
Implementation Issues for the
Psyche Multiprocessor
Operating System

Michael L. Scott, Thomas J. LeBlanc,

Brian D. Marsh, Timothy G. Becker,
Cezary Dubnicki, Evangelos P. Markatos,

and Neil G. Smithline

University of Rochester

ABSTRACT: Psyche is a parallel operating system
under development at the University of Rochester.
The Psyche user interface is designed to allow pro­
grams with widely differing concepts of process,
sharing, protection, and communication to run
efficiently on the same machine, and to interact pro­
ductively. In addition, the Psyche development
effort is addressing a host of implementation issues
for large-scale shared-memory multiprocessors,
including the organization of kernel functions, data
structures, and address maps for machines with
non-uniform memory; the migration and replication
of pages to maximize locality; the introduction of
user-level device drivers, memory management, and
scheduling; and remote source-level kernel debug­
ging. We focus in this paper on our implemen­
tation of Psyche for the BBN Butterfly Plus

This work has been supported in part by NSF lIP grant number CDA-8822724, DARPA ETL
contract number DACA76-85-C-OOOl, ONR contract number NOOO14-87-K..Q548, and a
DARPA/NASA Graduate Research Assistantship in Parallel Processing.

© Computing Systems, Vol. 3' No. I • Winter 1990 101

multiprocessor, though many of the issues we con­
sider apply to any operating system kernel on a
large-scale shared-memory machine. We describe
our major design decisions, the results of our initial
experience with the implementation, and our plans
for continued evaluation and experimentation with
kernel implementation techniques.

1. Introduction

Parallel processing is in the midst of a transition from special pur­
pose to general purpose systems. Part of the impetus for this tran­
sition has been the development of practical, large-scale, shared­
memory mUltiprocessors. To make the most effective use of these
machines, an operating system must address two fundamental
issues that do not arise on uniprocessors. First, the kernel inter­
face must provide the user with greater control over parallel pro­
cessing abstractions than is customary in a traditional operating
system. Second, the kernel must be structured to take advantage
of the parallelism and sharing available in the hardware.

If shared-memory multiprocessors are to be used for day-to­
day computing, it is important that users be able to program them
with whatever style of parallelism is most appropriate for each
particular problem. To do so they must be able to exercise con­
trol over concepts traditionally reserved to the kernel of the
operating system, including processes, communication, scheduling,
sharing, and protection. If shared-memory multiprocessors are to
be used efficiently, it is also important that the kernel not define
abstractions that hide a significant portion of the hardware's
functionality.

The Psyche project is an attempt to design and prototype a
high-performance, general-purpose operating system for large-scale
shared-memory multiprocessors. The fundamental kernel abstrac­
tion, an abstract data object called a realm, can be used to

102 Scott et al.

implement such diverse mechanisms as monitors, remote pro­
cedure calls, buffered message passing, and unconstrained shared
memory [Scott et al. 1990]. Sharing is the default in Psyche; pro­
tection is provided only when the user specifically indicates a wil­
lingness to sacrifice performance in order to obtain it. Sharing
also occurs between the user and the kernel, and facilitates expli­
cit, user-level control of process structure and scheduling.

This emphasis on multi-model parallel computing, and on
user-level flexibility in general, is the core of the Psyche project.
Our intent is to allow the users of a shared-memory multiproces­
sor to do almost anything for which the underlying hardware is
well suited, and to allow applications or application components
that use the machine in different ways to coexist and to interact
productively. Working with members of the computer vision and
planning groups within our department, we have undertaken a
large joint project in real-time vision and robotics. Because they
must perform a wide variety of reflexive and cognitive tasks
(naturally expressed with a wide variety of parallel programming
models), the roboticists make an excellent user community.

A glimpse of Psyche from the user's point of view appears in
Section 2; more detail can be found in other papers [Scott et al.
1988; 1989; 1990]. In this paper we focus on implementation
issues for our prototype of Psyche. Some of these issues, such as
the management of virtual address spaces, scheduling, device
drivers, and the handling of page faults, are heavily tied to the
Psyche kernel interface. Others, such as multi-processor
bootstrapping, communication, synchronization, and the division
of data and functionality among instances of the kernel, must be
addressed in any operating system for a large shared-memory
multiprocessor.

Our implementation of Psyche runs on the BBN Butterfly Plus
mUltiprocessor, the hardware base of the GP 1000 product line.
We began writing code for the kernel in the summer of 1988,
building on the bare machine. Our first toy program ran in user
space in December of 1988. Our first major application [Yamau­
chi 1989] was ported to Psyche in November of 1989. It uses
video cameras and a robot arm to locate and bat a balloon.
Because our work is still in progress, we devote the bulk of our

Implementation Issues for the Psyche Multiprocessor Operating System 103

presentation here to unsolved research problems, and to what we
consider the most promising ways to address them.

Section 2 presents the Psyche kernel interface, including its
rationale, its benefits to users, and its implications for implemen­
tation. Sections 3 and 4 describe the structure of our kernel and
the management of its resources. Section 5 relates our experience
with kernel debugging tools. Section 6 details our status and
future plans.

2. Overview of Psyche

2.1 Motivation

The Computer Science Department at the University of Rochester
acquired its first shared-memory multiprocessor, a 3-node BBN
Butterfly machine, in 1984. Since that time, departmental
resources have grown to include four distinct varieties of Butterfly
(one with 128 nodes) and an IBM 8eE multiprocessor workstation.
From 1984 to 1987, our work could best be characterized as a
period of experimentation, designed to evaluate the potential of
scaleable shared-memory multiprocessors and to assess the need
for software support. In the course of this experimentation we
ported three compilers to the Butterfly, developed five major and
several minor library packages, built two different operating sys­
tems, and implemented dozens of applications. A summary of
this work can be found in LeBlanc et al. [1988].

As we see it, the most significant strength of a shared-memory
architecture is its ability to support efficient implementations of
many different parallel programming models, encompassing a
wide range of grain sizes of process interaction. Local-area net­
works and more tightly-coupled multicomputers (the various com­
mercial hypercubes, for example) can provide outstanding per­
formance for message-based models with large to moderate grain
size, but they do not admit a reasonable implementation of inter­
process sharing at the level of individual memory locations.
Shared-memory multiprocessors can support this fine-grained
sharing, and match the speed of multicomputers for message pass­
ing, too.

104 Scott et al.

We have used the BBN Butterfly to experiment with many
different programming models. BBN has developed a model based
on fine-grain memory sharing [Thomas & Crowther 1988]. In
addition, we have implemented remote procedure calls, an object­
oriented encapsulation of processes, memory blocks, and mes­
sages, a message-based library package, a shared-memory model
with numerous lightweight processes, and a message-based pro­
gramming language.

Using our systems packages, we have achieved significant
speedups (often nearly linear) on over 100 processors with a range
of applications that includes various aspects of computer vision,
connectionist network simulation, numerical algorithms, computa­
tional geometry, graph theory, combinatorial search, and parallel
data structure management. In every case it has been necessary to
address the issues of locality and contention, but neither of these
has proven to be an insurmountable obstacle. Simply put, a
shared-memory multiprocessor is an extremely flexible platform
for parallel applications. The challenge for hardware designers is
to make everything scale to larger and larger machines. The chal­
lenge for systems software is to keep the flexibility of the hardware
visible at the level of the kernel interface.

A major focus of our experimentation with the Butterfly has
been the evaluation and comparison of multiple models of parallel
computing [Brown et aI. 1986; LeBlanc 1986; LeBlanc et aI. 1988].
Our principal conclusion is that while every programming model
has applications for which it seems appropriate, no single model is
appropriate for every application. In an intensive benchmark
study conducted in 1986 [Brown et al. 1986], we implemented
seven different computer vision applications on the Butterfly over
the course of a three-week period. Based on the characteristics of
the problems, programmers chose to use four different program­
ming models, provided by four of our systems packages. For one
of the applications, none of the existing packages provided a rea­
sonable fit, and the awkwardness of the resulting code was a major
impetus for the development of yet another package. It strikes us
as highly unlikely that any predefined set of parallel programming
models will be adequate for the needs of all user programs.

Other researchers have recognized the need for multiple
models of parallel computing. Remote procedure call systems, for

Implementation Issues Jor the Psyche Multiprocessor Operating System 105

example, have often been designed to work between programs
written in multiple languages [Bershad et al. 1987; Hayes &
Schlichting 1987; Jones et al. 1985; Liskov et al. 1988]. Unfor­
tunately, most RPC-based systems support only one style of pro­
cess interaction, and are usually intended for a distributed
environment; there is no obvious way to extend them to fine­
grained process interactions. Synchronization is supported only
via client-server rendezvous, and even the most efficient imple­
mentations [Bershad et aI. 1990] cannot compete with the low
latency of direct access to shared memory.

At the operating system level, the Choices project at Illinois
[Campbell et al. 1987] allows the kernel itself to be customized
through the replacement of C++ abstractions. The University of
Arizona's x-Kernel [Peterson et al. 1989] adopts a similar
approach in the context of communication protocols for message­
based machines. Both Choices and the x-Kernel are best
described as reconfigurable operating systems; they provide a sin­
gle programming model defined at system generation time, rather
than supporting multiple models at run time. The Agora project
[Bisiani & Forin 1988] at CMU defines new mechanisms for pro­
cess interaction based on pattern-directed events and a stylized
form of shared memory. Its goals are to support parallel AI appli­
cations using heterogeneous languages and machines.

Mach [Accetta et aI. 1986] is representative of a class of
operating systems designed for parallel computing. Other systems
in this class include Amoeba [Mullender & Tanenbaum 1986],
Chorus [Rozier et aI. 1988], Topaz [Thacker & Stewart 1988], and
V [Cheriton 1984]. To facilitate parallelism within applications,
these systems allow more than one kernel-supported process to
run in one address space. To implement minimal-cost threads of
control, however, or to exercise control over the representation
and scheduling of threads, coroutine packages must still be used
within a single kernel process. Psyche provides mechanisms una­
vailable in existing systems to ensure that threads created in user
space can use the full range of kernel services (including those that
block), without compromising the operations of their peers. In
contrast to existing systems, Psyche also emphasizes data sharing
between applications as the default, not the exception, distributes
access rights without kernel assistance, checks those rights lazily,

I 06 Scott et at.

and presents an explicit tradeoff between protection and
performance.

Washington's Presto system [Bershad et al. 1988] is perhaps
the closest relative to Psyche, at least from the point of view of an
individual application. Presto runs on a shared-memory machine
(the Sequent Symmetry), and allows its users to implement many
different varieties of processes and styles of process interaction in
the context of a single C++ program. As with Agora, however,
Presto is implemented on top of an existing operating system, and
is limited by the constraints imposed by that system. Where
Agora relies on operations supported across protection boundaries
in Mach, Presto works within a single language and protection
domain, where a wide variety of parallel programming models can
be used. Psyche is designed to provide the flexibility of Presto
without its limitations, allowing programs written under different
models (e.g. in different languages) to interact while maintaining
protection.

2.2 Kernel Interface

Psyche is intended to provide a common substrata for the imple­
mentation of parallel programming models. In pursuit of this goal
we have adopted a low-level kernel interface. We do not expect
application programmers to use our interface directly. Rather, we
expect them to depend upon library packages and language run­
time systems that implement their favorite programming models.
The low-level interface allows new packages to be written on
demand, and provides well-defined underlying mechanisms that
can be used to communicate between models when desired.

Seen in this light, the kernel exists primarily to implement pro­
tection and to perform operations (such as accessing page tables
and fielding interrupts) that must occur in a privileged hardware
state. We recognize that it may be necessary for the sake of per­
formance to place other functions in the kernel as well, but our
philosophy is to err initially on the side of minimality, returning
functionality to the kernel only if forced to do so.

Because we are interested in providing as much flexibility as
possible to the library and language implementor, we are more
interested in minimality of function in the kernel than minimality

Implementation Issues for the Psyche Multiprocessor Operating System 107

of the kernel interface itself. We are willing, for example, to make
heavy use of data structures shared between the kernel and the
user, in order to reduce the number of kernel calls required to
implement important functions, or to make some feature of the
hardware more readily accessible to user-level code.

The Psyche kernel interface is based on four abstractions: the
realm, the protection domain, the virtual processor, and the pro­
cess (see Figure 1). Realms (squares) form the unit of code and
data sharing. Protection domains (ellipses) are a mechanism for
limiting access to realms. Processes (small circles) are user-level
threads of control. Virtual processors (triangles) are kernel-level
abstractions of physical processors, on which processes are
scheduled. Processes are implemented in user space; the other
three abstractions are implemented in the kernel.

Each realm consists of code and data. The code usually con­
sists of operations that provide a protocol for accessing the data.
Since all code and data is encapsulated in realms, all computation
consists of the invocation of realm operations. Interprocess com­
munication is effected by invoking operations of realms accessible
to more than one process.

Depending on the degree of protection desired, an invocation
of a realm operation can be as fast as an ordinary procedure call,
termed optimized invocation, or as safe as a remote procedure call
between heavyweight processes, termed protected invocation.

A 0
U 00

D
Figure 1: Basic Psyche Abstractions

108 Scott et at.

D
D

Unless the caller explicitly asks for protection (by performing an
explicit kernel call), the two forms of invocation are initiated in
exactly the same way, with the native architecture's jump-to­
subroutine instruction. The kernel implements protected invoca­
tions by catching and interpreting page faults.

A process in Psyche represents a thread of control meaningful
to the user. A virtual processor is a kernel-provided abstraction on
top of which processes are implemented. There is no fixed
correspondence between virtual processors and processes. One
virtual processor will generally schedule many processes. Like­
wise, a given process may run on different virtual processors at
different points in time. As it invokes protected operations, a pro­
cess moves through a series of protection domains, each of which
embodies a set of access rights appropriate to the invoked opera­
tion. Each domain has a separate page table, which includes pre­
cisely those realms for which the right to perform optimized invo­
cations has been verified by the kernel in the course of some past
invocation. In addition to the page table, the kernel also main­
tains for each protection domain a list of the realms for which the
right to perform protected invocations has already been verified.

To facilitate sharing of arbitrary realms at run time, Psyche
arranges for every realm to have a unique system-wide virtual
address. This uniform addressing allows processes to share
pointers without worrying about whether they might refer to
different data structures or functions in different address spaces.
An attempt to touch a realm that is not yet a part of the current
protection domain will of course result in a page fault. Given
appropriate access rights, the kernel will respond to the fault by
opening the realm in question for future access from the protec­
tion domain - adding it either to the page table of the domain (in
the case of optimized access) or to the list of verified targets for
protected procedure calls.

Every realm has a distinguished protection domain in which
protected calls to its operations should execute. When a process
performs a protected invocation of some operation of a realm, it
moves to that realm's distinguished domain. The domain there­
fore contains processes that have moved to it as a result of pro­
tected invocations, together with processes that were created in it
and have not moved. Processes in different domains may be

Implementation Issues for the Psyche Multiprocessor Operating System 109

represented in many different ways - as lightweight threads of vari­
ous kinds, or requests on the queue of a heavyweight server. The
kernel keeps track of the call chains of processes that have moved
between protection domains (in order to implement returns
correctly), but it knows nothing about how processes are
represented or scheduled inside domains, and is not even aware of
the existence of processes that have not moved.

In order to execute processes inside a given protection
domain, the user must ask the kernel to create a collection of vir­
tual processors on which those processes can be scheduled. The
number of virtual processors in a domain determines the max­
imum level of physical parallelism available to the domain's
processes. On each physical node of the machine, the kernel
time-slices among the virtual processors currently located on that
node. A data structure maintained by the user and visible to the
kernel contains an indication of which process is being served by
the current virtual processor. It is entirely possible (in fact likely)
that when execution enters the kernel the currently running pro­
cess will be different from the one that was running when execu­
tion last returned to user space.

To facilitate data sharing between the kernel and the user, the
kernel implements a so-called "magic page," which appears to the
user as a collection of read-only pseudo-registers. As with the
hardware registers, there is a separate magic page on each physical
processor, which is mapped into the address space of every
resident virtual processor at a well-known virtual address. Con­
tained in the magic page are such kernel-maintained data as the
topology of the machine, the local processor number, scheduling
statistics, the time of day, and pointers to user-maintained data
structures describing the currently-executing virtual processor and
its protection domain. These latter two data structures contain
such information as the name of the current process, the time at
which to deliver the next wall clock timer interrupt, and lists of
access rights.

Synchronous communication from the kernel to the virtual
processors takes the form of signals that resemble software inter­
rupts. A software interrupt occurs when a process moves to a new
protection domain, when it returns, and whenever a

11 0 Scott et 01.

kernel-detected error occurs. In addition, user-level code can
establish interrupt handlers for wall clock and interval timers.

The interrupt handlers of a protection domain are the entry
points of a scheduler for the processes of the domain. Protection
domains can thus be used to provide the boundaries between dis­
tinct models of parallelism. Each scheduler is responsible for the
processes in its domain at the current point in time, managing
their representations and mapping them onto the virtual proces­
sors of the domain. Realms are the building blocks of domains,
and define the granularity at which domains can intersect.

2.3 Advantages for Users

As UNIX-like systems are developed for multiprocessors, a con­
sensus is emerging on mUltiple kernel-supported processes within
an address space. Amoeba, Chorus, Mach, Topaz, and V all take
this approach. Most support some sort of memory sharing
between processes in different address spaces, but message passing
or RPC is usually the standard mechanism for synchronization
and communication across address-space boundaries.

On the surface there is a similarity between Psyche and these
modem conceptions of UNIX. A protection domain corresponds
to an address space. A virtual processor corresponds to a kernel­
provided process. Protected procedure calls correspond to RPc.
The correspondence breaks down, however, in three important
ways.

Ease of Memory Sharing. Uniform addressing in Psyche
means that pointers do not have to be interpreted in the context
of a particular address map. Without uniform addressing, it is
impossible to guarantee that an arbitrary set of processes will be
able to place a shared data structure at a mutually-agreeable loca­
tion at run time. The key and access list mechanism, with user
dissemination of keys and lazy checking by the kernel, means that
processes do not have to pay for things they don't actually use,
nor do they have to realize when they are using something for the
first time, in order to ask explicitly for access. Pointers in distrib­
uted data structures can be followed without worrying about
whether access checking has yet been performed for the portion of
the data they reference.

Implementation Issues for the Psyche Multiprocessor Operating System 111

Uniformity of Invocation. Optimized and protected invoca­
tions share the same syntax and, with the exception of protection
and performance issues, the same semantics. No stub generators
or special compiler support are required to implement protected
procedure calls. In effect, an appropriate stub is generated by the
kernel when an operation is first invoked, and is used for similar
calls thereafter. As with the lazy checking of access rights, this
late binding of linkage mechanisms facilitates programming tech­
niques that are not possible with remote procedure call systems.
Function pointers can be placed in data structures and can then
be used by processes whose need for an appropriate stub was not
known when the program was written.

First Class User-Level Threads. Because there are no blocking
kernel calls, a virtual processor is never wasted while the user­
level process it was running waits for some operation to complete.
Protected invocations are the only way in which a process can
leave its protection domain for an unbounded amount of time,
and its virtual processor receives a software interrupt as soon as
this occurs. These software interrupts provide user-level code
with complete control over the implementation of lightweight
processes, while allowing those processes to make standard use of
the full set of kernel operations.

2.4 Ramifications for Kernel
Implementation

The nature of the Psyche kernel interface poses several unusual
challenges for the kernel implementor. Promiscuous sharing in a
uniform user address space, for example, means that valid
addresses in a given protection domain are likely to be sparse. If
the hardware does not support sparse address spaces well, the ker­
nel implementor may be forced to page the page tables, rely
exclusively on the TLB, or use hardware page tables to cache a
more flexible data structure maintained in software. Because each
realm has a unique system-wide virtual location, user-level code
must be relocated at load time unless it is position independent.
Though this is not strictly a kernel-level issue in Psyche (since the
loader is outside the kernel), it has ramifications for a host of
user-level tools, and also for code sharing. If users create many

112 Scott et al.

realms from the same load image, the kernel can arrange for these
realms to share code segments (at a significant savings in aggregate
working set size) only if they are position independent.

Uniform addressing also means that large system workloads
are unlikely to fit within the 32-bit addressing range of many
microprocessors. The need within the kernel to access data struc­
tures on a large number of processors creates a competing demand
for address space, which only makes matters worse. We expect
the 32-bit limit to be lifted by emerging architectures. In the
meantime, we have developed techniques to economize on virtual
addresses in the kernel (as described in the following section), and
have devised (though not implemented) additional techniques for
use in user space.

Another area of kernel design that is complicated by Psyche
abstractions is the handling of page faults. The default cause of a
page fault is an error on the part of the user-level program. Tradi­
tional operating systems overload page faults to implement
demand paging as well. They may also use them to compensate
for missing hardware features, as in the simulation of reference
bits on the VAX [Babaoglu & Joy 1981], or the provision of more
than one virtual-to-physical mapping on machines with inverted
page tables [Rashid et aI. 1988]. Page faults may be used for lazy
initiation of expensive operations, as in copy-on-write message
passing [Fitzgerald & Rashid 1986], time-critical process migra­
tion [Theimer et al. 1985; Zayes 1987], or the management of
locality in machines with non-uniform memory access times
[Bolosky et aI. 1989; Cox & Fowler 1989]. In Psyche, page faults
are given two more functions: the opening of realms for optim­
ized access and the initiation of protected procedure calls. Imple­
menting these functions efficiently, without compromising the per­
formance of other operations triggered by page faults, is a poten­
tially difficult task.

Perhaps the most important challenge for the Psyche kernel
(one not addressed in this paper) is to implement software inter­
rupts and protected procedure calls efficiently. Because these
mechanisms lie at the heart of scheduling, device management,
and cross-domain communication, it is imperative that they work
as fast as possible. It is not yet clear whether techniques similar
to those used in LRPC [Bershad et al. 1990] or the Synthesis

Implementation Issues for the Psyche Multiprocessor Operating System 113

kernel [Massalin & Pu 1989) can be made to work well without an
explicit, user-specified "bind to service" operation. Our hope is
that substantial amounts of time can be saved by automatically
precomputing linkage mechanisms for protected procedure calls
when a realm is first opened for access.

3. Kernel Organization

3.1 Basic Kernel Structure

The Psyche kernel interface is designed to take maximum advan­
tage of shared-memory architectures. Since we are interested in
concepts that scale, we assume that Psyche will be implemented
on NUMA (non-uniform memory access) machines. A NUMA host
is modeled as a collection of clusters, each of which comprises
processors and memories with identical locality characteristics. A
Sequent or Encore machine consists of a single cluster. On a
Butterfly, each node is a cluster unto itself. The proposed Encore
Gigamax [Wilson 1987) would consist of non-trivial clusters.

Our most basic kernel design decisions have been adopted
with an eye toward efficient use of very large NUMA machines.

1. The kernel is symmetric; each cluster contains a separate
copy of most of the kernel code, and each processor exe­
cutes this code independently. The alternative organization,
in which particular kernel services would execute on particu­
lar processors, does not seem to scale well to different
numbers of nodes. We allocate kernel scheduling and
memory management data structures on a per-cluster basis.
Kernel functions are performed locally whenever possible.
The only exceptions are interrupt handlers (which must be
located where the interrupts occur) and some virtual
memory daemons, which consume fewer resources when run
on a global basis.

2. As in most modem operating system implementations, little
distinction is made between parallelism in user space and
parallelism in the kernel. Kernel resources are represented
by parallel-access data structures, not by active processes. A

114 Scott et aI.

virtual processor that traps into the kernel enters a
privileged hardware state (and begins to execute trusted
code, but continues to be the same active entity that it was
in user space. This approach to process structure is not
motivated by NUMA architecture per se, but tends to
minimize the cost of simple kernel calls, and simplifies the
management and scheduling of virtual processors.

3. The kernel makes extensive use of shared memory to com­
municate between processors, both within and between clus­
ters. Ready lists, for example, are manipulated remotely in
order to implement protected invocations. The alternative,
a message-passing scheme in which instances of the kernel
would be asked to perform the manipulations themselves
[LeBlanc et al. 1989 J, was rejected as overly expensive.
Most modifications to remote data structures can be per­
formed asynchronously; the remote kernel will notice them
the next time the data is read. Synchronous inter-kernel
interrupts are used for I/O, remote TLB invalidation, and
insertion of high-priority processes in ready queues.

4. Kernel data structures do not share the uniform address
space with user programs. If individual instances of the ker­
nel are to access the data structures of arbitrary other
instances, then the need for scalability will dictate that the
space available for kernel data structures be very large.
Existing 32-bit architectures provide barely enough room for
the user-level uniform address space, and cannot be
stretched to accommodate the kernel's needs as well. In
order to access arbitrary portions of both the uniform
address space and the kernel data structures, each kernel
instance must be prepared to remap portions of its address
space, or to switch between mUltiple spaces.

A diagram of our current kernel addressing structure appears
in Figure 2. The code and data of the local kernel instance are
mapped into the same locations in each address space, making
switches between spaces easy. The data of the local kernel
includes the "magic page" of kernel-maintained data that is read­
able by the user. The user/kernel address space also contains the
protection domain of the currently running virtual processor (at

Implementation Issues for the Psyche Multiprocessor Operating System 115

USER/KERNEL ADDRESS SPACE KERNEL/KERNEL ADDRESS SPACE

<

f----I)- Local kernel code and data--(1-__ '-1.

-1-- Psyche unifonn address space

I
Remote kernel data --

Figure 2: Kernel Address Spaces

, , ,
\

< i
/

/

its correct position in the uniform address space), and the
kerneUkernel address space contains the data of every kernel
instance. Local kernel data structures appear at two different loca­
tions in the kernellkernel space.

When executing in user space, the virtual processors of
separate protection domains must have separate page tables.
There is therefore a separate user/kernel address space for every
protection domain. Address space switches are required in the
kernel in order to examine data in user space and in other
instances of the kernel. Unfortunately, they are also required in
order to examine user data in more than one protection domain,
something that is needed for protected invocations of realm
operations.

An alternative implementation of the two-address-space struc­
ture would employ both a separate page table for each protection
domain and a single, universal user/kernel address space that
included the code and data of every protection domain. This
latter address space would be used only in the kernel. Virtual pro­
cessors would switch to it when executing any operation that
required access to more than one protection domain. It is not yet
clear whether the savings in address space changes would exceed
the cost of additional page table management. A change to the
uniform address space (destruction of a realm, for example) must
currently be made only to the page tables of protection domains

II 6 Scott et al.

that include the relevant realm. Depending on whether one shares
page tables across clusters (a question that has its own set of
tradeoffs), a large number of page tables might be used to
represent a universal user/kernel address space, and these would
need to be kept consistent as well.

When we designed the two-address-space structure, it was our
hope that a typical kernel call would begin operation in the
user/kernel space, examining any needed user data. It would then
switch to the kernel/kernel space in order to perform the
requested operation, and switch back again in order to write
results into user space. We have found in practice that the situa­
tion is seldom so simple. The implementation of protected pro­
cedure calls, for example, must switch back and forth between
address spaces several times in order to obtain all the information
it needs from user space, and compare it against relevant data in
the kernel.

Many address space changes stem from our decision to place
any sharable data structure in the kernel/kernel space, even if it is
accessed locally most of the time. Data in the local portion of the
kernellkernel space are also visible at the upper end of both
address spaces, but at a different virtual address. Accessing them
at this location would require repeated address arithmetic, not
only to find things initially, but also to follow any pointers found
inside. Accessing data at their "official" location, however, fre­
quently requires a switch between user/kernel and kernel/kernel
spaces.

An alternative approach to managing kernel data would be to
use only the user/kernel address space, but to augment its two ker­
nel segments (code and local data) with (I) a segment shared per­
manently by all instances of the kernel, containing frequently-used
data structures that do not need to scale with the size of the
machine, and (2) one or more segments that can be re-mapped
dynamically to address the local data structures of some other ker­
nel instance. Other than the few data structures contained in the
permanently shared segment, data would be allocated among the
local variables of whichever kernel instance is expected to access
them most often. Another kernel wishing to gain access would use
its temporary segment(s). Since temporary segments appear at a
different virtual address than the local data segment, address

Implementation Issues for the Psyche Multiprocessor Operating System 117

arithmetic would be required when accessing data of another ker­
nel instance.

This alternative approach is similar to one employed in
Chrysalis, the original operating system for the Butterfly [BBN
1988]. We were not happy with the temporary segment mechan­
ism in Chrysalis; it took too long to remap it. Costs would be
lower, however, on the current generation of hardware, and could
probably be made comparable to the cost of switching between
existing address spaces, by preallocating and initializing page table
fragments for temporary segments, and patching them into the
kernel address space when needed, rather than creating them on
the fly. The tradeoff between our current two-address-space struc­
ture and the remapping scheme with temporary segments would
come down to the choice between easy access to the data of other
kernel instances, and the ability to examine kernel and user data
simultaneously. We are beginning an audit of kernel data struc­
tures and access patterns in an attempt to quantify the difference
between these options. We expect to re-consider the design of
kernel page tables once we have a better understanding of the rela­
tive costs involved.

3.2 Synchronization

A traditional uniprocessor operating system often obtains mutual
exclusion for kernel data structures by disabling preemption in the
kernel. In a shared-memory multiprocessor, this simple technique
no longer works. Data structures can be modified remotely. An
inventory of kernel data structures in Psyche reveals that almost
none of them (other than those local to a subroutine) are private
to a single processor, though most are usually accessed locally.
Explicit synchronization is almost always required when accessing
kernel data. We have therefore opted to allow preemption in the
kernel. The overhead incurred by explicit locking remains to be
measured. We expect it to be significant, but still less than the
cost of message-passing between kernels to avoid the need for
locking.

We have found a need in the kernel for four major types of
synchronization. (We also have a facility for all-processor barrier
synchronization, but this is used only for kernel initialization.)

118 Scott et al.

Disabled preemption. Those few data structures that are
processor-local (buffers for the per-processor console, for example)
can be protected by disabling preemption of virtual processors.
To allow nesting of locks, the kernel maintains a "preemption
level" that is incremented when entering a critical section and
decremented when leaving. At the end of a quantum, the clock
handler forces a context switch only if the counter is zero. If the
counter is positive, the handler sets a flag and returns. The code
that decrements the preemption level counter causes a context
switch on behalf of the clock handler if the flag is set and the level
has returned to zero.

Locked-out interrupts. Interrupt masking is used solely to syn­
chronize with device handlers. Data structures that can be
accessed by interrupt handlers and by remote processors must be
protected by both a spin lock and locked-out interrupts.

Spin locks. Spin locks are the most frequently-used locks in
the kernel. They are used to protect critical sections of small,
bounded length. The spin lock implementation disables preemp­
tion of virtual processors, to ensure that the bound is not violated
by an inopportune context switch.

Semaphores. True blocking semaphores are used when a vir­
tual processor must wait for a condition that may not happen
soon. Unlike most other operating systems, the Psyche kernel will
rarely block a virtual processor (and all of its processes) for an
unbounded length of time. The exceptions are operations (such as
demand page-in) that must complete before any process can use
the virtual processor, and a kernel call whose explicit purpose is to
block the current virtual processor (pending interrupts) when it
has no processes to run. To block itself, a virtual processor (1)
disables preemption, (2) writes its name down where some other
virtual processor will find and resume it at an appropriate time,
and (3) invokes the kernel scheduler, thereby saving its state,
switching to another virtual processor, and re-enabling preemp­
tion. The same basic mechanism could be used to implement
monitors. To avoid a timing window, anyone who wants to
resume a virtual processor must spin until it state is completely
saved.

Implementation Issues Jor the Psyche Multiprocessor Operating System 119

3.3 Bootstrapping

Initialization of Psyche proceeds in three distinct phases. The
first phase loads an instance of the kernel onto a single processor
of the bare machine and starts it running. The second phase repli­
cates the kernel and starts the remaining processors. The third
phase brings up an initial set of user-level programs.

Initial booting of Psyche employs a two-step process. When
power-cycled, the Butterfly Plus executes a serial-line loader in
ROM. We initially used this facility to load the entire kernel, but
found frequent reloads to be increasingly painful as the kernel
grew. We now transfer a small bootstrap program that initializes
the Ethernet interface and loads the bulk of the kernel using a
naive (busy-wait) implementation of UDP. This loader took about
a man-month to construct-less than we expected; we wish we had
written it sooner. To reduce the need for reloading, we checksum
the kernel code and save a copy of its data in memory, so that the
current version can be restarted in response to a request on the
console line.

The second phase of Psyche initialization must be accom­
plished on any multiprocessor, but is more difficult on multicom­
puters and multiprocessors with distributed memory than it is on
bus-based machines. In Psyche the kernel is symmetric, but a
substantial amount of initialization code is executed only on the
initial "king node" processor (see Figure 3).

startup:
initialize local data structures
if king

initialize shared data structures
replicate kernel code and data
start other processors

barrier_sync
write information for other processors

into shared data structures

barrier_sync
Figure 3: Kernel Initialization

120 Scott et al.

The king node begins execution by initializing both its own
local data structures and certain of the shared (kernel-kernel) data
structures required for basic communication with other instances
of the kernel. Among other things it allocates space for a shared
heap and creates several objects in that heap. Addresses of these
objects, and of the heap itself, are written into variables in the
king node's local data. Once this basic initialization is complete,
the king node copies its code and data (in its current state) into
the local memories of all the other processors. It writes into each
processor's interrupt vector table the address of the same initiali­
zation routine it is itself executing, and delivers remote interrupts
that cause each processor to begin execution in that routine. It
then falls into a barrier synchronization routine, waiting for the
other processors to catch up with it.

On each other processor, the kernel repeats the king node's ini­
tialization of its local data structures, then joins the synchroniza­
tion barrier. Because the king node replicates its own, initialized
data structures, rather than a pristine version of the kernel, non­
king nodes know from the beginning of execution whatever the
king node knew at replication time, including the addresses of
various shared data structures. In order to initialize virtual
memory, device management, and synchronous inter-kernel inter­
rupts, the various processors then proceed through several addi­
tional barrier episodes. Between each pair of barriers, processors
read information written into shared data by their peers before the
most recent barrier, use this to calculate new information about
themselves, and write that new information into shared data for
use beyond the next barrier.

For the third phase of Psyche initialization (user-level pro­
grams), the kernel on the king node creates a single primordial
realm in a single protection domain, containing a single user-level
process. This process executes code to create additional realms,
resulting in an initial set that currently includes a command­
interpreter shell, a user-level loader, a name server, and a simple
network file server.

In response to a typed command, the shell communicates with
the loader to start a user program (see Figure 4). The loader reads
the header of the object file to discover the size of the program. It
uses a system call to create an empty realm (which the kernel

Implementation Issues for the Psyche Multiprocessor Operating System 121

places at an address of its choosing), and then loads the program
into the realm, resolving references to a small set of standard
external symbols (examples of these include entry points of the
general-purpose name server, the file system, the loader itself, and
reentrant subroutine libraries). At this point the loader returns to
the shell. The realm itself is still passive.

The shell uses another system call to create an initial virtual
processor in the new realm's protection domain. The kernel
immediately provides this virtual processor with a software inter­
rupt that allows it to initialize its scheduling package. The shell
then performs a protected invocation to the program's main entry
point, whose address was returned by the loader. In most pro­
grams it is expected that the main entry point will be in a library
routine that initializes standard I/O and repackages command line
arguments before branching to the user's main routine. If desired,
the main routine can then register an external interface with the
name server.

load (application)

read (load_file)

main (argc, argv)

read, write (my_file)

load (othccapplication)

register (my_interface), lookup (linker_interface)

Figure 4: Basic User-level Utilities

122 Scott et al.

register (my_interface)

4. Resource Management

4.1 Devices

Consistent with the philosophy of user-level flexibility and kernel
minimality, Psyche allows memory-mapped devices to be accessed
directly from user space. The make_realm system call allows the
user, with appropriate access rights, to create a realm at a
specified virtual or physical address. On the Butterfly Plus, Mul­
tibus devices are accessed at special virtual addresses and VME
devices are accessed at physical addresses. By creating a
memory-mapped realm, a user-level program obtains the ability to
read and write device registers without the assistance ofthe ker­
nel. For polled I/O devices, this interface limits the kernel's role
in device management to that of initialization. In our robotics
lab, polled 1/0 from user space is used to access low-level image
processors and robot eye controllers over the VME bus.

Devices that require interrupts are currently implemented in
the kernel in Psyche. On the Butterfly Plus, there are currently
three types of device in this class:

1. A pair of serial lines connects a Multibus on the king node
of the Butterfly to a UNIX host machine.

2. An Ethernet interface can be plugged into the Multibus on
the king node, or on any other node.

3. On every node there is a on-board pair of serial lines.

One of the Multibus serial lines on the king node is used by
Psyche as a console. The other is used for debugging (see Section
5). Our intent is that both these devices be available only in the
kernel. For development purposes we have implemented a set of
system calls that allow a user program to read and write from the
console. These calls will be removed as soon as we finish a
network-based remote login server.

We use the Ethernet interface for network file service,
bootstrapping of the kernel, and communication via UDP.
Bootstrapping is encapsulated in the kernel. UDP send and
receive commands are part of the kernel interface. Simple remote
file service is built on UDP. To increase flexibility, we would like

Implementation Issues for the Psyche Multiprocessor Operating System 123

to move as much network functionality as possible out of the ker­
nel and into user space. In the limit, one might translate
hardware interrupts directly into software interrupts, and deliver
them to appropriate virtual processors. It is currently unclear to
what extent this goal can be achieved with reasonable perform­
ance. Much will depend on the speed with which we can deliver
software interrupts. Experience with the Synthesis kernel at
Columbia [Massalin & Pu 1989] suggests that very high speed may
be possible. Psyche is a more complex system than Synthesis,
however, and we may be forced to leave part of the network pro­
tocol stack (ARP, IP, UDP, etc.) inside the Psyche kernel.

Our robot arm is currently controlled from Psyche via network
communication with a Sun to which the robot is attached. We are
in the process of developing device support for the Butterfly's
node-local serial lines, in order to control the robot directly. Our
facilities for memory-mapped 110 can be used to access device
registers from user space, but as with the network there is a need
for interrupt management. We are experimenting with direct
user-space handling of serial line interrupts, and with a small
interrupt handler in the kernel that buffers data for the user. Our
experience with the serial lines will be used to drive later experi­
mentation with the Ethernet device.

4.2 Virtual Memory

Simple physics dictates that memory cannot simultaneously be
located very close to a very large number of processors. Memory
that can be accessed quickly by one node of a large multiprocessor
will be distant from many other nodes. Even on a small machine,
price/performance may be maximized by an architecture with
non-uniform memory access times.

On any Non-Uniform Memory Access (NUMA) machine, per­
formance will depend heavily on the extent to which data reside
close to the processes that use them. In order to maximize local­
ity of reference, data replication and migration can be performed
in hardware (with consistent caches), in the operating system, in
compilers or library routines, or in application-specific user code.
The last option can place an unacceptable burden on the

124 Scott et al.

programmer and the first, if feasible at all in large machines, will
certainly be expensive.

Because of our interest in scaleable machine, much of our
early work on the Psyche virtual memory system was aimed at the
integration of NUMA management with other kernel functions.
We were particularly concerned with the interaction of data repli­
cation and migration with demand paging and protected pro­
cedure calls, and with the structuring of a YM system that could
balance all these concerns without becoming unmaintainable. The
design we developed [LeBlanc et al. 1989a) has four distinct
abstraction layers. The lowest layer encapsulates physical page
frames and page tables. The next layer provides the illusion of
uniform memory access time through page replication and migra­
tion. The third layer provides a default pager for backing store
and a mechanism for user-level pagers. The final layer imple­
ments the Psyche uniform address space and protection domains.
Page faults may indicate events of interest to any of the layers;
they percolate upward until handled.

With the exception of demand paging, most of this VM system
was implemented by the summer of 1989. During the implemen­
tation process, however, we grew increasingly uncomfortable with
the amount of kernel code required, and with the extent to which
YM policies were being dictated by the kernel. As with interrupt­
driven I/O, our goal is now to move much of this functionality
into user space, so that user-supplied replication and migration
policies can use application-specific knowledge to build on kernel
operations that replicate or migrate pages. Real-time programs
will not want a NUMA locality management system to move their
pages at unpredictable times. Demand paging may not be needed
at all on a multiprocessor with lots of physical memory.

Application-level research on Psyche can proceed for some
time without kernel NUMA management (network 1/0, by con­
trast, is crucial). In pursuit of locality management in user space,
we have therefore backed the functions of data migration and
replication out of the current implementation. In the resulting
simple YM system, each virtual address space is represented by a
hardware page table on each node that may execute in it. Each
hardware page table is a cache for a more compact representation
of the virtual address space. To avoid the performance impact of

Implementation Issues for the Psyche Multiprocessor Operating System 125

instruction fetching through the Butterfly switch, code is repli­
cated automatically on every processor that executes it. The crea­
tor of a realm can specify whether the replication should occur
when the realm is created, when it is opened for access in a partic­
ular protection domain, or page-by-page on demand. The keruel
maintains a mapping from virtual addresses to realms, which is
consulted when a page fault occurs, allowing the keruel to deter­
mine whether an attempt to touch an inaccessible page constitutes
an error, a protected invocation, or an initial use of a realm that
should be mapped in for optimized access.

To our simple YM system we plan to re-introduce elements of
the more sophisticated system, either in the kernel or (preferably)
in user space, as concrete needs emerge. The exact division of
labor between the kernel and user has not been determined, but
our goal is to strike a balance between efficiency of implemen­
tation and user-level flexibility.

4.3 Scheduling

Psyche employs a two-level scheduling system. The kernel
scheduler is responsible for multiplexing virtual processors on
physical processors. The actual work performed by a user, how­
ever, is determined by how processes are allocated to virtual pro­
cessors. This latter mapping is performed in user space in Psyche,
both to allow scheduling mechanisms to accommodate many
different process representations, and to allow scheduling policies
to benefit from application knowledge.

Scheduling plays an extremely important role in many applica­
tions, both for performance reasons, as in the case of
computation-intensive mUltiprocess programs, and for correctness
reasons, as in real-time applications. Data and code sharing, syn­
chronization, communication, remote code execution, and process
migration can all have serious effects on the performance of the
system, which the scheduler can mitigate by using appropriate pol­
icies. For example, under round-robin scheduling and without
co-scheduling [Ousterhout 1981], a process may find itself unable
to run (due to synchronization constraints) when it is allocated the
processor, or it may immediately block or spin due to a synchroni­
zation constraint. The added overhead caused by extraneous

126 Scott et aI.

context switches and spinning in this situation slows the system as
a whole, which in tum causes more processes to suffer from the
same problem. A user-level scheduler, using application-specific
knowledge, might make scheduling decisions that avoid this situa­
tion. Scheduling policy could be tuned for each application, and
better decisions would be likely.

To support user-level scheduling, the Psyche kernel provides
the user with virtual processors, software interrupts, and magic
pages with system statistics. The kernel schedules virtual proces­
sors on each physical processor in a round-robin fashion. The
user creates and destroys virtual processors, and can assign them
to physical processors. The user creates the processes that run on
the virtual processors and has complete control over the schedul­
ing of processes on the virtual processors of each protection
domain.

Software interrupts occur when a scheduling decision has to be
made, such as when a process leaves a protection domain for a
protected invocation, a new process arrives in a protection
domain, or a timer expires. The user can define handlers for each
type of interrupt. When an interrupt occurs, a data structure
shared between the kernel and the user is set to contain the state
of the process that was running. The handler can use this infor­
mation to perform a context switch on the virtual processor, or to
make long-term scheduling decisions. In order to facilitate deci­
sions, the kernel maintains statistics in magic pages, which it
updates periodically. These statistics include the load (virtual pro­
cessor run queue length) on each physical processor, the associa­
tion between virtual processors and physical processors, and the
current state and accumulated execution time of each virtual pro­
cessor. Potentially they could also include information on page
faults, migrations, and replications.

Using our mechanisms for user-level scheduling, we have
implemented a thread package that allows users to create and
schedule lightweight processes in a shared address space. The user
can specify the number of virtual processors to be created and can
assign processes to run on them. A different scheduler can be
used on each virtual processor, and schedulers can be changed on

Implementation Issues for the Psyche Multiprocessor Operating System 127

the fly. We plan to use this package to evaluate existing multipro­
cessor scheduling algorithms and experiment with new ones.

We also plan to introduce real-time scheduling into Psyche.
We are aware of the difficulties of adding real-time support to a
pre-existing operating system, but we believe that our minimal
kernel, which provides the ability to perform user-level scheduling
and to define process models in user space, is sufficient to explore
real-time issues. In addition, we can segregate real-time processes
within a subset of available processors, where they can be
managed with different policies, or dedicate the physical memory
of a processor (without paging) to a particular application. Given
the many real-time process models in existence, each of which
incorporates different timing constraints, it would be impractical
to expect a single scheduler within the kernel to meet the timing
constraints for all models simultaneously. By exploiting Psyche
mechanisms, we can achieve predictability for processes such as
device handlers, whose computation time, period, or deadline is
known, while allowing flexible scheduling polices for processes
whose behavior is not as well known.

5. Kernel Debugging

The most important tool we have constructed for Psyche is a
mechanism for remote, source-level debugging, in the style of the
Topaz TeleDebug facility developed at DEC SRC [Redell 1988].
An interactive front end runs on a Sun workstation using the
GNU gdb debugger. gdb comes with a remote debugging facility;
relatively minor modifications were required to get it to work with
Psyche. The debugger communicates via UDP with a multiplexor
running on the Butterfly's host machine. The multiplexor in turn
communicates with a low-level debugging stub (lld) that underlies
the Psyche kernel.

The multiplexor allows many different debugging sessions to
be underway simultaneously, each of them talking to a different
Psyche node. It communicates with lld via one of the serial lines
connected to the Butterfly king node. The interrupt handler for
the debugging line accumulates input until it recognizes a special
debugger packet termination character. It looks inside the packet

128 Scott et al.

to determine the node for which the packet is intended, and either
wakes up the instance of lid on its own node or causes a remote
interrupt to effect the same result on another node.

The protocol between gdb and lid is strictly request-reply, and
does not require reliable communication. Since lld is stateless and
never issues a request, a debugger can be attached to any instance
of the kernel at any time. lid is also very simple, by design. It
was the first portion of the kernel to be written, and has proven
extremely useful. With it we are able, for example, to single-step
through interrupt drivers using all the facilities of a high-quality
source-level debugger.

One question that arises in the design of a remote debugging
facility is where to keep track of the instructions that underlie
breakpoints. If breakpoint information is kept on the host
machine the target system becomes unusable if the debugger
crashes. Topaz therefore maintains its breakpoint information in
the debugging stub on the target. The guiding philosophy behind
this decision is that it should always be possible to debug, so long
as the debugging stub remains intact. For the sake of simplicity,
we initially kept our breakpoints on the Sun. lld tended to break
more often than gdb anyway, and only infrequently did we find
ourselves unable to continue debugging because of lost informa­
tion. As the kernel has become more stable and our debugging
needs more sophisticated, this situation has begun to change. Par­
ticularly annoying is the fact that the kernel cannot be restarted if
its code has been corrupted by breakpoint trap instructions. We
are planning to move breakpoint data into lid. Only the underly­
ing instructions will be maintained; associated conditions, com­
mands, enable status, etc. will still be kept in gdb.

We have observed one serious interaction between lid and the
virtual memory system which in hindsight can be used to illustrate
a few important lessons. lid was designed as a kernel debugger.
We are working on the design of a user-space debugger, but until
it becomes operational we have been using lid in a makeshift
fashion to debug user programs. Unfortunately, while the kernel
is permanently resident, pages of user-level programs may not be
present when the debugger tries to look at them. In particular, we
quickly discovered that typed requests from the user during a
debugging session could cause lid to trigger a page fault, something

Implementation Issues for the Psyche Multiprocessor Operating System 129

it was not designed to handle, and which caused the machine to
crash. In attempting to enhance lid to avoid this common
accident, we found it easier to use existing VM code to force a
page into memory than to write a new routine to determine
whether the page could be forced into memory if desired. We
therefore produced a version of lid that would automatically (and
silently!) force user-level pages into memory.

Meanwhile, we had for some time been experiencing intermit­
tent unexpected user-level bus errors. The source of the trouble
turned out to be that we had neglected to write the clause of the
bus error handler that handles page faults for instructions that
span page boundaries (this is a special case because of details of
the processor pipeline). We had great trouble finding the bug
because it was hidden by lid. The natural course of action when
the bug occurred was to ask lld to print the offending instructions.
Unfortunately, lld would then fetch the instructions as data,
silently faulting the page into memory and eliminating evidence of
the bug. From this we learned that (I) you can't depend on a
debugger to debug something on which the debugger depends; (2)
you need to remember the things on which the debugger depends;
and (3) a kernel debugger probably shouldn't depend on some­
thing as complicated as VM.

We intend to use our existing debugging facility as the base for
user-level debugging of multi-model programs. As part of a
related research project we have developed sophisticated tech­
niques for monitoring and analysis of parallel programs, including
deterministic replay of fundamentally non-deterministic programs
[Fowler et al. 19881. We are currently developing extensions to
our techniques that will allow the developers of programming
language run-time packages and communication libraries to define
debugging interfaces that allow a debugger to talk to the user in
terms of model-specific, high level abstractions. Our goal is (1) to
provide a framework that unifies our toolkit-based approach with
the various techniques for program monitoring and visualization
that have been described in the literature and (2) to develop a
step-by-step methodology and corresponding tools for parallel pro­
gram analysis over the entire software development cycle, from
initial debugging to performance modeling and extrapolation.

130 Scott et al.

6. Status and Future Plans

A full evaluation of our kernel structuring decisions will require
more tuning and measurement than we have been able to under­
take to date. Though we can not yet quantify the tradeoffs
between our current two-address-space structure and the alterna­
tive remapping structure, we strongly suspect that kernel interac­
tion through shared memory will be more efficient than message
passing, even with the extra locking that memory sharing requires.
We believe that the use of many different kinds of locks, each
tuned to a particular type of sharing, will help to minimize the
cost of synchronization. We recognize that locking constitutes a
conceptual burden for kernel programmers, but we have not found
that burden to be unreasonable.

We have chosen to share data structures between the kernel
and the user whenever synchronous communication is not
required. Descriptive data structures, for example, allow the ker­
nel to inspect access rights, process names, software interrupt vec­
tors, and realm operation descriptions without requiring the user
to provide them as explicit arguments to system calls. Kernel­
maintained data allow the user to read the time, compute load
averages, or examine scheduling statistics. Shared flags and timers
allow the user to disable software interrupts, ask for timer inter­
rupts, or anticipate virtual processor preemption (to avoid acquir­
ing a spin lock), all without a kernel trap. A modifiable indication
of the current process allows the user to switch between processes
in the same protection domain without the kernel's intervention.
We expect userlkernel sharing to significantly reduce the number
of system calls (and related kernel overhead) incurred by typical
programs.

We found that the layering of our original VM system made it
relatively easy to understand and modify, but were reluctant to
keep all its functionality in the kernel. We are not yet sure how
much of that functionality can be recreated in user space, nor are
we sure how quickly we will be able to propagate faults through
the layers. Experience with systems such as Swift [Clark 1985]
and the x-Kernel [Peterson et al. 1989] indicates that layering
need not preclude efficiency. It would be premature, moreover, to

Implementation Issues for the Psyche Multiprocessor Operating System 131

use performance as the principal design goal for a multiprocessor
VM system, when it is not yet clear how to divide labor between
the kernel and the user, or to manage the interactions between
VM, protection, and scheduling. In as much as these structural
issues form a central focus of our work, we are happy with the
clarity and modularity of our layered design.

Many of the open issues in kernel design come down to a
question of performance. From the user's point of view, the per­
formance of software interrupts and protected procedure calls will
be particularly important. One potential source of overhead is the
frequent use of locks for synchronization of access to data struc­
tures shared between nodes. Another is the memory management
context switches induced by the multiple-address-space structure
of the kernel. A third is the propagation of page faults through
layers of the VM system. In the course of quantifying these costs
(and recoding to reduce them), we also plan to investigate the
ramifications of allowing virtual processor preemption in the
kernel.

Multi-model parallel programming forms the focus of our
user-level work [Scott et al. 1990]. We are evaluating the extent
to which Psyche kernel primitives facilitate use of, and interaction
between, disparate process and communication models. We are
also investigating appropriate user-level tools for multi-model
debugging, parallel program configuration, management of access
rights, name service, and file service. At the interface between the
kernel and the user, we are developing mechanisms for user-level
device control, locality management, and adaptive real-time
scheduling. With the bulk of the kernel in place, and the first
major applications running, we are in a position to address these
issues in earnest.

Our evaluation effort will depend in large part on experience
with applications, many of which will come from the department's
robot lab. The lab includes a custom binocular "head" on the end
of a PUMA robot "neck." Images from the robot's "eyes" feed
into a MaxVideo pipelined image processor. Higher-level vision,
planning, and robot control have been implemented on a unipro­
cessor Sun. Real-time response, however, will require extensive
parallelization of these functions. The Butterfly implementation
of Psyche provides the platform for this work. Effective

I 32 Scott et al.

implementation of the full range of robot functions will require
several different models of parallelism, for which Psyche is ideally
suited. In addition, practical experience in the vision lab will pro­
vide feedback on the Psyche design.

Acknowledgments

Neal Gafter and John Mellor-Crummey were the original imple­
mentors of our remote debugging system. Sean Colbath, Yenjo
Han, Kurt Jones, John Leadley, Dave Tilley, and Jack Veenstra
have helped build kernel or user-level software. Bill Bolosky con­
tributed to early design discussions.

Implementation Issues for the Psyche Multiprocessor Operating System 133

References

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian
and M. Young, "Mach: A New Kernel Foundation for UNIX
Development," Proceedings of the Summer 1986 USENIX Technical
Conference and Exhibition, June 1986, pages 93-112.

O. Babaogiu and W. Joy, "Converting a Swap-Based System to do Pag­
ing in an Architecture Lacking Page-Referenced Bits," Proceedings
of the Eighth ACM Symposium on Operating Systems Principles,
December 1981, pages 78-86.

[BBN] BBN Advanced Computers Incorporated, "Chrysalis" Program­
mers Manual, Version 4.0," Cambridge, MA, \0 February 1988.

B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo and M. Schwartz,
"A Remote Procedure Call Facility for Interconnecting Hetero­
geneous Computer Systems," IEEE Transactions on Software
Engineering SE-13:8 (August 1987), pages 880-894.

B. N. Bershad, E. D. Lazowska, H. M. Levy and D. B. Wagner, "An
Open Environment for Building Parallel Programming Systems,"
Proceedings of the ACMISIGPLAN PPEALS 1988 - Parallel Program­
ming: Experience with Applications, Languages and Systems, 19-21
July 1988, pages 1-9. In ACM SIGPLAN Notices 23:9.

B. N. Bershad, T. E. Anderson, E. D. Lazowska and H. M. Levy, "Light­
weight Remote Procedure Call," ACM TOCS 8: 1 (February 1990),
pages 37-55. Originally presented at the Twelfth ACM Symposium
on Operating Systems Principles, 3-6 December 1989.

R. Bisiani and A. Forin, "Multilanguage Parallel Programming of
Heterogeneous Machines," IEEE Transactions on Computers 37:8
(August 1988), pages 930-945. Originally presented at the Second
International Conference on Architectural Support for Program­
ming Languages and Operating Systems (ASPLOS II), Palo Alto,
CA, 5-8 October 1987.

W. J. Bolosky, R. P. Fitzgerald and M. L. Scott, "Simple But Effective
Techniques for NUMA Memory Management," Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles, 3-6
December 1989, pages 19-3\. In ACM Operating Systems Review
23:5.

C. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L. Scott, M. Srinivas and
others, "DARPA Parallel Architecture Benchmark Study," BPR 13,
Computer Science Department, University of Rochester, October
1986.

134 Scott et al.

R. Campbell, G. Johnston and V. Russo, "Choices (Class Hierarchical
Open Interface for Custom Embedded Systems)," ACM Operating
Systems Review 21:3 (July 1987), pages 9-17.

D. Cheriton, "The V Kernel - A Software Base for Distributed Systems,"
IEEE Software 1:2 (April 1984), pages 19-42.

D. Clark, "The Structuring of Systems Using Upcalls," Proceedings o/the
Tenth ACM Symposium on Operating Systems Principles, 1-4
December 1985, pages 171-180. In ACM Operating Systems Review
19:5.

A. L. Cox and R. J. Fowler, "The Implementation of a Coherent
Memory Abstraction on a NUMA Multiprocessor: Experiences
with PLATINUM," Proceedings o/the Twelfth ACM Symposium on
Operating Systems Principles, 3-6 December 1989, pages 32-44. In
ACM Operating Systems Review 23:5.

R. Fitzgerald and R. Rashid, "The Integration of Virtual Memory
Management and Interprocess Communication in Accent," ACM
TOCS 4:2 (May 1986), pages 147-177. Originally presented at the
Tenth ACM Symposium on Operating Systems Principles, 1-4
December 1985.

R. J. Fowler, T. J. LeBlanc and J. M. Mellor-Crummey, "An Integrated
Approach to Parallel Program Debugging and Performance
Analysis on Large-Scale Multiprocessors," Proceedings, ACM
SIGPLANISIGOPS Workshop on Parallel and Distributed Debug­
ging, 5-6 May 1988, pages 163-173. In ACM SIGPLAN Notices 24:1
(January 1989).

R. Hayes and R. D. Schlichting, "Facilitating Mixed Language Program­
ming in Distributed Systems," IEEE Transactions on Software
Engineering SE-13:12 (December 1987), pages 1254-1264.

M. B. Jones, R. F. Rashid and M. R. Thompson, "Matchmaker: An
Interface Specification Language for Distributed Processing,"
Conference Record 0/ the Twelfth Annual ACM Symposium on
Principles 0/ Programming Languages, January 1985, pages
225-235.

T. J. LeBlanc, "Shared Memory Versus Message-Passing in a Tightly­
Coupled Multiprocessor: A Case Study," Proceedings 0/ the 1986
International Conference on Parallel Processing, 19-22 August 1986,
pages 463-466.

T.l. LeBlanc, M. L. Scott and C. M. Brown "Large-Scale Parallel Pro­
gramming: Experience with the BBN Butterfly Parallel Processor,"
Proceedings o/the ACM SIGPLAN PPEALS 1988 - Parallel

Implementation Issues for the Psyche Multiprocessor Operating System 135

Programming: Experience with Applications, Languages, and Sys­
tems, 19-21 July 1988, pages 161-172.

T. J. LeBlanc, J. M. Mellor-Crummey, N. M. Gafter, L. A. Crowl and
P. C. Dibble, "The Elmwood Multiprocessor Operating System,"
Software - Practice and Experience 19:11 (November 1989), pages
1029-1056.

T. J. LeBlanc, B. D. Marsh and M. L. Scott, "Memory Management for
Large-Scale NUMA Multiprocessors," TR 311, Computer Science
Department, University of Rochester, March 1989a.

B. Liskov, R. Bloom, D. Gifford, R. Scheifler and W. Weihl, "Communi­
cation in the Mercury System," Proceedings of the 21st Annual
Hawaii International Conference on System Sciences, January
1988, pages 178-187.

H. Massalin and C. Pu, "Threads and Input/Output in the Synthesis
Kernel," Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, 3-6 December 1989, pages 191-201. In ACM
Operating Systems Review 23:5.

S. J. Mullender and A. S. Tanenbaum, "The Design of a Capability­
Based Distributed Operating System," The Computer Journal 29:4
(1986), pages 289-299.

J. K. Ousterhout, Medusa, A Distributed Operating System, UMI Press,
1981.

L. Peterson, N. Hutchinson, S. O'Malley and M. Abbott, "RPC in the x­
Kernel: Evaluating New Design Techniques," Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles, 3-6
December 1989, pages 91-101. In ACM Operating Systems Review
23:5.

R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W.
Bolosky and J. Chew, "Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Architec­
tures," IEEE Transactions on Computers 37:8 (August 1988), pages
896-908. Originally presented at the Second International Confer­
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS II), 5-8 October 1987.

D. Redell, "Experience with Topaz TeleDebugging," Proceedings, ACM
SIGPLANISIGOPS Workshop on Parallel and Distributed Debug­
ging, 5-6 May 1988, pages 35-44. In ACM SIGPLAN Notices 24: 1
(January 1989).

1 36 Scott e\ a1.

M. Rozier and others, "Chorus Distributed Operating Systems," Com­
puting Systems 1:4 (Fall 1988), pages 305-370.

M. L. Scott, T. J. LeBlanc and B. D. Marsh, "Design Rationale for
Psyche, a General-Purpose Multiprocessor Operating System,"
Proceedings of the 1988 International Conference on Parallel Pro­
cessing, V. II - Software, 15-19 August 1988, pages 255-262.

M. L. Scott, T. J. LeBlanc and B. D. Marsh, "Evolution of an Operating
System for Large-Scale Shared-Memory Multiprocessors," TR 309,
Computer Science Department, University of Rochester, March
1989.

M. L. Scott, T. J. LeBlanc and B. D. Marsh, "Multi-Model Parallel Pro­
gramming in Psyche," Proceedings of the Second ACM SlGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP), 15-16 March, 1990, pages 70-78.

C. P. Thacker and L. C. Stewart, "Firefly: A Multiprocessor Worksta­
tion," IEEE Transactions on Computers 37:8 (August 1988), pages
909-920. Originally presented at the Second International Confer­
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS II), 5-8 October 1987.

M. Theimer, K. Lantz and D. Cheriton, "Preemptable Remote Execution
Facilities for the V-System," Proceedings of the Tenth ACM Sym­
posium on Operating Systems Principles, 1-4 December 1985, pages
2-12. In ACM Operating Systems Review 19:5.

R. H. Thomas and W. Crowther, "The Uniform System: An Approach
to Runtime Support for Large Scale Shared Memory Parallel Pro­
cessors," Proceedings of the 1988 International Conference on
Parallel Processing, V. II - Software, 15-19 August 1988, pages
245-254.

A. W. Wilson, Jr., "Hierarchical Cache/Bus Architecture for Shared
Memory Multiprocessors," Fourteenth Annual International Sym­
posium on Computer Architecture, 2-5 June 1987, pages 244-252.

B. Yamauchi, "Juggler: Real-Time Sensorimotor Control Using
Independent Agents," Optical Society of America Image Under­
standing and Machine Vision Conference, 1989 Technical Digest
Series, V. 14, June 1989, pages 6-9.

E. Zayas, "Attaching the Process Migration Bottleneck," Proceedings of
the Eleventh ACM Symposium on Operating Systems Principles, 8-
II November 1987, pages 13-24. InACMOperatingSystems
Review 11:5.

Implementation Issues for the Psyche Multiprocessor Operating System 137

