi-
mately 2K bytes. The receiving kernel acknowledges the
first packet when the receiving process is ready. The
sending kernel then transmits the remaining packets and
the receiving kernel returns a single acknowledgment for
all.

An attempt to cancel a Send or Receive request may find
that request in any of several states, such as pending,
matched, in transit, aborted, or completed. Likewise, an
attempt to move or destroy a link may find the other end
in any of a large number of states. Since cancellation of
requests and movement or destruction of links can happen
at both ends simultaneously, the number of possible scen-
arios is large. The more elaborate cases, together with full
details of the protocol, are discussed in a technical report
[41.

B. Absolutes and Hints

In order to facilitate efficient delivery of messages,
Charlotte attempts to keep consistent, up-to-date infor-
mation at both ends of each link. Link movement there-
fore requires that a third party (the kernel at the far end
of the link that is moving) be informed. That third party
may have a pending Send or Receive of its own. It may
even be moving its end. The protocol is entirely symmet-
ric; neither end of a link plays a dominant role. Although
a link can be moved with very few kernel-level messages,
the possible interleavings are subtle enough that we were
forced to abandon a half dozen "final" algorithms before
arriving at a correctness proof.

An alternative approach to link movement would rely
on a system of hints. Each end of a link would keep track
of the probable location of the other end, but the link
movement protocol could leave this data inconsistent. Ex-
cept in cases where a link moves more than once before
being used to send a message (in which case hints are
more efficient), the total numer of kernel-level messages
would be the same with both approaches. A message sent
to the wrong location would need to be returned, so the
hint could be updated. We now believe, however, that

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 6, JUNE I989

hints would have permitted a substantially smaller kernel.
We would be inclined to dispense with absolutes in future
implementations.

C. Interrelations
We designed our implementation so that all communi-

cation scenarios, both simple and complex, could be han-
dled in a regular manner. The protocol is directed by a
hand-built, table-driven finite state automaton. The states
of the automaton reflect the status of a link. There are
twenty types of input events, six of which represent re-
quests from local processes and the rest of which repre-
sent messages from remote kernels. In an attempt to en-
sure correctness of the tables, we manually enumerated
and simulated an exhaustive list of cases.

Our original hope was that the implementations of the
various communication primitives would be more or less
orthogonal. In practice, however, the interrelations be-
tween events on a link were surprisingly complex. An ac-
tion at one end can occur when the other end is in an
arbitrary state. Since Send and Receive are nonblocking,
even the local end of a link may be in any of a large num-
ber of states when a related request is made.

As is true in other systems 1121 the number of auto-
mation states is large. To keep the complexity manage-
able we built four independent automata for different
functions: Send, Receive, Destroy, and Move. These au-
tomata interact in only a few cases. Cancel is imple-
mented in the Send and Receive automata. We also reduce
the number of states with a method described by Danthine
[16] and others [l l] in which some information is en-
coded in global variables. The variables are consulted only
in particularly complex cases.

Our automata have approximately 250 non-error entries,
each of which has a prescribed action. Many actions ap-
ply to several different entries; the total number of actions
is about 100. The simplest actions consist of a single op-
eration, such as sending a completion acknowledgment.
The most complex action checks five variables and selects
one of several operations.

D. Kernel Structure
The kernel itself is implemented as a collection of non-

preemptable Modula processes [20], which we call tasks
to distinguish them from user-level processes. These tasks
communicate via queues of work requests. The Automa-
ton Task implements all four automata. Requests from
processes are first verified by the Envelope Task. Com-
munication requests are then forwarded to the automa-
ton's work queue. Two tasks manage information flow to
and from the nugget. Other tasks are responsible for
maintaining the clock, collecting statistics, and checking
to make sure that other nodes are alive. User processes
run only when kernel tasks have nothing left to do.

The division of labor along functional lines made the
kernel relatively easy to build. We have also found it easy
to maintain. Most errors can be traced to an isolated sec-
tion of code, and modifications rarely have widespread

implications. We have, for example, implemented pro-
cess migration as an incremental enhancement of Char-
lotte without substantially modifying the automata 161,
[7]. On the other hand, the complete kernellkernel pro-
tocol is almost beyond the comprehension of any single
person. In this sense, the goal of simplicity has clearly
not been met.

IV . PROGRAMMING IN CHARLOTTE

We all learn when writing programs for the first time
that it is almost impossible to avoid bugs. The problem
appears to be much worse in a distributed environment.
Errors occur not only within individual processes, but also
in the interactions between processes. Ordering errors, in
particular, arise from unexpected interleavings of asyn-
chronous events 1231. In addition to worrying about the
more global ordering of messages received from different
places (a subject beyond the scope of our work), pro-
cesses in Charlotte must also be careful not to use a Re-
ceive buffer or modify a Send buffer before the associated
kernel request has finished. In servers that manage large
numbers of buffers, mistakes are more common than one
might at first expect.

We found writing server processes to be suprisingly dif-
ficult. Ordering errors were not the only program. Several
others can be attributed directly to our use of a conven-
tional sequential language (a Modula subset), with ordi-
nary kernel calls for interprocess communication. In par-
ticular:

Servers devote a considerable amount of effort to
packing and unpacking message buffers. The standard
technique uses type casts to overlay a record structure on
an array of bytes. Program variables are assigned to or
copied from appropriate fields of the record. The code is
awkward at best and depends for correctness on program-
ming conventions that are not enforced by the compiler.
Errors due to incorrect interpretation of messages have
been relatively few, but very hard to find.

Every kernel call returns a status value that indicates
whether the requested operation succeeded or failed. Dif-
ferent sorts of failures result in different values. A well
written program must inspect every status and be prepared
to deal appropriately with every possible value. It is not
unusual for 30 percent of a carefully written server to be
devoted to error checking and handling. Even an ordinary
client process must handle errors explicitly, if only to ter-
minate when a problem occurs.

Conversations between servers and clients often re-
quire a long series of messages. A typical conversation
with a file server, for example, begins with a request to
open a file, continues with an arbitrary sequence of read,
write, and seek requests, and ends with a request to close
the file. The flow of control for a single conversation could
be described by simple, straight-line code except for the
fact that the server cannot afford to wait in the middle of
that code for a message to be delivered. Charlotte servers
therefore adopt an alternative program structure in which
a single global loop surrounds a case statement that han-

FINKEL et 0 1 . : EXPERIENCE WITH CHARLOTTE 68 1

dies arbitrary incoming messages. This explicit interleav-
ing of separate conversations is very hard to read and un-
derstand.

Previous research had addressed these concerns in sev-
eral different ways. The problem of message packing and
unpacking has been solved in several distributed systems
by the development of remote procedure call stub gener-
ators. Birrell and Nelson's Lupine [lo] and the Accent
Matchmaker [24] are particularly worthy of note. Safety
depends on integrating the stub generator into the com-
piler's type-checking mechansim and on preventing mes-
sages from being sent in any other way. If the language
provides facilities for exception handling, then the prob-
lem of checking result values can be solved with stubs as
well.

Addressing the problem of conversation management
requires multiple cooperating threads of control in a sin-
gle address space. Such threads are supported directly by
the Amoeba [28] and Mach [I] distributed operating sys-
tems and may be realized through programming conven-
tions in any operating system that allows processes to
share memory. There is, however, a nontrivial cost as-
sociated with scheduling a server's threads at the operat-
ing-system level, since creating a thread or switching from
one thread to another requires a context switch into and
out of the kernel. The designers of the Medusa distributed
operating system [29] chose to implement coroutines at
the user level rather than change the set of threads (activ-
ities) in a server (task force) at run time.

The lesson that we learn from this discussion is that
providing adequate function does not automatically make
facilities easy to use. It is natural for operating systems
to provide communication facilities through service calls,
but it is not necessarily natural for programs to operate at
that level. The hardest problems seem to arise in servers.
Clients are more straightforward to write, since the server-
specific protocol can be packaged into a library routine
that makes communication look like procedure calls (at
the expense of blocking during all calls to servers).

There are two ways out of the difficulty. One is to pro-
vide a higher level of service in the kernel, possibly in-
cluding lightweight processes. In addition to the perfor-
mance problems alluded to above, this approach assists
only those applications for which the particular choice of
abstractions is appropriate, and is likely to make it more
difficult to write applications for which the abstractions
are not appropriate. Our preference is to provide a higher-
level interface on top of the communication kernel.

In keeping with the conclusions of the preceding sec-
tion, we have developed a language called Lynx. It is de-

boundaries between nodes. Each outermost module is in-
habited by a single process. Processes share no memory.
They are managed by the operating system kernel and ex-
ecute in parallel. Multiple threads of control within a pro-
cess are managed by the language run-time system. In
contrast to the lightweight processes of most distributed
programming languages, the threads of Lynx are corou-
tines with no pretense of parallelism.

Communication Paths and Naming: Lynx provides
Charlotte links as first-class language objects. The pro-
grammer has complete run-time control over the binding
of the links to processes and the binding of names to links.
The resulting flexibility allows the links to be used for
reconfigurable, type-checked connections between very
loosely coupled processes-processes designed in isola-
tion and compiled and loaded at disparate times.

Syntax for Message Receipt: Messages in Lynx may be
received explicitly by any thread of control. They may
also be received implicitly, creating new threads that ex-
ecute entry procedures. Processes can decide at run time
which approch(es) to use when, and on which links.

Each Lynx process begins with a single thread of con-
trol. It can create new threads locally or can arrange for
them to be created in response to messages from other
processes. Separate threads do not execute in parallel; a
given process continues to execute a given thread until it
blocks. It then takes up some other thread where it last
left off. If all threads are blocked for communication, then
the process waits for a message to be sent or received. In
a server, separate threads of control can be used to man-
age conversations with separate clients. Conversations
may be subdivided by creating new threads at inner levels
of lexical nesting. The activation records accessible at any
given time will form a tree, with a separate thread corre-
sponding to each leaf.

A link variable in Lynx accesses one end of a link, much
as a pointer accesses an object in Pascal. Built-in func-
tions allow new links to be created and old ones to be
destroyed. (Neither end of a destroyed link is usable.) Ob-
jects of any data type can be sent in messages. If a mes-
sage includes link variables or structures containing link
variables, then the link ends referenced by those variables
are moved to the receiving process. Link variables in the
sender that refer to those ends become dangling refer-
ences; a run-time error results from any attempt to use
them.

From a client's point of view, message passing looks
like a remote procedure call; the sending thread of control
transmits a request and waits for a reply.' An active thread
can serve a request for a given operation by executing an
Ada-like [40] accept statement. A process can also ar-

scribed in full detail in several other places [32], [36], , , Since links are completely symmetric, the terms "client" and "server"
1371. differs from distributed languages are relevant only in the context of a given call. It is entirely possible for
we have surveyed [341 in three major areas: the processes at opposite ends of a i n k to make requests of each other

processes and &odules: Procisses and modules in simultaneously. The file system, for example, may be a client of the mem-
ory manager when it needs more buffer space, while the memory manager

reflect the Structure a ma" be a client of the file svstem when it needs to load some data into
may nest, but ony within a node; no module can cross the memory. One link between the processes suffices.

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 6. JUNE 1989

range to receive requests implicitly by binding a link to
an entry procedure. Bind and unbind are executable com-
mands. When all threads in a process are blocked, the
run-time support package attempts to receive a request on
any of the links for which there are bindings or outstand-
ing accepts. The operation name contained in the message
is matched against those or the accepts and the bound en-
tries to decide whether to resume an existing thread or
create a new one. Bindings or accepts that cause ambi-
guity are treated as run-time errors.

Lynx enforces structural type equivalence on messages.
A novel mechanism for self-descriptive messages [33] al-
lows the checking to be performed efficiently at run time.
An exception-handling mechanism permits recovery from
errors that arise in the course of message passing and al-
lows one thread to interrupt another.

Our experience indicates that it is far easier to write
servers in Lynx than in a sequential language with calls
to Charlotte primitives. Development time, source code
length, and frequency of bugs are all reduced signifi-
cantly. Message transmission time is increased by less
than ten percent, even when Lynx code is compared to
Modula programs that perform no error checking.

We have used Lynx to reimplement several of the server
processes as well as a host of distributed applications, in-
cluding numerical applications (the Simplex method), A1
techniques (ray tracing, Prolog), data structures (nearest
neighbor search in k-d trees, B+ trees), and graph algo-
rithms (spanning trse, taveling salesman) [18], [19], [21].
The Charlotte link concept, as represented in Lynx, has
proven ^3 be a valuable abstraction for representing re-
sources and algorithm structure. This vindicates our orig-
inal choice of bidirectional links.

On the other hand, the structure of the run-time support
package for Lynx has led us to doubt the appropriateness
of the interface between that package and the kernel. De-
spite the fact that much of the design of Lynx was moti-
vated by the primitives of Charlotte, the actual imple-
mentation proved to be quite difficult. For example, Lynx
requires greater selectivity than Charlotte provides for
choosing an incoming message. There is no way to tell
the kernel to accept reply messages but to ignore requests.
In addition, Lynx permits an arbitrary number of links to
be enclosed in a message, while Charlotte supports only
one. Implementations of Lynx for SODA [25], a "Sim-
plified Operating system for Distributed Applications,"
and the BBN Butterfly Parallel Processor [8] were in some
ways considerably simpler [35].

VI. LESSONS

A. The Kernel/Process Interface

Duplex links are a useful abstraction. We have been
generally happy with the success of Charlotte links. Mes-
sages can be sent in both directions without resorting to
artificial "reply links." Symmetry means that processes

ceivers have as much control as senders over the links on
which they are willing to communicate. Processes at each
end can be informed of important events (such as terrni-
nation) at the other end. On the other hand, the protocol
for link transfer would be much less complex if only one
end could move. In addition, certain facilities not pro-
vided in Charlotte, such as multicast and broadcast, do
not appear to be compatible semantically with the notion
of point-to-point software connections. For processes that
use a remote-procedure-call style of interaction, there is
no obvious way to forward a request on a link.2 The ver-
dict, therefore, is mixed. There are clearly communica-
tion paradigms for which duplex links are not an attractive
abstraction. For a very large class of problems, however,
our experience suggests that links work very well.

Synchronous notifications work well with nonblock-
ing primitives. The combination of nonblocking Send and
Receive with blocking Wait allows processes to commu-
nicate with large numbers of peers without unnecessary
delays and without sacrificing the ability to obtain syn-
chronous notification of errors. In the absence of state-
sharing lightweight processes, we are unaware of any
other mechanism that provides a comparable level of
function. In retrospect, we believe that a system of unique
identifiers for outstanding requests would be a useful en-
hancement to Charlotte.

Message screening belongs in the application layer.
Every reliable protocol needs top-level acknowledgments
[31]. A distributed operating system can attempt to cir-
cumvent this rule by allowing a user program to describe
in advance the sorts of messages it would be willing to
acknowledge if they arrived. The kernel can then issue
acknowledgments on the user's behalf. This trick only
works if failures do not occur between the process and the
kernel and if the descriptive facilities in the kernellpro-
cess interface are sufficiently rich to specify precisely
which messages are wanted. The descriptive facilities of
Charlotte allow a user to specify nothing more than the
name of a link. For the run-time package of Lynx, a finer
degree of screening was desired. We would be tempted in
future systems to allow multiple outstanding Sends and to
adopt a mechanism similar to that of SODA [25], in which
acknowledgments are delayed until the receiving process
has examined the message and decided it really wants it.

Middle-level primitives are not a good idea. A very
low-level kernellprocess interface is almost certain to be
too cumbersome for programmers to use directly. It will,
however, admit a wide variety of higher-level packages.
A very high-level interface may be easy to use, but only
for a single style of application program. In order to per-
mit direct use by many kinds of application programs, the
communication facilities of most distributed operating
systems (Charlotte among them) have been designed with
a middle-level interface. While this intermediate ap-

'1n NIL [39], for example, one sends to a port, but replies to a message.
There need not be an explicit path between the replier and the original
reuuester. need not keep track of which endof a link is which. Rei ,

FINKEL el a / : EXPERIENCE WITH CHARLOTTE

proach may support both top-level applications and ad-
ditional layers of software, our experience suggests that
it fills neither role particularly well. Charlotte is a little
too low-level for everyday use by ordinary programmers,
and a little too high-level for the efficient implementation
of certain parts of Lynx. The proliferation of remote-pro-
cedure-call stub generators for other distributed operating
systems suggests that many researchers have arrived at
similar conclusions.

B. Implementation Considerations

Finite-state protocol machines are extremely useful.
Our rigidly structured (if handwritten) automaton pro-
vides a space- and time-efficient implementation of a very
complex protocol. Construction of the automaton was
straightforward, and the systematic enumeration of states
provided us with a high degree of confidence in the cor-
rectness of our implementation. The division into subau-
tomata and the judicious use of global flags were useful
simplifying techniques. We recommend them highly.

Division of labor among tasks is elegant but slow.
By assigning different functions to different Modula tasks,
we were able to subdivide the kernel into essentially in-
dependent pieces. The interfaces between pieces were
simple queues of notices. The modularity of the kernel
has made maintenance relatively easy, but has not been
particularly good for performance. A simple message be-
tween machines takes approximately 25 ms, a substantial
fraction of which is devoted to task switches in the send-
ing and receiving kernels. We would be tempted in future
projects to consider less expensive structuring techniques
(such as upcalls [14], for example).

Absolute distributed information is hard to maintain.
Consistent, up-to-date, distributed information can be
more trouble than it is worth. It may be easier to rely on
a system of hints, so long as 1) they usually work, and 2)
we can notice and recover when they fail. We suspect that
the size of the Charlotte kernel could be reduced consid-
erably by using hints for the location of link ends.

C. General Lessons for Parallel Systems

Simple primitives may interact in complicated ways.
Even concise, correct semantics may require surprisingly
complicated algorithms. At first glance, the primitives to
make and cancel requests and to destroy and transfer links
might appear to be largely orthogonal. When occurring
simultaneously, however, these "simple" ideas become
complex. In lieu of specific advice for avoiding interac-
tions, we can at least suggest that future researchers dis-
trust their native optimism.

Confidence in concepts requires an implementation.
It is difficult to anticipate all ramifications of an idea when
exploring it on paper alone. Even with unlimited self-dis-
cipline, the lack of practical proof techniques means that
building and testing an actual implementation is the best
way to gain confidence in the validity of one's ideas. We
do not believe that we were particularly naive in expect-

ing our implementation to be significantly smaller than it
is. It was only after we were deep into the enumeration
of automaton states that the full nature of the problem
became apparent.

Explicit management of concurrency is difficult. The
combination of nonblocking requests and the lack of ker-
nel buffering makes it easy to overwrite a buffer. The
presence of multiple outstanding requests means that more
than one buffer must be used, and that appropriate context
must be managed for each. The problems are particularly
severe for server processes, which must interleave con-
versations with a large number of clients and which can
never afford to wait for specific requests.

Appropriate high-level tools can mitigate program-
ming problems. Lynx was designed to a large extent in
response to the previous lesson. Other tools were built to
address a variety of other concerns. Library packages that
understand how to talk to servers make it easier to write
simple clients. A connector utility initializes multiprocess
applications with arbitrary link connections as described
by configuration files. The success of these tools suggests
that, as on conventional uniprocessors, the friendliness of
a programming environment is more a reflection of the
quality of its tools than of its operating system primitives.
The goal of the kernel designer should not be to support
application programs so much as to support the higher-
level systems software that in turn supports the applica-
tions.

The authors would like to thank the entire Charlotte
team not only for their assistance in designing the oper-
ating system, but also for contributing to earlier drafts of
this paper. M. H. Solomon was a principal designer of
Charlotte. Early versions of the kernel were implemented
by P. Krueger and A. Michael. B. Rosenburg built early
versions of the server processes, and had a major influ-
ence on the design of the interkernel protocol. C . -Q . Y ang
maintained the servers and converted them to Lynx. T.
Virgilio and B. Gerber designed, implemented, and main-
tained the nugget software. We also profited from many
discussions with P. Dewan, A. J. Gordon, W. K. Kalsow,
J. Kepecs, and H. Madduri.

M. Accetta, R . Baron, W. Bolosky, D. Golub, R. Rashid, A . Tev-
anian, and M. Young, "Mach: A new kernel foundation for UNIX
development," in Proc. Summer 1986 USENIX Tech. Con$ Exhibi-
tion, June 1986.
G. T. Almes, A . P. Black, E. D . Lazowska, and J . D . Noe, "The
Eden system: A technical review," IEEE Trans. Software Eng., vol.
SE-11, no. 1, pp. 43-59, Jan. 1985.
G. R. Andrews, R. A . Olsson, M. Coffin, I. J . P. Elshoff, K . Nilsen,
and T. Purdin, "An overview of the SR language and implementa-
tion," ACM TOPLAS, vol. 10, no. 1, pp. 51-86, Jan. 1988.
Y. Artsy, H.-Y. Chang, and R. Finkel, "Charlotte: Design and im-
plementation of a distributed kernel," Dep. Comput. Sci. , Univ.
Wisconsin-Madison, Tech. Rep. 554, Aug. 1984.
- , "Interprocess communication in Charlotte," IEEE Software,
vol. 4 , no. 1, pp. 22-28, Jan. 1987.

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

161 -, "Processes migrate in Charlotte," Dep. Comput. Sci., Univ.
Wisconsin-Madison, Tech. Rep. 655, Aug. 1986.

[7] Y. Artsy and R. Finkel, "Simplicity, efficiency, and functionality in
designing a process migration facility," in Proc. Second Israel Conf,
Computer Systems and Software Engineering, IEEE, May 1987.

[8] BBN Laboratories, "Butterflye parallel processor overview," Rep.
6149, Version 2 , Cambridge, MA, June 16, 1986.

[9] F. Baskett, J. H. Howard, and J. T. Montague, "Task communica-
tion in Demos," in Proc. Sixth ACM Symp. Operating Systems Prin-
ciples, Nov. 1977, pp. 23-31.

[lo] A. D. Birrell and B. J. Nelson, "Implementing remote procedure
calls," ACM Trans. Comput. Syst., vol. 2 , no. 1, pp. 39-59, Feb.
1984; originally presented at the Ninth ACM Symp. Operating Sys-
tems Principles, Oct. 10-13, 1983.

[I 11 G. V. Bochmann, "Finite state description of communication proto-
col," Comput. Networks, vol. 2, pp. 361-372, 1978.

[I21 G. V. Bochmann and J. Gescei, "A unified method for the specifi-
cation and verification of protocols," Inform. Processing, IFIP, 1977.

1131 D. Cheriton, "The V kernel-A software base for distributed sys-
tems," IEEE Software, vol. 1, no. 2, pp. 19-42. Apr. 1984.

[I41 D. Clark, "The structuring of systems using upcalls," in Proc. Tenth
ACM Symp. Operating Systems Principles, Dec. 1-4, 1985, pp. 171-
180; in ACM Operat. Syst. Rev., vol. 19, no. 5.

[I51 R. Cook, R. Finkel, D. De Witt, L. Landweber, T. Virgilio, "The
Crystal nugget: Part I of the first report on the Crystal project," Dep.
Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep. 499, Apr.
1983.

[I61 A. Danthine and J . Bremer, "An axiomatic description of the trans-
port protocol of cyclades," in Proc. Professional Conf. Computer
Networks and Teleprocessing, Mar. 1976.

[I71 D. J. DeWitt, R. Finkel, and M. Solomon, "The Crystal multicom-
puter: Design and implementation experience," IEEE Trans. Soft-
ware Eng., vol. SE-13, no. 8 , pp. 953-966, Aug. 1987.

[18] R. Finkel, A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kai-
kini, C.-P. Ng, M. Subbarao, G. A. Venkatesh, S. Verrna, and K.
A. Vora, "Experience with Crystal, Charlotte, and LYNX," Dep.
Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep. 630, Feb.
1986.

[I91 R. Finkel, B. Barzideh, C. W. Bhide, M.-0. Lam, D. Nelson, R.
Polisetty, S. Rajaraman, I. Steinberg, and G. A. Venkatesh, "Ex-
perience with Crystal, Charlotte, and LYNX: Second report," Dep.
Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep. 649, July
1986.

[20] R. Finkel, R. Cook, D. DeWitt, N. Hall, and L. Landweber, "Wis-
consin Modula: Pan 111 of the first report on the Crystal project,"
Dep. Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep. 501,
Apr. 1983.

[21] R. Finkel, G. Das, D. Ghoshal, K. Gupta, G. Jayaraman, M. Kacker,
J. Kohli, V. Mani, A. Raghavan, M. Tsang, and S. Vajapeyam, "Ex-
perience with Crystal, Charlotte, and LYNX: Third report," Dep.
Comput. Sci., Univ. Wisconsin-Madison, Tech. Rep. 673, Nov.
1986.

[22] R. Finkel, M. Solomon, D. DeWitt, and L. Landweber, "The Char-
lotte distributed operating system: Part IV of the first report on the
Crystal project," Dep. Comput. Sci., Univ. Wisconsin-Madison,
Tech. Rep. 502, Oct. 1983.

[23] A. J . Gordon, "Ordering errors in distributed programs," Ph.D. dis-
sertation, Dept. Comput. Sci., Univ. Wisconsin-Madison, Tech.
Rep. 611, Aug. 1985.

[24] M. B. Joqes, R. F. Rashid, and M. R. Thompson, "Matchmaker: An
interface specification language for distributed processing," in Conf.
Rec. Twelfth Annu. ACM Symp. Principles of Programming Lan-
guages, Jan. 1985, pp. 225-235.

[25] J. Kepecs and M. Solomon. "SODA: A simplified operating system
for distributed applications," ACM Operat. Syst. Rev., vol. 19, no.
4 , pp. 45-56, Oct. 1985; originally presented at the Third ACM SI-
GACT/SIGOPS Symp. Principles of Distributed Computing, Aug. 27-
29, 1984.

[26] B. Liskov and R. Scheifler, "Guardians and actions: Linguistic sup-
port for robust, distributed programs," ACM TOPLAS, vol. 5 , no. 3,
pp. 381-404, July 1983.

[27] B. P. Miller, D. L. Presotto, and M. L. Powell, "DEMOSIMP: The
development of a distributed operating system," Software-Practice
and Exp., vol. 17, pp. 277-290, Apr. 1987.

(281 S. J . Mullender and A. S. Tanenbaum, "The design of capability-
based distributed operating system," Comput. J . , vol. 29, no. 4, pp.
289-299, 1986.

[291 J. D. Ousterhout, D. A. Scelza, and S. S. Pradeep, "Medusa: An
experiment in distributed operating system structure," Commun.
ACM. vol. 23, no. 2, pp. 92-104, Feb. 1980.

[30] R. F . Rashid and G. G. Robertson. "Accent: A communication ori-
ented network operating system kernel," in Proc. Eighth ACM Symp.
Operating Systems Principles, Dec. 14-16, 1981, pp. 64-75; in ACM
Oper. Syst. Rev., vol. 15, no. 5.

[31] J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-end arguments
in system design," ACM Trans. Comput. Syst., vol. 2, no. 4 , pp.
277-288, Nov. 1984.

[32] M. L. Scott, "Design and Implementation of a distributed systems
language," Ph.D. dissertation, Dept. Comput. Sci., Univ. Wiscon-
sin-Madison, Tech. Rep. 596, May 1985.

[33] M. L. Scott and R. A. Finkel, "A simple mechanism for type security
across compilation units," IEEE Trans. Software Eng., vol. 14, no.
8, pp. 1238-1239, Aug. 1988.

[34] M. L. Scott, "A framework for the evaluation of high-level languages
for distributed computing," Dep. Comput. Sci., Univ. Wisconsin-
Madison, Tech. Rep. 563, Oct. 1984.

[35] -, "The interface between distributed operating system and high-
level programming language," in Proc. 1986Int. Conf. Parallel Pro-
cessing, Aug. 19-22, 1986, pp. 242-249.

[36] -, "LYNX reference manual," Dep. Comput. Sci., Univ. Roch-
ester, BPR 7 (revised), Aug. 1986.

[37] -, "Language support for loosely-coupled distributed programs,"
IEEE Trans. Software Eng., vol. SE-13, pp. 88-103, Jan. 1987.

[38] M. H. Solomon and R. A. Finkel, "The Roscoe distributed operating
system," in Proc. Seventh ACM Symp. Operating Systems Principles,
Dec. 1979, pp. 108-1 14.

1391 R. E. Strom and S. Yemini, "NIL: An integrated language and sys-
tem for distributed programming," Proc. SIGPLAN '83 Symp. Pro-
gramming Language Issues in Software Systems, June 27-29, 1983,
pp. 73-82; in ACM SIGPLAN Notices, vol. 18, no. 6.

[40] United States Dep. Defense, Reference Manual for the Ada Program-
ming Language, ANSIIMIL-STD-1815A-1983, Feb. 17, 1983.

Raphael A. Finkel was born in 1951 in Chicago,
IL, where he attended the University of Chicago,
receiving the Bachelor's degree in mathematics
and the Master of Arts degree in teaching. He re-
ceived the Ph.D. degree from Stanford Univer-
sity, Stanford, CA, in 1976 in the area of robot-
ics.

From 1976 to 1987, he was a faculty member
of the University of Wisconsin-Madison. He has
been a Professor of Computer Science at the Uni-
versitv of Kentucky in Lexington since 1987. His .,

research involves distributed data structures, interconnection networks,
distributed algorithms, and distributed operating systems. He has received
several teaching awards and has published an introductory text on operating
systems.

Michael L. Scott (S'85-M'85) is a graduate of
the University of Wisconsin-Madison, where he
received the B.A. degree in mathematics and
computer sciences in 1980, and the M.S. and
Ph.D. degrees in computer sciences in 1982 and
1985, respectively.

He is now an Assistant Professor in the De-
partment of Computer Science at the University
of Rochester. He is the recipient of a 1986 IBM
Faculty Development Award. His research fo-
cuses on programming languages, operating sys-

FINKEL el al . : EXPERIENCE WITH CHARLOTTE 685

terns, and program development tools for parallel and distributed comput- 1982). His interests include distributed operating systems and services, open
ing. He is co-leader of Rochester's Psyche project, which centers on the systems, and object-oriented programming.
design and implementation of an ambitious new style of operating system
for large-scale shared-memory multiprocessors.

Yeshayahu Artsy received the B.A. degree in po-
litical sciences and statistics from the Hebrew
University of Jerusalem in 1975, the B.A. degree
in economics and the M.B.A. degree in manage-
ment information systems from Tel Aviv Univer-
sity in 1979 and 1981, respectively, and the M.S.
and Ph.D. degrees in computer sciences from the
University of Wisconsin-Madison in 1984 and
1987, respectively.

He has been with the Distributed Systems Ad-
vanced Development Group at Digital Equipment

Hung-Yang Chang received the B.S.E.E. degree
from National Taiwan University in 1979, and the
M.S. and Ph.D. degrees from the University of
Wisconsin-Madison in 1983 and 1987, respec-
tively. His dissertation is a study of distributed
soft real-time scheduling algorithms for future
complex real-time systems.

He joined the IBM Thomas J . Watson Re-
search Center in 1987, where he is a research staff
member of the department of Parallel System Ar-
chitecture and Software. He is currently working

performance measurement tools for a large-scale
Corporation since 1987. Previously, he managed the Tel Aviv University shared-memory multiprocessor. His research interests include task sched-
Management School Computing Center (1976-1979), and was in charge of uling algorithms, performance measurement of parallel software, and ob-
system software support for Burroughs Medium Systems in Israel (1979- ject-oriented multiprocessor kernel design.

