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ABSTRACT 

Scalable shared-memory multiprocessors (those with non-uniform memory 
access times) are among the most flexible architectures for high-performance 
parallel computing, admitting efficient implementations of a wide range of pro
cess models, communication mechanisms, and granularities of parallelism. Such 
machines present opportunities for general-purpose parallel computing that can
not be exploited by existing operating systems, because the traditional approach 
to operating system design presents a virtual machine in which the definition of 
processes, communication, and grain size are outside the control of the user. 
Psyche is an operating system designed to enable the most effective use possible 
of large-scale shared memory multiprocessors. The Psyche project is character
ized by (1) a design that permits the implementation of multiple models of paral
lelism, both within and among applications, (2) the ability to trade protection for 
performance, with information sharing as the default, rather than the exception, 
(3) explicit, user-level control of process structure and scheduling, and (4) a ker
nel implementation that uses shared memory itself, and that provides users with 
the illusion of uniform memory access times. 
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not be exploited by existing operating systems, because the traditional approach 
to operating system design presents a virtual machine in which the definition of 
processes, communication, and grain size are outside the control of the user. 
Psyche is an operating system designed to enable the most effective use possible 
of large-scale shared memory multiprocessors. The Psyche project is character
ized by (1) a design that permits the implementation of multiple models of paral
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(3) explicit, user-level control of process structure and scheduling, and (4) a ker
nel implementation that uses shared memory itself, and that provides users with 
the illusion of uniform memory access times. 

1. Introduction 

The future of high-speed computing depends on parallel computing, which in tum is 
limited by the scalability and flexibility of parallel architectures and software. For the past 
five years, we have been engaged in the implementation and evaluation of systems software 
and applications for large-scale shared-memory multiprocessors, accumulating substantial 
experience with scalable, NUMA (non-uniform memory access time) machines. Based on this 
experience, we are convinced that NUMA multiprocessors have tremendous potential to sup
port general-purpose, high-performance parallel computing. We are also convinced that 
existing approaches to operating system design, with a model of parallelism imposed by the 
operating system, are incapable of harnessing this potential. 

With the advent of multiprocessors, parallelism has become fundamental both to the 
programmer's conceptual model and to the effective use of the underlying hardware. The 
definition of processes, the mechanisms for communication and scheduling, and the protec

tion boundaries that prevent unwanted sharing can no longer be left to the sole discretion of 
the operating system. Since these concepts lie at the core of traditional operating systems, 
shared-memory multiprocessors require a radically new approach, one that provides the user 
with an unprecedented degree of control over parallelism, sharing, and protection, while lim
iting the operating system to operations that must occur in a privileged hardware state. 

We have designed and implemented an operating system called Psyche that embodies 
this new approach. Our design incorporates innovative mechanisms for user-level schedul
ing, authorization, and NUMA memory management. Its implementation provides the foun
dation for an ambitious project in real-time computer vision and robotics, undertaken jointly 
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with the department's vision and planning researchers. In the vision lab and elsewhere, 
Psyche offers a level of support for multi-model parallel computing unmatched by previous 

systems. 

The Psyche design is the direct outgrowth of five years of hands-on experience with 
multiprocessor systems and applications. This paper traces the evolution of that design, giv
ing the rationale for our major design decisions and describing how the results achieve our 

goals of user flexibility and efficient use ofNUMA hardware. 

2. Motivating Experience 
The Computer Science Department at the University of Rochester acquired its first 

shared-memory multiprocessor, a 3-node BBN Butterfly® machine, in 1984. Since that time, 
departmental resources have grown to include four distinct varieties of Butterfly (one with 
128 nodes) and an IBM ACE multiprocessor workstation. From 1984 to 1987, our work could 
best be characterized as a period of experimentation, designed to evaluate the potential of 
NUMA hardware and to assess the need for software support. In the course of this experi
mentation we ported three compilers to the Butterfly, developed five major and several minor 
library packages, built two different operating systems, and implemented dozens of applica
tions. A summary ofthis work can be found in [16]. 

2.1. Architecture 

As we see it, the most significant strength of a shared-memory architecture is its abil
ity to support efficient implementations of many different parallel programming models, 
encompassing a wide range of grain sizes of process interaction. Local-area networks and 
more tightly-coupled multicomputers (the various commercial hypercubes, for example) can 
provide outstanding performance for message-based models with large to moderate grain 
size, but they do not admit a reasonable implementation of interprocess sharing at the level 
of individual memory locations. Shared-memory multiprocessors can support this fine
grained sharing, and match the speed of multicomputers for message passing, too. 

We have used the BBN Butterfly to experiment with many different programming 
models. BBN has developed a model based on fine-grain memory sharing [26]. In addition, 
we have implemented remote procedure calls [15], an object-oriented encapsulation of 
processes, memory blocks, and messages [7], a message-based library package [13], a 
shared-memory model with numerous lightweight processes [24], and a message-based pro
gramming language [23]. 

Using our systems packages, we have achieved significant speedups (often nearly 
linear) on over 100 processors with a range of applications that includes various aspects of 
computer vision, connectionist network simulation, numerical algorithms, computational 
geometry, graph theory, combinatorial search, and parallel data structure management. In 
every case it has been necessary to address the issues of locality and contention, but neither 
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of these has proven to be an insurmountable obstacle.1 Simply put, a shared-memory mul
tiprocessor is an extremely flexible platform for parallel applications. The challenge for 
hardware designers is to make everything scale to larger and larger machines. The chal
lenge for systems software is to keep the flexibility of the hardware visible at the level of the 
kernel interface. 

Each of our programming models on the Butterfly was implemented on top of BBN's 
Chrysalis operating system. We have been successful in constructing these implementations 
primarily because Chrysalis provides for user-level access to memory-mapping operations, 
interlocked queues, block transfers, and similar low-level facilities. Unfortunately, Chrysalis 
imposes a heavyweight process model that cannot be circumvented. Lightweight processes 
can be simulated with coroutines inside a heavyweight process, but without the ability to 
invoke kernel operations or to interact with other kinds of simulated processes independent 
of their peers. In addition, the usefulness of the Chrysalis memory-mapping operations is 
compromised by their relatively high cost and by the lack of uniform addressing. Finally, 
Chrysalis provides little in the way of protection, and could not easily be modified to do more 
without significantly reducing the efficiency of its low-level operations. 

2.2. Programming Models 

A major focus of our experimentation with the Butterfly has been the evaluation and 
comparison of multiple models of parallel computing [3, 12, 16]. Our principal conclusion is 
that while every programming model has applications for which it seems appropriate, no sin
gle model is appropriate for every application. In an intensive benchmark study conducted in 
1986 [3], we implemented seven different computer vision applications on the Butterfly over 
the course of a three-week period. Based on the characteristics of the problems, program
mers chose to use four different programming models, provided by four of our systems pack
ages. For one of the applications, none of the existing packages provided a reasonable fit, and 
the awkwardness of the resulting code was a major impetus for the development of yet 
another package [24]. It strikes us as highly unlikely that any predefined set of parallel pro
gramming models will be adequate for the needs of all user programs. 

In any environment based on memory sharing, we believe it will be desirable to employ 
a uniform model of addressing. Even if the programmer must deal explicitly with local cach
ing of data, uniform addressing remains conceptually appealing. It is, for example, the prin
cipal attraction of the Linda programming languages [10]. The Linda "tuple space" is not a 
conventional shared memory. Its operations are not transparent, nor are they efficient 
enough to be used for fine-grained sharing. The tuple space does, however, allow processes to 
name data without worrying about their location. In our own experience, BBN's Uniform 

1 Contention in the switching network has not proven to be a problem [21]. Locality of memory 
references and contention for memory banks are facets of the general memory-management problem for 
NUMA machines (what we call the ''NUMA problem"). We are investigating strategies to address this 
problem [2,9,14], but they are beyond the scope of this paper. 
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System [26] is the most popular programming package on the Butterfly for much the same 
reason. Its single address space allows data items, including pointers to be copied from the 
local memory of one process to that of another without any intermediate translation. The 
fact that ordinary assignments and variable references can be used to effect the copies makes 
the global name space even more attractive. 

We have found it particularly useful to establish sharing relationships at run time. 
Low-cost establishment of sharing is also important, as is the ability to share things of arbi
trary size. Among the existing environments on the Butterfly, the Uniform System provides 
the highest degree of support for dynamic, fine-grain sharing - a shared heap in a single 
address space with a parallel allocator. There is a conflict, however, between protection and 
performance: data visible to more than one process can be written by any process. It may be 
possible under certain programming models to provide compiler-enforced protection at a very 
fine granularity with little or no run-time cost. Others have adopted this approach in the 
context of "open" operating systems [6,25]. For us to count on compiler protection, however, 
would be inconsistent with the desire to support as many programming models as possible, 
particularly with multiple users on a single parallel machine. We are therefore careful to 
distinguish between the notion of a single address space (which we reject) and that of uni
form addressing, in which there are multiple address spaces, each containing a potentially 
different subset of the data in the world, but each individual datum has a unique address 
that is the same in every address space that includes it. 

Clearly any programmer who wants to ignore protection or to provide it with a com
piler for a "safe" language should be free to do so, and should pay no penalty for the protec

tion needs of others. When desired, however, the operating system should also provide pro
tection, even if it can only do so with page-size granularity and with the overhead of kernel 
intervention when protection boundaries are crossed. In order to pay this overhead as infre
quently as possible, we believe it will be desirable to evaluate access rights in a lazy fashion, 
so that processes pay for the things they actually share, rather than the things they might 
potentially share. We therefore distinguish between the distribution of access rights (which 
must be cheap) and the exercise of those rights. 

Other researchers have recognized the need for multiple models of parallel computing. 
Washington's Presto project [1], for example, supports user-definable processes and commun
ication in a modular, customizable, C++ library package. Presto is not an operating system; 
it is linked into the code for a single application (written in a single language), and provides 
no protection beyond that which is available from the compiler. At the operating system 
level, the Choices project at Illinois [4] allows the kernel itself to be customized through the 
replacement of C++ abstractions. The University of Arizona's x-Kernel [11] adopts a similar 
approach in the context of communication protocols for message-based machines. Both 
Choices and the x-Kernel are best described as reconfigurable operating systems; they pro
vide a single programming model defined at system generation time, rather than supporting 
multiple models at run time. We are unaware of any project that provides kernel-level pro
tection and run-time flexibility comparable to that of Psyche. 
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3. Evolution of the Psyche Design 

Motivated by our experience with the Butterfly, the Psyche project has from the begin
ning stressed two fundamental goals: to provide users of the kernel interface with an unpre
cedented level of programming flexibility, and to permit efficient use of large-scale NUMA 
machines. Implicit throughout has been the assumption that the kernel must also provide a 
high degree of protection to those applications that require it. 

Original goals: 
User flexibility 
EffICient use oj NUMA hardware 

(Protection without compiler support) 

These first two goals are complementary. Flexibility is the most significant feature ofNUMA 

User flexibility Efficient use of NUMA hardware 

\ ~vcl~lmlace 
Multiple programming models 

(

Shared name space 

Dynamic sharing 

Sharing as the default 

Unifonn virtual 

address space 

Keys and access lists 

Data abstraction 

Protection/performance tradeoff 

Lazy eValuation) (Sharing of data structures 
of protection between the kernel and the user 

Avoidanceofkeme1..... Access faults as 

interven

l 
tion kernel entry mechanism 

First-class scheduling 

Protection user-level threads 
( 

Upcalls for user-level 

~ Conventions for blocking 

and unblocking threads w,thout compiler support ~ ~ 

Orthogonal processes 

and protection domains 

Figure 1: Evolution of Psyche Design Decisions 
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machines, and the one most difficult to exploit. Our emphasis on flexibility has determined 
the style of our kernel interface and the abstractions it provides. Our emphasis on hardware 
exploitation has underlined the importance of efficiency, and has played a dominant role in 
implementation strategy. 

The development of our ideas is summarized in figure 1. Each of the major design 
decisions visible to the user can be seen as the outgrowth of more basic concepts, tracing back 
to project goals. The text of this section serves as commentary on the figure, portions of 
which are reproduced along with the corresponding discussion. 

User jlexiblliJy ) 
_ Low-level kernel interface 

Efficient use of NUMA hardware 

There are two principal strategies by which an operating system can attempt to pro
vide both efficiency and user flexibility. One is to implement a variety of programming 
models directly in the kernel. This strategy has the advantage of allowing unsophisticated 
programmers to use the kernel interface directly. It suffers, unfortunately, from a tendency 
toward the "kitchen sink" syndrome; no small set of models will satisfy all users, and even 
the smallest deviations from predefined abstractions can be very difficult to obtain (see [7] 
and [22] for examples). A more attractive approach is to implement a set of primitive build
ing blocks on which practically anything can be built. 

We decided very early that Psyche would have a low-level kernel interface. In some 
sense this places us in the tradition of the "minimal" kernels for distributed operating sys
tems such as Accent [19], Charlotte [8], and V [5]. Our emphasis, however, is different. 
Message-passing kernels provide a clean and narrow interface at a relatively high level of 
abstraction. By confining the kernel to lower-level operations, we can cover a much wider 
spectrum of programming models with an equally clean and narrow interface. (See figure 2). 

We do not expect everyday programmers to use the Psyche interface directly. Rather, 
we expect that they will use languages and library packages that implement their favorite 
programming models. The purpose of the low-level interface is to allow new packages to be 
written on demand (by somewhat more sophisticated programmers), and to provide well
defined underlying mechanisms that can be used to communicate between models when 
desired. 



'Minimal' message-passing interface 

Depth of 
abstractions 

.. 

User flexibility __ 

'Kitchen sink' interface ---+-----

Psyche interface 

Breadth of abstractions 

Figure 2: Levels of Kernel Interface 

Multiple programming models 

Shared name space ) 
Dynamic sharing __ 

Sharing as the default 

Uniform virtual address space 
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Our commitment to user flexibility is manifested primarily in the need for multiple 
programming models and in an emphasis on sharing. This emphasis on sharing has in tum 

led us to estahlish the convention of uniform addressing. If processes are to share pointers, 

then any data object visible to two different processes must appear at the same virtual 
address from each point of view. Moreover, any two data objects simultaneously visible to 

the same process must have different virtual addresses from that process's point of view. 
Satisfying these constraints is an exercise in graph coloring. Since the graph may change at 
run time (as sharing relationships change), the only general solution is one in which every 

data object has its own color - its own unique address. On existing 32-bit machines, of 
course, the available virtual address space is likely to be too small to hold all user programs 

at once, but simple heuristics based on a priori knowledge about some of the graph nodes can 
be used to overlap large amounts of space while maintaining for the user the illusion of uni
form addressing. We discuss these heuristics in section 5.3. 
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. . ) (Dala abstraction Multiple programmmg models 
_ Reads, writes, and calls asfundamental 

Efficient use of NUMA hardware p' I .~ ._-' .FF rotection perJormance truueoJJ 

If programmers are to implement multiple programming models outside the kernel, 
they must be provided with tools for building abstractions. This is particularly true if the 
implementations of different models are to be similar enough in conception to allow their 
processes to interact. To allow user-level code to execute efficiently, it is also important that 
the abstraction-building tools reflect the characteristics of the underlying hardware. We 
have therefore adopted the concept of data abstraction as the fundamental building block in 
Psyche. Programmers are accustomed to building sequential applications with abstract data 
types. In our experience with parallel systems, we have found data abstractions (with 
appropriate synchronization) to be well-suited to parallel applications as well. Not only do 
they provide a natural means of expressing communication, they also permit an implementa
tion based on ordinary data references and subroutine calls, the most primitive and efficient 
operations on a shared-memory multiprocessor. 

In Psyche, a data abstraction is known as a realm. Together with its data, each realm 
includes a protocol. The intent is that the data should not be accessed except by obeying the 
protocol. Invocation of the protocol operations of shared realms is the principal mechanism 
for communication between processes in Psyche. A concurrent data structure (a 2-3 tree for 
example) can be built from a node abstraction with appropriate read and write locks. A mon
itor or a module protected by path expressions is by nature a data abstraction; its entry pro
cedures are its protocol. A message channel or mailbox can also be built as a realm. Its pro
tocol operations control the reading and writing of buffers. For connectionless message pass
ing, each individual message may be realized as a realm, "sent" and "received" by changing 
access rights. 

To protect the integrity of realms, the kernel must be prepared to ensure that protocols 
are enforced. It must not, however, insist on such enforcement. Some applications may not 
care about protection. Others may provide it with a compiler. Psyche therefore provides an 
explicit tradeoff between protection and performance. Realms are grouped together into 
(often overlapping) protection domains. Invocations of realm operations within a protection 
domain are optimized - as fast as an ordinary procedure call. Invocations between protec
tion domains are protected - as safe as a remote procedure call between traditional heavy
weight processes. In the case of a trivial protocol or truly minimal protection, Psyche also 
permits direct external access to the data of a realm, through in-line invocations. In all 
cases, the Psyche invocation mechanism is an ordinary data reference or a jump-to
subroutine instruction. 
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Dynamic sharing 

• EfflCUint use 0/ (Lazy evalllatWn o/protectWn ) Access/aults as 
NUMA hardwar~ A voidance 0/ kernel intervention - kernel entry mechanism 

A kernel call by its very nature requires a context switch into and out of the operating 
system. Optimizing this context switch is a common goal of computer architects and kernel 
designers, but even the most trivial kernel call inevitably costs significantly more than a sub
routine call and return. Extremely fine-grain interactions between processes must therefore 
occur without kernel intervention. The elimination of both explicit kernel calls and implicit 
kernel operations is important to Psyche's goal of maximal hardware utilization. Further
more, functionality provided outside the kernel can be changed more easily than functional
ity inside the kernel, an advantage in keeping with our goal of user flexibility. As in several 
"minimal" message-based kernels, we are implementing device management, file systems, 
virtual memory backing store, and network communications in user-level software. We also 
permit interprocess communication to be implemented outside outside the kernel, along with 
the bulk of scheduling. 

As explained above, we believe that for the sake of efficient dynamic sharing it is desir
able to delay the evaluation of access rights as late as possible, and to cache those rights once 
they have been established. We therefore wait until a process actually attempts to touch a 
realm before verifying its right to do so. Since a valid access cannot be distinguished from an 
invalid one until this verification has occurred, initial references to realms appear to the ker· 
nel as access faults - invalid reference traps from the address-translation hardware. 

Psyche's access-fault handler is the most important kernel entry point. It must distin
guish between a large number of possible situations. Like most operating systems, Psyche 
uses access faults to implement demand paging. It also uses them to implement page migra

tion to maximize locality on NUMA multiprocessors.2 Both of these functions are semanti· 
cally invisible. From the point of view of the user-level programmer, there are only three 
possibilities: 

(1) The reference may truly be invalid. Its virtual address may not refer to any realm at 
all, or it may refer to a realm to which access is not permitted. These two cases are 
indistinguishable to the user. 

(2) The reference may be valid, but may refer to a realm that has not been accessed before. 

(3) The virtual address may refer to a realm that may only be accessed through protected 
invocations. 

2 The Psyche memory management system is described in a companion paper [14]. 
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Case (2) provides the hook for lazy evaluation of access rights. If optimized or in-line invoca
tions are permitted, the referenced realm is added to the current memory map. We say that 
the realm has been opened for optimized access. The faulting instruction is restarted. 
Future invocations will proceed without kernel intervention. They will, in fact, be ordinary 
subroutine calls. If protected invocations (only) are permitted, the kernel arranges for the 
calling process to move to another protection domain, in which it may execute the requested 
operation. It also makes a note to itself indicating that the realm has been opened for pro
tected access. Future invocations from the same protection domain will fall under case (3) 
above, and will not cause a re-evaluation of access rights. 

In all cases, protected and optimized, invocations are requested by executing ordinary 
subroutine call instructions (or data references, in the case of in-line invocations). Since pro
tected and optimized invocations look the same, the choice between them can be made simply 
by modifying access rights (at run time) without rewriting code or recompiling. In effect, 
Psyche has separated the issues of protection and performance from the semantics of realm 
invocation. In a program that never attempts to circumvent realm protocols, protection lev
els can be changed without changing the appearance or behavior of the program. 

Lazy evalUJltion of protection -+ Sharing of data structures 
A voidance of kernel intervention ) 

between the kernel and the user 
Reads, writes, and cans as fundamental 

Psyche places a heavy emphasis on sharing of data structures between the kernel and 
the user. This sharing is consistent with our desire to perform work only when we know it is 
necessary, to perform it outside the kernel whenever possible, and to express it in terms of 
ordinary data access. Shared data structures allow the user to obtain useful information 
without asking the kernel explicitly. For example, the kernel maintains information (read
only in user space) that identifies the current processor, current protection domain, current 
process, and time of day. Future extensions might include run-time performance statistics or 
referencing information of use to user-level migration strategies. In a similar vein, user-level 
code can provide information to the kernel without performing kernel calls. Shared data 
structures are used to specify access rights, control scheduling mechanisms and policy, set 
wall time and countdown timers, and describe the operation interface supported by each 
realm. 

Explicit transfers of control between the user and the kernel occur only when synchro
nous interaction is essential. Kernel calls exist to create and destroy realms, return from 
protected invocations, and forcibly revoke rights to a realm that has been opened by another 
protection domain. In the other direction, the kernel provides upcalls to user-level code in 
response to various error conditions, and whenever a user-level scheduling operation is 
required. The latter case covers calls and returns from protected invocations, expiration of 
timers, and imminent end of a scheduling quantum. 
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_ First-class user-level threads 

Avoidance oj kernel intervention 
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Many parallel algorithms are most easily realized with a very large number of light
weight processes, or threads. For reasons of both semantics and efficiency, it is important 
that these threads be implemented outside the operating system. No single kernel-provided 
process abstraction is likely to meet the needs of such diverse languages as Ada, Emerald, 
Lynx, MultiLisp, and sa Different programming models include different ideas about where 
to place stacks (if any), what state to save on context switches, how to schedule runnable 
threads, and how to keep track of unrunnable threads. Moreover, no kernel is likely to pro
vide the performance of user-level code to create, destroy, block, and unblock threads. 
Operating systems such as Mach [18] and Amoeba [17] have attempted to reduce the cost of 
process operations by separating the scheduling abstraction from the address-space abstrac
tion, but the result is still significantly less efficient than the typical implementation of user
level threads. 

With a traditional operating system it is always possible to implement lightweight 
threads inside a single heavyweight kernel process, but the operating system is then unable 
to treat these threads as first-class entities. They cannot run in parallel and they cannot 
make use of kernel services (e.g. blocking operations) independent of their peers. Psyche 
addresses this problem with a novel approach to first-class, lightweight, user-level threads. 

First-class user-level threads ) Orthogonal processes 

Protection without compUer support - and protection domains 

A process in Psyche is an anthropomorphic entity that moves between protection 

domains as a result of protected invocations. A thread is the realization of a process within a 
given protection domain. As a process moves among domains, it may appear as many dif
ferent kinds of threads. In one domain it may be an Ada task. In another domain it may be 
an Actor or a MultiLisp future. In a simple server domain there may be no recognizable 
notion of thread at all; processes may be represented over time by the actions of a state 
machine. The kernel keeps track of which processes are currently in which protection 
domains, but it knows nothing about how the threads that represent those processes are 
scheduled inside those domains. It does not keep track of process state. Threads are created, 
destroyed, and scheduled in user-level code. The kernel assists by providing upcalls when
ever scheduling decisions may be requj.red. 

To bootstrap Psyche, the kernel creates a single primordial realm in a single protection 
domain, containing a single user-level process. This process executes code to create addi
tional realms. Creating a realm also implicitly creates a protection domain, of which the 
created realm is said to be the root. Protected invocations of realm operations cause the 
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current process to move to the protection domain of which the realm is the root. Among the 
arguments to the make-realm operation is a specification of the number of processes in the 
domain that should be allowed to execute simultaneously. The kernel creates this many 
activations of the domain. Users for the most part need not worry about activations. They 

serve simply as placeholders for processes that are running simultaneously. In effect, they 
are virtual processors. From the user's point of view, Psyche behaves as if there were one 
physical processor for each activation. 

On each node of the physical machine, the kernel time-slices between activations 
currently located on its node. A data structure shared between the kernel and the user con
tains an indication of which process is being served by the current activation. This indication 
can be changed in user code, so it is entirely possible (in fact likely) that when execution 
enters the kernel the currently running process will be different from the one that was run

ning when execution last returned to user space. 

To implement a protected invocation of a realm operation (see figure 3), the kernel (1) 

makes a note that the invoking process has moved to the protection domain rooted by the tar
get realm of the invocation, (2) provides an upcaU to some activation ofthat domain, telling it 
that the process has moved and asking it to perform the realm operation, and (3) provides an 

CALLING DOMAIN CALLED DOMAIN 

jsr .. 
fault into kernel 

.. 

.. 

reschedule upcall 

return upcall 

(copying results) 

invocation upcall (copying parameters) 

(create thread) 

... 
return kernel call 

(destroy thread) 

jsr 

(execute operation) 

.. 

Figure 3: Protected Invocation 

return 
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upcall to the activation that had been running the process, telling it that the invocation is 
indeed protected, that the process has moved to another protection domain, and that some
thing else could run in the meantime. The target activation (if multi-threaded) creates a new 
thread of an appropriate kind to execute the requested operation on behalf of the newly
acquired process. The thread is initialized in such a way that when it returns from the 
operation it will execute a return-froM-invocation kernel call. At that point, the kernel 
will look in its internal data structures to see which domain the process came from, and pro
vide some activation of that domain with an upcall indicating that the process has returned. 
A simplistic, single-threaded protection domain (similar to a traditional Unix process) can 
choose to ignore the reschedule and return upcalls. In this case the activation simply blocks 
until the invocation has completed 

For both the invocation and the return, the kernel copies parameters from one protec
tion domain to the other. It assumes that the parameters can be found at a predefined offset 
from a predefined register (commonly used as the stack pointer). The sizes of the parameters 
are defined in the userlkernel data structure that describes the interface of the invocation's 
target realm. In parameters are copied into the upcall stack of the target activation. That 
activation may choose to copy the parameters into space belonging to the newly-created 
thread, or it may simply reassign the upcall stack to the thread, so that the kernel's copy 
operation is the only one required. When the invocation returns, the kernel copies out 
parameters back into the frame of the invoking thread. Reference parameters are treated 
the same as pointer value parameters; the callee must possess appropriate rights in order to 
dereference them. 

Process names are ordered pairs consisting of the name of the protection domain in 
which the process was created and a serial number managed by user-level code. When exe
cution enters the kernel, it is therefore possible to distinguish between a newly-created pro
cess (created in user space!), a process already known to be in the current domain, or a bogus 
claim to be a process that cannot be in the domain. The latter case has occurred when (1) the 
process name indicates that it was created elsewhere, but the kernel has no indication that it 
moved to the current domain, or (2) the process name indicates that it was created in the 
current domain, but the kernel has a note indicating that it subsequently moved to some 
other domain. Otherwise, the kernel takes the word of the user regarding which process is 
currently running. In fact, the process name variable written by the user constitutes the 
definition of which process is currently running. 
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To switch between processes in user mode, the user need only change the current pro
cess name. In most cases, the user will want to save and restore registers and other state as 
well (as part of a context switch between threads), but the kernel imposes no such require
ments. To permit time slicing, the kernel implements both wall clock and interval timers for 
each domain activation. Each time the clock ticks, the kernel's interrupt handler decrements 
the interval timer value in the data structures of the current activation. If the value reaches 
zero, it provides a timer upcall to the activation. It also provides an upcall if the current time 
exceeds the activation's wall clock timer value. The interval timer counts down and the wall 
clock timer is checked only when the activation is actually running. The activation is there
fore guaranteed to get an interval timer upcall as soon as the specified amount of actual exe
cution has elapsed, and a wall clock timer upcall no later than the beginning of the next 
activation quantum after the specified time is reached. 

Since realms may be shared (for optimized access) by protection domains whose 
processes are realized as different kinds of threads, Psyche users are encouraged to follow a 
convention that permits threads of different kinds to block and unblock each other. Pointers 
to block and unblock routines can be found in the userlkemel shared data structures for each 
protection domain. To illustrate the use of these routines, consider a realm that implements 
a bounded buffer between threads of different kinds. The code for the insert operation will 
check to see whether the buffer is currently full. If it is, it will look through the data struc
tures of the current protection domain to find the block and unblock routines appropriate for 
the current kind of thread. It will then write the pointer to the unblock routine into the syn
chronization data structures of the buffer and call the block routine. When some other 
thread (possibly of a different kind) removes an element of the buffer, it will examine the 
synchronization data structures, discover that the first thread is waiting to continue, and call 
its unblock routine. If the buffer is shared between protection domains that trust each 
another, the block and unblock routines may be available for optimized invocation. Every
thing still works, however, if they require protected invocation. Insert and delete operations 
will still complete very quickly when the buffer is neither full nor empty. 

Summarizing the Psyche model, memory consists of a uniform address space divided 
into realms. Each realm is the root of a single protection domain, which may encompass 
other realms as well. Processes are anthropomorphic entities that move around between pro
tection domains executing code on behalf of user applications. Processes run on virtual pro
cessors called activations, which are created in numbers adequate to provide user-specified 
levels of true parallelism within protection domains. Execution and context switching of 
processes by a single activation proceeds without kernel intervention until an attempt is 
made to access something not in the address space (or view) of the current protection domain. 
The kernel then either (1) announces an error, (2) opens the accessed realm for optimized or 
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protected invocation, as appropriate, or (3) effects a protected invocation by moving the 
current process to the protection domain rooted by the accessed realm. 

Sharing as the default ) 
_ Keys and access lists 

Ltu.y evaluation 0/ protection 

Each realm includes an access list consisting of <key, right> pairs. The right to invoke 
an operation of a realm is conferred by possession of a key for which appropriate permissions 
appear in the realm's access list. A key is a large uninterpreted value affording probabilistic 
protection. The creation and distribution of keys and the management of access lists are all 
under user control. 

When a thread attempts to invoke an operation of a realm for the first time, the kernel 
performs an implicit open operation on behalf of the protection domain in which the thread is 
executing. In order to verify access rights, the kernel checks to see whether the thread 
possesses a key that appears in the realm's access list with a right that would permit the 

attempted operation. Once a realm has been opened from a given protection domain, access 
checks are not performed for individual realm invocations, even those that are protected (and 
hence effected by the kernel). 

Rights contained in access lists include: initialize realm (change protocol), destroy 
realm, invoke protected, invoke optimized (or in-line), and invoke optimized read-only. 

The userlkernel data structure for each thread contains a pointer to the key list to be 
used when checking access rights. When a fault occurs, the kernel matches the key list of 
the current thread against the access list of the target realm. Since matching occurs only 
when realms are opened, any cost incurred will usually be amortized over enough operations 
to make it essentially negligible. Moreover, we believe that in most cases either the key list 
or the access list will be short. Our current implementation of the matching operation is 
based on hashing, and consumes expected time linear in the size of the shorter list. In cases 
where multi-way matching is expected to be unacceptably slow, programmers have the option 
of calling an explicit open operation, with explicit presentation of a key. 

Psyche keys constitute a compromise between traditional capabilities and traditional 
access lists, providing most the advantages of both while avoiding their disadvantages. If one 
imagines an access matrix with rows for protection domains and columns for realms, a key 
can be associated with an equivalence class consisting of arbitrary entries in the matrix. In a 
capability system, adding a protection domain to a class requires time linear in the number 
of realms in the class. In an access list system, adding a realm to a class requires time linear 
in the number of protection domains in the class. Under both approaches the amount of 
space required to represent the class is quadratic. With Psyche-style keys, the addition or 
deletion of protection domains or realms in an equivalence class requires constant time, and 
the total amount of space required to represent the class is linear. Since the value of a key 
depends on neither the holder nor on the realm(s) to which it confers rights, it is possible to 
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(1) possess a key that grants rights to a large number of realms, (2) change the rights con
ferred by a key without notifying the holder(s), and (3) change the holders of a key without 
notifying the realm(s) to which the key grants access. Moreover, the use of probabilistic pro
tection allows the operations affecting access rights to occur without the assistance of the 

kernel. While it is not in general possible to prevent a thread from passing its keys on to a 
third party, we see no way to avoid this problem in any scheme that transfers rights between 
protection domains without the kernel's help. 

One characteristic of the Psyche protection scheme is that keys and access lists control 
the right to open a realm for access from a given protection domain, not the right to access it 

per se." The distinction is moot when distributing new rights, but is very important when 
revoking rights. Removing a key from a key list or a key/right pair from an access list 
prevents that key or pair from being used to open a realm in the future. It does not prevent 
continued access to realms that have already been opened. For users who require hard revo
cation of rights, Psyche provides an explicit revoke kernel call. Revoke is a potentially 
expensive operation. To implement it, the kernel keeps track of which keys and access list 

entries were used to perform each open operation. 

4. The Psyche Kernel Interface 

Figure 4 contains a diagram of Psyche data structures shared between the kernel and 
the user. The "magic locations" at the left of the figure behave as read-only pseudo-registers. 
The current-domain and current-activation pointers are changed by the kernel on context 
switches between activations. By following pointers, both the kernel and user can find any of 
the data structures associated with a protection domain or activation. 

Each realm is represented by a data structure containing its access list and a descrip
tion of the interface to its protocol operations. The make-realm kernel call allocates space 
for this data structure and for the corresponding protection domain and activation data 
structures. It is the user's responsibility to allocate the remaining data structures out of the 
data space of the newly-created realm. The kernel keeps a mapping, invisible to the user, 
that allows it to find the realm data structure given a pointer to anything inside the realm. 
This permits it to consult the protocol description when performing a protected invocation. 

The separation between activation and thread data structures, with the former point
ing to the latter, is purely a matter of convenience. Each activation runs only one thread at a 
time. We have put into the activation data structure the information we think the user is 
most likely to want to leave the same when changing between threads (and the processes 
they represent) and have put into the thread data structure the information we think the 
user is most likely to want to change when changing threads. To permit the coexistence of 

3 It would be feasible to check access rights on every protected invocation. We have chosen not to 
do so because (1) it would add a noticeable amount of overhead to every such invocation, and more 
importantly (2) it would introduce a semantic difference between optimized and protected invocations, 
something we want very much to avoid. 
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Figure 4: UserIKernel Shared Data Structures 

different kinds of threads in a single protection domain, we have chosen to identify block and 

unblock routines with the thread being executed by the current activation, rather than with 
the current protection domain. 

Complete utilization of the upcall and data structure interface to the kernel requires a 
sophisticated body of user-level code. Since much of the generality of the interface will not be 
needed by simple applications, Psyche defines default behavior to cover cases in which some 

or all of the upcalls are not wanted, or in which pieces of the shared data structures are not 

provided. A reaim that serves as a simple shared memory block, for example, may be 
accessed solely through in-line invocations. It has no protocol operations of its own. Its pro

tection domain is never used. It has no activations. The only portions of figure 4 that will 
actually appear are the boxes labeled domain, realm, and access list, and the latter will be 
trivial. The total space required for kerneVuser data structures will be on the order of 50 
bytes. Since these data structures are writable in user space, they can share a page with 

realm data. 
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Psyche provides the following principal kernel calls: 

make-realm - Takes as parameters the desired amount of code and data space, the desired 
number of activations, and a so-called "master key." Returns pointers to the code 
space, the data space, and the realm, domain, and activation data structures. The 
master key can be used by the creator of the realm to initialize both code (which is nor
mally read-only) and data. Program loaders are outside the kernel, and may be 

integrated with external pagers. 

destroy-realm - Takes as parameters a pointer to a realm and a key that should authorize 

destruction. 

return-from-invocation - Takes as parameters the values that would be in the frame 
pointer and function return registers if we were returning from a subroutine. The ker
nel can tell where to return to (and what return parameters to copy) by examing the 
current-process pointer in shared data structures. 

block-pending-upcalls - Takes no arguments. Blocks the current activation until an 
upcall is received. 

open-realm - Requires an explicit key. Provided for users who want to avoid implicit 
searching of key lists. 

close-realms - Takes as parameters a list of open realms. The open realm list data struc
ture in figure 4, if allocated by the user, is used by the kernel to list all open realms 
and the circumstances under which they were opened. Users can use this information 
to decide when to perform close operations. 

invoke-protected - Provided for users who want to make sure they use a protected invoca
tion, even if they have a key that would permit optimized invocation. 

revoke - Takes as parameter an access list entry and a pointer to a realm. Forcibly closes 
the realm in any protection domain that used the access list entry to open it. Requires 
a key conferring revocation rights. 

A small number of additional calls are provided for I/O, external pagers, "ownership," 
and "attachment." The external pager mechanism is similar in spirit to that provided in 
Mach [28], but with an interface based on shared memory instead of message passing. The 
ownership mechanism allows automatic reclamation of realms that are no longer needed. 
The ownership graph is a DAG; we destroy any realm whose owners have all been destroyed. 
The attachment mechanism reduces the cost of obtaining access to a multi-realm data struc
ture. If realm B is attached to realm A, then B is automatically opened for access from any 
protection domain that opens A. 

Psyche's kernel-provided upcalls include: 

invocation - Provides an indication of the calling realm, domain, and process, the desired 
operation, and its arguments. 

reschedule - Indicates that the current process has moved temporarily to another protec
tion domain. 
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return-from-invocation - Indicates that a process has returned and may proceed. 

interval-timeout. wall-time-alarm - Indicates that a countdown or wall-time timer has 
elapsed. 

end-of-quantum - Indicates that preemption of the current activation will occur after a 
brief (implementation-dependent) delay. The activation is guaranteed this amount of 
execution time in which to perform any desired clean-up operations. The end-of
quantum warning permits the use of such mechanisms as spin locks in user-level code. 
without worrying about untimely preemption. 

fault - Indicates that some detectable program error has occurred. Examples include 
invalid references and arithmetic faults. 

Additional upcalls are provided for external pagers and I/O notifications. 

Upcalls never return. They are analogous to signals in Unix. except that they use a 
special stack to avoid interference with the storage management mechanisms used by user
level threads. Before making an upcall. the kernel saves the machine state (registers) of the 
currently-running thread in the appropriate data structure in user space. Upcalls can be dis
abled temporarily by setting a flag in the data structure of the current activation. The kernel 
queues upcalls (other than faults) until they are enabled. A fault that occurs when upcalls 
are disabled causes the destruction of the current activation. 

5. Implementation 

5.1. Organization 

The Psyche implementation is highly machine independent. and should port easily to 
different types of shared-memory multiprocessors. To accommodate large-scale parallel com
puting we have adopted a model of memory that includes non-uniform access times. A 
Psyche host machine is assumed to consist of clusters. each of which comprises processors 
and memories with identical locality characteristics. A Sequent or Encore machine consists 
of a single cluster. On a Butterfly. each node is a cluster unto itself. The proposed Encore 
Ultramax [27] would consist of several non-trivial clusters. Scheduling and memory
management data structures are allocated in the kernel on a per-cluster basis. 

For the sake of scalability. each cluster contains a separate copy of the bulk of the ker
nel code. Kernel functions are performed locally whenever possible. The only exceptions are 
device managers (which must be located where interrupts occur) and certain of the virtual 
memory daemons (which consume fewer resources when run on a "regional" basis). To com
municate between processors. both within and between clusters. the implementation makes 
extensive use of shared memory in the kernel. Ready lists. for example. are manipulated 
remotely in order to implement protected invocations. The alternative. a message· passing 
scheme in which instances of the kernel would be asked to perform the manipulations them
selves. was rejected as overly expensive. Most modifications to remote data structures can be 
performed asynchronously - the remote kernel will notice them the next time it reads the 
data. Synchronous inter-kernel interrupts are used for I/O, TLB shootdown. and insertion of 



20 

high-priority processes in ready queues. 

Since each instance of the kernel must be able to interact with each other instance, 

scalability dictates that a great deal of address space be devoted to kernel data structures. 
Since the kernel also shares data structures with the user, the entire Psyche uniform address 

space must be visible to the kernel as well. No available machine provides enough address 

space for both of these needs. Psyche therefore employs a two-address-space kernel organi
zation (see figure 5). The code and data of the local kernel instance are mapped into the 
same locations in both address spaces, permitting easy address space changes. The 
userlkernel address space also contains all of user space, and the kernellkernel address space 
contains the data of every kernel instance. Local data appears at two different locations in 

the kernellkernel space. A typical kernel call works in the userlkernel space until it has 
finished examining user information, then transfers to the kernellkernel space to obtain 

access to kernel data on other clusters. 

In practice, rew data structures are private to a single processor. Most are at least 

cluster global. In fact, the cases in which a processor enjoys exclusive access to a data struc
ture are so few that we have opted to allow activations to be preempted while executing in 

the kernel. The same synchronization mechanisms that prevent conflicting accesses from 
other processors also prevent conflicting accesses by other activations on the same processor. 
Spin locks (our most widely-used synchronization mechanism) disable preemption in order to 
ensure that the operation they protect completes quickly. 

USER/KERNEL ADDRESS SPACE KERNEL/KERNEL ADDRESS SPACE 

< 

............ )- Local kernel code and data--(... 

-+-- Psyche uniform address space 

< 

j" 

Remote kernel data --

, , , 
\ 

< > i 
....... / 
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\L-" ----' 

Figure 5: Kernel address spaces 
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5.2. Memory management 

The largest and most sophisticated portion of the kernel is devoted to memory manage
ment [14], comprising four distinct abstraction layers. The lowest (NUMA) layer provides an 
encapsulation of physical page frames and tables. The second (UMA) layer provides the illu

sion of uniform memory access times through page replication and migration. The third 
(YUMA) layer provides a default pager for backing store and a mechanism for user-level 
pagers. The final (PUMA) layer implements Psyche protection domains and upcalls. Page 
faults may indicate events of interest to any of the layers; they percolate upward until han
dled. 

The PUMA layer maintains a mapping (currently a splay tree) that allows it to identify 
the realm that contains a given virtual address. This mapping is consulted when a page fault 
propagates to the PUMA layer, and allows the kernel to determine whether an attempt to 
touch an inaccessible realm constitutes an error, an open, or a protected invocation. The 
UMA layer is strictly divided between policy and mechanism. It is not yet clear how best to 
decide when to replicate and migrate pages, and this division facilitates experiments. There 
is no notion of location attached to a realm; the placement of its pages is under the complete 
control of UMA-layer policies. High-quality policies are likely to depend on the judicious use 
of hints from user-level software. 

5.3. Address Space Limitations 

Like most modern microprocessor-based machines, the Butterfly Plus employs 32-bit 
virtual addresses (using the Motorola 68851 memory management unit). The resulting 4 
Gigabyte address space is too small to contain all applications. We expect the 32-bit limit to 
be lifted by emerging architectures. In the meantime, we have devised techniques to econom
ize on virtual addresses. 

The make-realm kernel call currently accepts a parameter that specifies whether the 
new realm will be normal, paranoid, or private. A paranoid realm can only be accessed 
through protected invocations. A private realm can only be accessed through optimized invo
cations, and only from a single protection domain. 

The Psyche uniform address space is divided into four separate areas, two large and 
two small. One small area holds the code and data of the local kernel. One large area holds 
the normal realms. All paranoid realms lie on top of each other in a single small area. The 
private portions of all protection domains lie on top of each other in the remaining large area. 
Each paranoid realm is represented by a small (conventionally addressable) jump table in 
normal space that contains information used by the kernel to remap the paranoid portion of 
the address space when performing a protected invocation. The jump table is inaccessible to 
every protection domain, so every attempt to access it will cause an access fault. On every 
context switch between protection domains the kernel also remaps the private portion of the 

address space. 

Above the level of the kernel interface, private and paranoid realms have a limited con
ceptual impact. They constitute an up-front assertion that optimized sharing will not occur, 
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which runs counter to the Psyche philosophy. They also require special mechanisms to make 

them available to user-level pagers. 

6. Project Status 

Our implementation of Psyche is written in C++ and runs on the BBN Butterfly Plus 
multiprocessor. We have completed the major portions of the kernel and are experimenting 

with user-level software. 

To facilitate kernel development we have implemented a remote, source-level debugger 
in the style of the Topaz TeleDebug facility [20]. The front end for the debugger runs on a 
Sun workstation and communicates via UDP and serial lines with a low-level debugging stub 
that underlies the Psyche kernel. The low-level debugger was the first piece of the kernel to 

be written, and has proven extremely valuable. 

In concert with members of the computer vision and planning groups within the 
department, we have undertaken a major integrated effort in the area of real-time active 
vision and robotics. Our laboratory includes a custom binocular robot "head" on the end of a 
PUMA robot "neck." Images from the robot's "eyes" feed into a special-purpose pipelined 

image processor. Higher-level vision, planning, and robot control have been implemented on 
a uniprocessor Sun. Real-time response, however, will require extensive parallelization of 

these functions. The Butterfly implementation of Psyche provides the platform for this work. 
Effective implementation of the full range of robot functions will require several different 

models of parallelism, for which Psyche is ideally suited. In addition, practical experience in 
the vision lab will provide feedback on the Psyche design. 

Current activity in the Psyche group is focussed on 

(1) Cooperation with members of the vision group to enSure that Psyche meets the needs 
of real-time applications. 

(2) Implementation and analysis of alternative strategies for NUMA page migration and 
replication. 

(3) Performance analysis and tuning. 
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