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ABSTRACT: Psyche is a parallel operating system 
under development at the University of Rochester. 
The Psyche user interface is designed to allow pro­
grams with widely differing concepts of process, 
sharing, protection, and communication to run 
efficiently on the same machine, and to interact pro­
ductively. In addition, the Psyche development 
effort is addressing a host of implementation issues 
for large-scale shared-memory multiprocessors, 
including the organization of kernel functions, data 
structures, and address maps for machines with 
non-uniform memory; the migration and replication 
of pages to maximize locality; the introduction of 
user-level device drivers, memory management, and 
scheduling; and remote source-level kernel debug­
ging. We focus in this paper on our implemen­
tation of Psyche for the BBN Butterfly Plus 
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multiprocessor, though many of the issues we con­
sider apply to any operating system kernel on a 
large-scale shared-memory machine. We describe 
our major design decisions, the results of our initial 
experience with the implementation, and our plans 
for continued evaluation and experimentation with 
kernel implementation techniques. 

1. Introduction 

Parallel processing is in the midst of a transition from special pur­
pose to general purpose systems. Part of the impetus for this tran­
sition has been the development of practical, large-scale, shared­
memory mUltiprocessors. To make the most effective use of these 
machines, an operating system must address two fundamental 
issues that do not arise on uniprocessors. First, the kernel inter­
face must provide the user with greater control over parallel pro­
cessing abstractions than is customary in a traditional operating 
system. Second, the kernel must be structured to take advantage 
of the parallelism and sharing available in the hardware. 

If shared-memory multiprocessors are to be used for day-to­
day computing, it is important that users be able to program them 
with whatever style of parallelism is most appropriate for each 
particular problem. To do so they must be able to exercise con­
trol over concepts traditionally reserved to the kernel of the 
operating system, including processes, communication, scheduling, 
sharing, and protection. If shared-memory multiprocessors are to 
be used efficiently, it is also important that the kernel not define 
abstractions that hide a significant portion of the hardware's 
functionality. 

The Psyche project is an attempt to design and prototype a 
high-performance, general-purpose operating system for large-scale 
shared-memory multiprocessors. The fundamental kernel abstrac­
tion, an abstract data object called a realm, can be used to 
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implement such diverse mechanisms as monitors, remote pro­
cedure calls, buffered message passing, and unconstrained shared 
memory [Scott et al. 1990]. Sharing is the default in Psyche; pro­
tection is provided only when the user specifically indicates a wil­
lingness to sacrifice performance in order to obtain it. Sharing 
also occurs between the user and the kernel, and facilitates expli­
cit, user-level control of process structure and scheduling. 

This emphasis on multi-model parallel computing, and on 
user-level flexibility in general, is the core of the Psyche project. 
Our intent is to allow the users of a shared-memory multiproces­
sor to do almost anything for which the underlying hardware is 
well suited, and to allow applications or application components 
that use the machine in different ways to coexist and to interact 
productively. Working with members of the computer vision and 
planning groups within our department, we have undertaken a 
large joint project in real-time vision and robotics. Because they 
must perform a wide variety of reflexive and cognitive tasks 
(naturally expressed with a wide variety of parallel programming 
models), the roboticists make an excellent user community. 

A glimpse of Psyche from the user's point of view appears in 
Section 2; more detail can be found in other papers [Scott et al. 
1988; 1989; 1990]. In this paper we focus on implementation 
issues for our prototype of Psyche. Some of these issues, such as 
the management of virtual address spaces, scheduling, device 
drivers, and the handling of page faults, are heavily tied to the 
Psyche kernel interface. Others, such as multi-processor 
bootstrapping, communication, synchronization, and the division 
of data and functionality among instances of the kernel, must be 
addressed in any operating system for a large shared-memory 
multiprocessor. 

Our implementation of Psyche runs on the BBN Butterfly Plus 
mUltiprocessor, the hardware base of the GP 1000 product line. 
We began writing code for the kernel in the summer of 1988, 
building on the bare machine. Our first toy program ran in user 
space in December of 1988. Our first major application [Yamau­
chi 1989] was ported to Psyche in November of 1989. It uses 
video cameras and a robot arm to locate and bat a balloon. 
Because our work is still in progress, we devote the bulk of our 
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presentation here to unsolved research problems, and to what we 
consider the most promising ways to address them. 

Section 2 presents the Psyche kernel interface, including its 
rationale, its benefits to users, and its implications for implemen­
tation. Sections 3 and 4 describe the structure of our kernel and 
the management of its resources. Section 5 relates our experience 
with kernel debugging tools. Section 6 details our status and 
future plans. 

2. Overview of Psyche 

2.1 Motivation 

The Computer Science Department at the University of Rochester 
acquired its first shared-memory multiprocessor, a 3-node BBN 
Butterfly machine, in 1984. Since that time, departmental 
resources have grown to include four distinct varieties of Butterfly 
(one with 128 nodes) and an IBM 8eE multiprocessor workstation. 
From 1984 to 1987, our work could best be characterized as a 
period of experimentation, designed to evaluate the potential of 
scaleable shared-memory multiprocessors and to assess the need 
for software support. In the course of this experimentation we 
ported three compilers to the Butterfly, developed five major and 
several minor library packages, built two different operating sys­
tems, and implemented dozens of applications. A summary of 
this work can be found in LeBlanc et al. [1988]. 

As we see it, the most significant strength of a shared-memory 
architecture is its ability to support efficient implementations of 
many different parallel programming models, encompassing a 
wide range of grain sizes of process interaction. Local-area net­
works and more tightly-coupled multicomputers (the various com­
mercial hypercubes, for example) can provide outstanding per­
formance for message-based models with large to moderate grain 
size, but they do not admit a reasonable implementation of inter­
process sharing at the level of individual memory locations. 
Shared-memory multiprocessors can support this fine-grained 
sharing, and match the speed of multicomputers for message pass­
ing, too. 

104 Scott et al. 



We have used the BBN Butterfly to experiment with many 
different programming models. BBN has developed a model based 
on fine-grain memory sharing [Thomas & Crowther 1988]. In 
addition, we have implemented remote procedure calls, an object­
oriented encapsulation of processes, memory blocks, and mes­
sages, a message-based library package, a shared-memory model 
with numerous lightweight processes, and a message-based pro­
gramming language. 

Using our systems packages, we have achieved significant 
speedups (often nearly linear) on over 100 processors with a range 
of applications that includes various aspects of computer vision, 
connectionist network simulation, numerical algorithms, computa­
tional geometry, graph theory, combinatorial search, and parallel 
data structure management. In every case it has been necessary to 
address the issues of locality and contention, but neither of these 
has proven to be an insurmountable obstacle. Simply put, a 
shared-memory multiprocessor is an extremely flexible platform 
for parallel applications. The challenge for hardware designers is 
to make everything scale to larger and larger machines. The chal­
lenge for systems software is to keep the flexibility of the hardware 
visible at the level of the kernel interface. 

A major focus of our experimentation with the Butterfly has 
been the evaluation and comparison of multiple models of parallel 
computing [Brown et aI. 1986; LeBlanc 1986; LeBlanc et aI. 1988]. 
Our principal conclusion is that while every programming model 
has applications for which it seems appropriate, no single model is 
appropriate for every application. In an intensive benchmark 
study conducted in 1986 [Brown et al. 1986], we implemented 
seven different computer vision applications on the Butterfly over 
the course of a three-week period. Based on the characteristics of 
the problems, programmers chose to use four different program­
ming models, provided by four of our systems packages. For one 
of the applications, none of the existing packages provided a rea­
sonable fit, and the awkwardness of the resulting code was a major 
impetus for the development of yet another package. It strikes us 
as highly unlikely that any predefined set of parallel programming 
models will be adequate for the needs of all user programs. 

Other researchers have recognized the need for multiple 
models of parallel computing. Remote procedure call systems, for 
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example, have often been designed to work between programs 
written in multiple languages [Bershad et al. 1987; Hayes & 
Schlichting 1987; Jones et al. 1985; Liskov et al. 1988]. Unfor­
tunately, most RPC-based systems support only one style of pro­
cess interaction, and are usually intended for a distributed 
environment; there is no obvious way to extend them to fine­
grained process interactions. Synchronization is supported only 
via client-server rendezvous, and even the most efficient imple­
mentations [Bershad et aI. 1990] cannot compete with the low 
latency of direct access to shared memory. 

At the operating system level, the Choices project at Illinois 
[Campbell et al. 1987] allows the kernel itself to be customized 
through the replacement of C++ abstractions. The University of 
Arizona's x-Kernel [Peterson et al. 1989] adopts a similar 
approach in the context of communication protocols for message­
based machines. Both Choices and the x-Kernel are best 
described as reconfigurable operating systems; they provide a sin­
gle programming model defined at system generation time, rather 
than supporting multiple models at run time. The Agora project 
[Bisiani & Forin 1988] at CMU defines new mechanisms for pro­
cess interaction based on pattern-directed events and a stylized 
form of shared memory. Its goals are to support parallel AI appli­
cations using heterogeneous languages and machines. 

Mach [Accetta et aI. 1986] is representative of a class of 
operating systems designed for parallel computing. Other systems 
in this class include Amoeba [Mullender & Tanenbaum 1986], 
Chorus [Rozier et aI. 1988], Topaz [Thacker & Stewart 1988], and 
V [Cheriton 1984]. To facilitate parallelism within applications, 
these systems allow more than one kernel-supported process to 
run in one address space. To implement minimal-cost threads of 
control, however, or to exercise control over the representation 
and scheduling of threads, coroutine packages must still be used 
within a single kernel process. Psyche provides mechanisms una­
vailable in existing systems to ensure that threads created in user 
space can use the full range of kernel services (including those that 
block), without compromising the operations of their peers. In 
contrast to existing systems, Psyche also emphasizes data sharing 
between applications as the default, not the exception, distributes 
access rights without kernel assistance, checks those rights lazily, 
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and presents an explicit tradeoff between protection and 
performance. 

Washington's Presto system [Bershad et al. 1988] is perhaps 
the closest relative to Psyche, at least from the point of view of an 
individual application. Presto runs on a shared-memory machine 
(the Sequent Symmetry), and allows its users to implement many 
different varieties of processes and styles of process interaction in 
the context of a single C++ program. As with Agora, however, 
Presto is implemented on top of an existing operating system, and 
is limited by the constraints imposed by that system. Where 
Agora relies on operations supported across protection boundaries 
in Mach, Presto works within a single language and protection 
domain, where a wide variety of parallel programming models can 
be used. Psyche is designed to provide the flexibility of Presto 
without its limitations, allowing programs written under different 
models (e.g. in different languages) to interact while maintaining 
protection. 

2.2 Kernel Interface 

Psyche is intended to provide a common substrata for the imple­
mentation of parallel programming models. In pursuit of this goal 
we have adopted a low-level kernel interface. We do not expect 
application programmers to use our interface directly. Rather, we 
expect them to depend upon library packages and language run­
time systems that implement their favorite programming models. 
The low-level interface allows new packages to be written on 
demand, and provides well-defined underlying mechanisms that 
can be used to communicate between models when desired. 

Seen in this light, the kernel exists primarily to implement pro­
tection and to perform operations (such as accessing page tables 
and fielding interrupts) that must occur in a privileged hardware 
state. We recognize that it may be necessary for the sake of per­
formance to place other functions in the kernel as well, but our 
philosophy is to err initially on the side of minimality, returning 
functionality to the kernel only if forced to do so. 

Because we are interested in providing as much flexibility as 
possible to the library and language implementor, we are more 
interested in minimality of function in the kernel than minimality 
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of the kernel interface itself. We are willing, for example, to make 
heavy use of data structures shared between the kernel and the 
user, in order to reduce the number of kernel calls required to 
implement important functions, or to make some feature of the 
hardware more readily accessible to user-level code. 

The Psyche kernel interface is based on four abstractions: the 
realm, the protection domain, the virtual processor, and the pro­
cess (see Figure 1). Realms (squares) form the unit of code and 
data sharing. Protection domains (ellipses) are a mechanism for 
limiting access to realms. Processes (small circles) are user-level 
threads of control. Virtual processors (triangles) are kernel-level 
abstractions of physical processors, on which processes are 
scheduled. Processes are implemented in user space; the other 
three abstractions are implemented in the kernel. 

Each realm consists of code and data. The code usually con­
sists of operations that provide a protocol for accessing the data. 
Since all code and data is encapsulated in realms, all computation 
consists of the invocation of realm operations. Interprocess com­
munication is effected by invoking operations of realms accessible 
to more than one process. 

Depending on the degree of protection desired, an invocation 
of a realm operation can be as fast as an ordinary procedure call, 
termed optimized invocation, or as safe as a remote procedure call 
between heavyweight processes, termed protected invocation. 

A 0 
U 00 

D 
Figure 1: Basic Psyche Abstractions 
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Unless the caller explicitly asks for protection (by performing an 
explicit kernel call), the two forms of invocation are initiated in 
exactly the same way, with the native architecture's jump-to­
subroutine instruction. The kernel implements protected invoca­
tions by catching and interpreting page faults. 

A process in Psyche represents a thread of control meaningful 
to the user. A virtual processor is a kernel-provided abstraction on 
top of which processes are implemented. There is no fixed 
correspondence between virtual processors and processes. One 
virtual processor will generally schedule many processes. Like­
wise, a given process may run on different virtual processors at 
different points in time. As it invokes protected operations, a pro­
cess moves through a series of protection domains, each of which 
embodies a set of access rights appropriate to the invoked opera­
tion. Each domain has a separate page table, which includes pre­
cisely those realms for which the right to perform optimized invo­
cations has been verified by the kernel in the course of some past 
invocation. In addition to the page table, the kernel also main­
tains for each protection domain a list of the realms for which the 
right to perform protected invocations has already been verified. 

To facilitate sharing of arbitrary realms at run time, Psyche 
arranges for every realm to have a unique system-wide virtual 
address. This uniform addressing allows processes to share 
pointers without worrying about whether they might refer to 
different data structures or functions in different address spaces. 
An attempt to touch a realm that is not yet a part of the current 
protection domain will of course result in a page fault. Given 
appropriate access rights, the kernel will respond to the fault by 
opening the realm in question for future access from the protec­
tion domain - adding it either to the page table of the domain (in 
the case of optimized access) or to the list of verified targets for 
protected procedure calls. 

Every realm has a distinguished protection domain in which 
protected calls to its operations should execute. When a process 
performs a protected invocation of some operation of a realm, it 
moves to that realm's distinguished domain. The domain there­
fore contains processes that have moved to it as a result of pro­
tected invocations, together with processes that were created in it 
and have not moved. Processes in different domains may be 
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represented in many different ways - as lightweight threads of vari­
ous kinds, or requests on the queue of a heavyweight server. The 
kernel keeps track of the call chains of processes that have moved 
between protection domains (in order to implement returns 
correctly), but it knows nothing about how processes are 
represented or scheduled inside domains, and is not even aware of 
the existence of processes that have not moved. 

In order to execute processes inside a given protection 
domain, the user must ask the kernel to create a collection of vir­
tual processors on which those processes can be scheduled. The 
number of virtual processors in a domain determines the max­
imum level of physical parallelism available to the domain's 
processes. On each physical node of the machine, the kernel 
time-slices among the virtual processors currently located on that 
node. A data structure maintained by the user and visible to the 
kernel contains an indication of which process is being served by 
the current virtual processor. It is entirely possible (in fact likely) 
that when execution enters the kernel the currently running pro­
cess will be different from the one that was running when execu­
tion last returned to user space. 

To facilitate data sharing between the kernel and the user, the 
kernel implements a so-called "magic page," which appears to the 
user as a collection of read-only pseudo-registers. As with the 
hardware registers, there is a separate magic page on each physical 
processor, which is mapped into the address space of every 
resident virtual processor at a well-known virtual address. Con­
tained in the magic page are such kernel-maintained data as the 
topology of the machine, the local processor number, scheduling 
statistics, the time of day, and pointers to user-maintained data 
structures describing the currently-executing virtual processor and 
its protection domain. These latter two data structures contain 
such information as the name of the current process, the time at 
which to deliver the next wall clock timer interrupt, and lists of 
access rights. 

Synchronous communication from the kernel to the virtual 
processors takes the form of signals that resemble software inter­
rupts. A software interrupt occurs when a process moves to a new 
protection domain, when it returns, and whenever a 
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kernel-detected error occurs. In addition, user-level code can 
establish interrupt handlers for wall clock and interval timers. 

The interrupt handlers of a protection domain are the entry 
points of a scheduler for the processes of the domain. Protection 
domains can thus be used to provide the boundaries between dis­
tinct models of parallelism. Each scheduler is responsible for the 
processes in its domain at the current point in time, managing 
their representations and mapping them onto the virtual proces­
sors of the domain. Realms are the building blocks of domains, 
and define the granularity at which domains can intersect. 

2.3 Advantages for Users 

As UNIX-like systems are developed for multiprocessors, a con­
sensus is emerging on mUltiple kernel-supported processes within 
an address space. Amoeba, Chorus, Mach, Topaz, and V all take 
this approach. Most support some sort of memory sharing 
between processes in different address spaces, but message passing 
or RPC is usually the standard mechanism for synchronization 
and communication across address-space boundaries. 

On the surface there is a similarity between Psyche and these 
modem conceptions of UNIX. A protection domain corresponds 
to an address space. A virtual processor corresponds to a kernel­
provided process. Protected procedure calls correspond to RPc. 
The correspondence breaks down, however, in three important 
ways. 

Ease of Memory Sharing. Uniform addressing in Psyche 
means that pointers do not have to be interpreted in the context 
of a particular address map. Without uniform addressing, it is 
impossible to guarantee that an arbitrary set of processes will be 
able to place a shared data structure at a mutually-agreeable loca­
tion at run time. The key and access list mechanism, with user 
dissemination of keys and lazy checking by the kernel, means that 
processes do not have to pay for things they don't actually use, 
nor do they have to realize when they are using something for the 
first time, in order to ask explicitly for access. Pointers in distrib­
uted data structures can be followed without worrying about 
whether access checking has yet been performed for the portion of 
the data they reference. 
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Uniformity of Invocation. Optimized and protected invoca­
tions share the same syntax and, with the exception of protection 
and performance issues, the same semantics. No stub generators 
or special compiler support are required to implement protected 
procedure calls. In effect, an appropriate stub is generated by the 
kernel when an operation is first invoked, and is used for similar 
calls thereafter. As with the lazy checking of access rights, this 
late binding of linkage mechanisms facilitates programming tech­
niques that are not possible with remote procedure call systems. 
Function pointers can be placed in data structures and can then 
be used by processes whose need for an appropriate stub was not 
known when the program was written. 

First Class User-Level Threads. Because there are no blocking 
kernel calls, a virtual processor is never wasted while the user­
level process it was running waits for some operation to complete. 
Protected invocations are the only way in which a process can 
leave its protection domain for an unbounded amount of time, 
and its virtual processor receives a software interrupt as soon as 
this occurs. These software interrupts provide user-level code 
with complete control over the implementation of lightweight 
processes, while allowing those processes to make standard use of 
the full set of kernel operations. 

2.4 Ramifications for Kernel 
Implementation 

The nature of the Psyche kernel interface poses several unusual 
challenges for the kernel implementor. Promiscuous sharing in a 
uniform user address space, for example, means that valid 
addresses in a given protection domain are likely to be sparse. If 
the hardware does not support sparse address spaces well, the ker­
nel implementor may be forced to page the page tables, rely 
exclusively on the TLB, or use hardware page tables to cache a 
more flexible data structure maintained in software. Because each 
realm has a unique system-wide virtual location, user-level code 
must be relocated at load time unless it is position independent. 
Though this is not strictly a kernel-level issue in Psyche (since the 
loader is outside the kernel), it has ramifications for a host of 
user-level tools, and also for code sharing. If users create many 
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realms from the same load image, the kernel can arrange for these 
realms to share code segments (at a significant savings in aggregate 
working set size) only if they are position independent. 

Uniform addressing also means that large system workloads 
are unlikely to fit within the 32-bit addressing range of many 
microprocessors. The need within the kernel to access data struc­
tures on a large number of processors creates a competing demand 
for address space, which only makes matters worse. We expect 
the 32-bit limit to be lifted by emerging architectures. In the 
meantime, we have developed techniques to economize on virtual 
addresses in the kernel (as described in the following section), and 
have devised (though not implemented) additional techniques for 
use in user space. 

Another area of kernel design that is complicated by Psyche 
abstractions is the handling of page faults. The default cause of a 
page fault is an error on the part of the user-level program. Tradi­
tional operating systems overload page faults to implement 
demand paging as well. They may also use them to compensate 
for missing hardware features, as in the simulation of reference 
bits on the VAX [Babaoglu & Joy 1981], or the provision of more 
than one virtual-to-physical mapping on machines with inverted 
page tables [Rashid et aI. 1988]. Page faults may be used for lazy 
initiation of expensive operations, as in copy-on-write message 
passing [Fitzgerald & Rashid 1986], time-critical process migra­
tion [Theimer et al. 1985; Zayes 1987], or the management of 
locality in machines with non-uniform memory access times 
[Bolosky et aI. 1989; Cox & Fowler 1989]. In Psyche, page faults 
are given two more functions: the opening of realms for optim­
ized access and the initiation of protected procedure calls. Imple­
menting these functions efficiently, without compromising the per­
formance of other operations triggered by page faults, is a poten­
tially difficult task. 

Perhaps the most important challenge for the Psyche kernel 
(one not addressed in this paper) is to implement software inter­
rupts and protected procedure calls efficiently. Because these 
mechanisms lie at the heart of scheduling, device management, 
and cross-domain communication, it is imperative that they work 
as fast as possible. It is not yet clear whether techniques similar 
to those used in LRPC [Bershad et al. 1990] or the Synthesis 
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kernel [Massalin & Pu 1989) can be made to work well without an 
explicit, user-specified "bind to service" operation. Our hope is 
that substantial amounts of time can be saved by automatically 
precomputing linkage mechanisms for protected procedure calls 
when a realm is first opened for access. 

3. Kernel Organization 

3.1 Basic Kernel Structure 

The Psyche kernel interface is designed to take maximum advan­
tage of shared-memory architectures. Since we are interested in 
concepts that scale, we assume that Psyche will be implemented 
on NUMA (non-uniform memory access) machines. A NUMA host 
is modeled as a collection of clusters, each of which comprises 
processors and memories with identical locality characteristics. A 
Sequent or Encore machine consists of a single cluster. On a 
Butterfly, each node is a cluster unto itself. The proposed Encore 
Gigamax [Wilson 1987) would consist of non-trivial clusters. 

Our most basic kernel design decisions have been adopted 
with an eye toward efficient use of very large NUMA machines. 

1. The kernel is symmetric; each cluster contains a separate 
copy of most of the kernel code, and each processor exe­
cutes this code independently. The alternative organization, 
in which particular kernel services would execute on particu­
lar processors, does not seem to scale well to different 
numbers of nodes. We allocate kernel scheduling and 
memory management data structures on a per-cluster basis. 
Kernel functions are performed locally whenever possible. 
The only exceptions are interrupt handlers (which must be 
located where the interrupts occur) and some virtual 
memory daemons, which consume fewer resources when run 
on a global basis. 

2. As in most modem operating system implementations, little 
distinction is made between parallelism in user space and 
parallelism in the kernel. Kernel resources are represented 
by parallel-access data structures, not by active processes. A 

114 Scott et aI. 



virtual processor that traps into the kernel enters a 
privileged hardware state (and begins to execute trusted 
code, but continues to be the same active entity that it was 
in user space. This approach to process structure is not 
motivated by NUMA architecture per se, but tends to 
minimize the cost of simple kernel calls, and simplifies the 
management and scheduling of virtual processors. 

3. The kernel makes extensive use of shared memory to com­
municate between processors, both within and between clus­
ters. Ready lists, for example, are manipulated remotely in 
order to implement protected invocations. The alternative, 
a message-passing scheme in which instances of the kernel 
would be asked to perform the manipulations themselves 
[LeBlanc et al. 1989 J, was rejected as overly expensive. 
Most modifications to remote data structures can be per­
formed asynchronously; the remote kernel will notice them 
the next time the data is read. Synchronous inter-kernel 
interrupts are used for I/O, remote TLB invalidation, and 
insertion of high-priority processes in ready queues. 

4. Kernel data structures do not share the uniform address 
space with user programs. If individual instances of the ker­
nel are to access the data structures of arbitrary other 
instances, then the need for scalability will dictate that the 
space available for kernel data structures be very large. 
Existing 32-bit architectures provide barely enough room for 
the user-level uniform address space, and cannot be 
stretched to accommodate the kernel's needs as well. In 
order to access arbitrary portions of both the uniform 
address space and the kernel data structures, each kernel 
instance must be prepared to remap portions of its address 
space, or to switch between mUltiple spaces. 

A diagram of our current kernel addressing structure appears 
in Figure 2. The code and data of the local kernel instance are 
mapped into the same locations in each address space, making 
switches between spaces easy. The data of the local kernel 
includes the "magic page" of kernel-maintained data that is read­
able by the user. The user/kernel address space also contains the 
protection domain of the currently running virtual processor (at 
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its correct position in the uniform address space), and the 
kerneUkernel address space contains the data of every kernel 
instance. Local kernel data structures appear at two different loca­
tions in the kernellkernel space. 

When executing in user space, the virtual processors of 
separate protection domains must have separate page tables. 
There is therefore a separate user/kernel address space for every 
protection domain. Address space switches are required in the 
kernel in order to examine data in user space and in other 
instances of the kernel. Unfortunately, they are also required in 
order to examine user data in more than one protection domain, 
something that is needed for protected invocations of realm 
operations. 

An alternative implementation of the two-address-space struc­
ture would employ both a separate page table for each protection 
domain and a single, universal user/kernel address space that 
included the code and data of every protection domain. This 
latter address space would be used only in the kernel. Virtual pro­
cessors would switch to it when executing any operation that 
required access to more than one protection domain. It is not yet 
clear whether the savings in address space changes would exceed 
the cost of additional page table management. A change to the 
uniform address space (destruction of a realm, for example) must 
currently be made only to the page tables of protection domains 
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that include the relevant realm. Depending on whether one shares 
page tables across clusters (a question that has its own set of 
tradeoffs), a large number of page tables might be used to 
represent a universal user/kernel address space, and these would 
need to be kept consistent as well. 

When we designed the two-address-space structure, it was our 
hope that a typical kernel call would begin operation in the 
user/kernel space, examining any needed user data. It would then 
switch to the kernel/kernel space in order to perform the 
requested operation, and switch back again in order to write 
results into user space. We have found in practice that the situa­
tion is seldom so simple. The implementation of protected pro­
cedure calls, for example, must switch back and forth between 
address spaces several times in order to obtain all the information 
it needs from user space, and compare it against relevant data in 
the kernel. 

Many address space changes stem from our decision to place 
any sharable data structure in the kernel/kernel space, even if it is 
accessed locally most of the time. Data in the local portion of the 
kernellkernel space are also visible at the upper end of both 
address spaces, but at a different virtual address. Accessing them 
at this location would require repeated address arithmetic, not 
only to find things initially, but also to follow any pointers found 
inside. Accessing data at their "official" location, however, fre­
quently requires a switch between user/kernel and kernel/kernel 
spaces. 

An alternative approach to managing kernel data would be to 
use only the user/kernel address space, but to augment its two ker­
nel segments (code and local data) with (I) a segment shared per­
manently by all instances of the kernel, containing frequently-used 
data structures that do not need to scale with the size of the 
machine, and (2) one or more segments that can be re-mapped 
dynamically to address the local data structures of some other ker­
nel instance. Other than the few data structures contained in the 
permanently shared segment, data would be allocated among the 
local variables of whichever kernel instance is expected to access 
them most often. Another kernel wishing to gain access would use 
its temporary segment(s). Since temporary segments appear at a 
different virtual address than the local data segment, address 
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arithmetic would be required when accessing data of another ker­
nel instance. 

This alternative approach is similar to one employed in 
Chrysalis, the original operating system for the Butterfly [BBN 
1988]. We were not happy with the temporary segment mechan­
ism in Chrysalis; it took too long to remap it. Costs would be 
lower, however, on the current generation of hardware, and could 
probably be made comparable to the cost of switching between 
existing address spaces, by preallocating and initializing page table 
fragments for temporary segments, and patching them into the 
kernel address space when needed, rather than creating them on 
the fly. The tradeoff between our current two-address-space struc­
ture and the remapping scheme with temporary segments would 
come down to the choice between easy access to the data of other 
kernel instances, and the ability to examine kernel and user data 
simultaneously. We are beginning an audit of kernel data struc­
tures and access patterns in an attempt to quantify the difference 
between these options. We expect to re-consider the design of 
kernel page tables once we have a better understanding of the rela­
tive costs involved. 

3.2 Synchronization 

A traditional uniprocessor operating system often obtains mutual 
exclusion for kernel data structures by disabling preemption in the 
kernel. In a shared-memory multiprocessor, this simple technique 
no longer works. Data structures can be modified remotely. An 
inventory of kernel data structures in Psyche reveals that almost 
none of them (other than those local to a subroutine) are private 
to a single processor, though most are usually accessed locally. 
Explicit synchronization is almost always required when accessing 
kernel data. We have therefore opted to allow preemption in the 
kernel. The overhead incurred by explicit locking remains to be 
measured. We expect it to be significant, but still less than the 
cost of message-passing between kernels to avoid the need for 
locking. 

We have found a need in the kernel for four major types of 
synchronization. (We also have a facility for all-processor barrier 
synchronization, but this is used only for kernel initialization.) 
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Disabled preemption. Those few data structures that are 
processor-local (buffers for the per-processor console, for example) 
can be protected by disabling preemption of virtual processors. 
To allow nesting of locks, the kernel maintains a "preemption 
level" that is incremented when entering a critical section and 
decremented when leaving. At the end of a quantum, the clock 
handler forces a context switch only if the counter is zero. If the 
counter is positive, the handler sets a flag and returns. The code 
that decrements the preemption level counter causes a context 
switch on behalf of the clock handler if the flag is set and the level 
has returned to zero. 

Locked-out interrupts. Interrupt masking is used solely to syn­
chronize with device handlers. Data structures that can be 
accessed by interrupt handlers and by remote processors must be 
protected by both a spin lock and locked-out interrupts. 

Spin locks. Spin locks are the most frequently-used locks in 
the kernel. They are used to protect critical sections of small, 
bounded length. The spin lock implementation disables preemp­
tion of virtual processors, to ensure that the bound is not violated 
by an inopportune context switch. 

Semaphores. True blocking semaphores are used when a vir­
tual processor must wait for a condition that may not happen 
soon. Unlike most other operating systems, the Psyche kernel will 
rarely block a virtual processor (and all of its processes) for an 
unbounded length of time. The exceptions are operations (such as 
demand page-in) that must complete before any process can use 
the virtual processor, and a kernel call whose explicit purpose is to 
block the current virtual processor (pending interrupts) when it 
has no processes to run. To block itself, a virtual processor (1) 
disables preemption, (2) writes its name down where some other 
virtual processor will find and resume it at an appropriate time, 
and (3) invokes the kernel scheduler, thereby saving its state, 
switching to another virtual processor, and re-enabling preemp­
tion. The same basic mechanism could be used to implement 
monitors. To avoid a timing window, anyone who wants to 
resume a virtual processor must spin until it state is completely 
saved. 
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3.3 Bootstrapping 

Initialization of Psyche proceeds in three distinct phases. The 
first phase loads an instance of the kernel onto a single processor 
of the bare machine and starts it running. The second phase repli­
cates the kernel and starts the remaining processors. The third 
phase brings up an initial set of user-level programs. 

Initial booting of Psyche employs a two-step process. When 
power-cycled, the Butterfly Plus executes a serial-line loader in 
ROM. We initially used this facility to load the entire kernel, but 
found frequent reloads to be increasingly painful as the kernel 
grew. We now transfer a small bootstrap program that initializes 
the Ethernet interface and loads the bulk of the kernel using a 
naive (busy-wait) implementation of UDP. This loader took about 
a man-month to construct-less than we expected; we wish we had 
written it sooner. To reduce the need for reloading, we checksum 
the kernel code and save a copy of its data in memory, so that the 
current version can be restarted in response to a request on the 
console line. 

The second phase of Psyche initialization must be accom­
plished on any multiprocessor, but is more difficult on multicom­
puters and multiprocessors with distributed memory than it is on 
bus-based machines. In Psyche the kernel is symmetric, but a 
substantial amount of initialization code is executed only on the 
initial "king node" processor (see Figure 3). 

startup: 
initialize local data structures 
if king 

initialize shared data structures 
replicate kernel code and data 
start other processors 

barrier_sync 
write information for other processors 

into shared data structures 

barrier_sync 
Figure 3: Kernel Initialization 
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The king node begins execution by initializing both its own 
local data structures and certain of the shared (kernel-kernel) data 
structures required for basic communication with other instances 
of the kernel. Among other things it allocates space for a shared 
heap and creates several objects in that heap. Addresses of these 
objects, and of the heap itself, are written into variables in the 
king node's local data. Once this basic initialization is complete, 
the king node copies its code and data (in its current state) into 
the local memories of all the other processors. It writes into each 
processor's interrupt vector table the address of the same initiali­
zation routine it is itself executing, and delivers remote interrupts 
that cause each processor to begin execution in that routine. It 
then falls into a barrier synchronization routine, waiting for the 
other processors to catch up with it. 

On each other processor, the kernel repeats the king node's ini­
tialization of its local data structures, then joins the synchroniza­
tion barrier. Because the king node replicates its own, initialized 
data structures, rather than a pristine version of the kernel, non­
king nodes know from the beginning of execution whatever the 
king node knew at replication time, including the addresses of 
various shared data structures. In order to initialize virtual 
memory, device management, and synchronous inter-kernel inter­
rupts, the various processors then proceed through several addi­
tional barrier episodes. Between each pair of barriers, processors 
read information written into shared data by their peers before the 
most recent barrier, use this to calculate new information about 
themselves, and write that new information into shared data for 
use beyond the next barrier. 

For the third phase of Psyche initialization (user-level pro­
grams), the kernel on the king node creates a single primordial 
realm in a single protection domain, containing a single user-level 
process. This process executes code to create additional realms, 
resulting in an initial set that currently includes a command­
interpreter shell, a user-level loader, a name server, and a simple 
network file server. 

In response to a typed command, the shell communicates with 
the loader to start a user program (see Figure 4). The loader reads 
the header of the object file to discover the size of the program. It 
uses a system call to create an empty realm (which the kernel 

Implementation Issues for the Psyche Multiprocessor Operating System 121 



places at an address of its choosing), and then loads the program 
into the realm, resolving references to a small set of standard 
external symbols (examples of these include entry points of the 
general-purpose name server, the file system, the loader itself, and 
reentrant subroutine libraries). At this point the loader returns to 
the shell. The realm itself is still passive. 

The shell uses another system call to create an initial virtual 
processor in the new realm's protection domain. The kernel 
immediately provides this virtual processor with a software inter­
rupt that allows it to initialize its scheduling package. The shell 
then performs a protected invocation to the program's main entry 
point, whose address was returned by the loader. In most pro­
grams it is expected that the main entry point will be in a library 
routine that initializes standard I/O and repackages command line 
arguments before branching to the user's main routine. If desired, 
the main routine can then register an external interface with the 
name server. 

load (application) 

read (load_file) 

main (argc, argv) 

read, write (my_file) 

load (othccapplication) 

register (my_interface), lookup (linker_interface) 

Figure 4: Basic User-level Utilities 
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4. Resource Management 

4.1 Devices 

Consistent with the philosophy of user-level flexibility and kernel 
minimality, Psyche allows memory-mapped devices to be accessed 
directly from user space. The make_realm system call allows the 
user, with appropriate access rights, to create a realm at a 
specified virtual or physical address. On the Butterfly Plus, Mul­
tibus devices are accessed at special virtual addresses and VME 
devices are accessed at physical addresses. By creating a 
memory-mapped realm, a user-level program obtains the ability to 
read and write device registers without the assistance ofthe ker­
nel. For polled I/O devices, this interface limits the kernel's role 
in device management to that of initialization. In our robotics 
lab, polled 1/0 from user space is used to access low-level image 
processors and robot eye controllers over the VME bus. 

Devices that require interrupts are currently implemented in 
the kernel in Psyche. On the Butterfly Plus, there are currently 
three types of device in this class: 

1. A pair of serial lines connects a Multibus on the king node 
of the Butterfly to a UNIX host machine. 

2. An Ethernet interface can be plugged into the Multibus on 
the king node, or on any other node. 

3. On every node there is a on-board pair of serial lines. 

One of the Multibus serial lines on the king node is used by 
Psyche as a console. The other is used for debugging (see Section 
5). Our intent is that both these devices be available only in the 
kernel. For development purposes we have implemented a set of 
system calls that allow a user program to read and write from the 
console. These calls will be removed as soon as we finish a 
network-based remote login server. 

We use the Ethernet interface for network file service, 
bootstrapping of the kernel, and communication via UDP. 
Bootstrapping is encapsulated in the kernel. UDP send and 
receive commands are part of the kernel interface. Simple remote 
file service is built on UDP. To increase flexibility, we would like 
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to move as much network functionality as possible out of the ker­
nel and into user space. In the limit, one might translate 
hardware interrupts directly into software interrupts, and deliver 
them to appropriate virtual processors. It is currently unclear to 
what extent this goal can be achieved with reasonable perform­
ance. Much will depend on the speed with which we can deliver 
software interrupts. Experience with the Synthesis kernel at 
Columbia [Massalin & Pu 1989] suggests that very high speed may 
be possible. Psyche is a more complex system than Synthesis, 
however, and we may be forced to leave part of the network pro­
tocol stack (ARP, IP, UDP, etc.) inside the Psyche kernel. 

Our robot arm is currently controlled from Psyche via network 
communication with a Sun to which the robot is attached. We are 
in the process of developing device support for the Butterfly's 
node-local serial lines, in order to control the robot directly. Our 
facilities for memory-mapped 110 can be used to access device 
registers from user space, but as with the network there is a need 
for interrupt management. We are experimenting with direct 
user-space handling of serial line interrupts, and with a small 
interrupt handler in the kernel that buffers data for the user. Our 
experience with the serial lines will be used to drive later experi­
mentation with the Ethernet device. 

4.2 Virtual Memory 

Simple physics dictates that memory cannot simultaneously be 
located very close to a very large number of processors. Memory 
that can be accessed quickly by one node of a large multiprocessor 
will be distant from many other nodes. Even on a small machine, 
price/performance may be maximized by an architecture with 
non-uniform memory access times. 

On any Non-Uniform Memory Access (NUMA) machine, per­
formance will depend heavily on the extent to which data reside 
close to the processes that use them. In order to maximize local­
ity of reference, data replication and migration can be performed 
in hardware (with consistent caches), in the operating system, in 
compilers or library routines, or in application-specific user code. 
The last option can place an unacceptable burden on the 
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programmer and the first, if feasible at all in large machines, will 
certainly be expensive. 

Because of our interest in scaleable machine, much of our 
early work on the Psyche virtual memory system was aimed at the 
integration of NUMA management with other kernel functions. 
We were particularly concerned with the interaction of data repli­
cation and migration with demand paging and protected pro­
cedure calls, and with the structuring of a YM system that could 
balance all these concerns without becoming unmaintainable. The 
design we developed [LeBlanc et al. 1989a) has four distinct 
abstraction layers. The lowest layer encapsulates physical page 
frames and page tables. The next layer provides the illusion of 
uniform memory access time through page replication and migra­
tion. The third layer provides a default pager for backing store 
and a mechanism for user-level pagers. The final layer imple­
ments the Psyche uniform address space and protection domains. 
Page faults may indicate events of interest to any of the layers; 
they percolate upward until handled. 

With the exception of demand paging, most of this VM system 
was implemented by the summer of 1989. During the implemen­
tation process, however, we grew increasingly uncomfortable with 
the amount of kernel code required, and with the extent to which 
YM policies were being dictated by the kernel. As with interrupt­
driven I/O, our goal is now to move much of this functionality 
into user space, so that user-supplied replication and migration 
policies can use application-specific knowledge to build on kernel 
operations that replicate or migrate pages. Real-time programs 
will not want a NUMA locality management system to move their 
pages at unpredictable times. Demand paging may not be needed 
at all on a multiprocessor with lots of physical memory. 

Application-level research on Psyche can proceed for some 
time without kernel NUMA management (network 1/0, by con­
trast, is crucial). In pursuit of locality management in user space, 
we have therefore backed the functions of data migration and 
replication out of the current implementation. In the resulting 
simple YM system, each virtual address space is represented by a 
hardware page table on each node that may execute in it. Each 
hardware page table is a cache for a more compact representation 
of the virtual address space. To avoid the performance impact of 
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instruction fetching through the Butterfly switch, code is repli­
cated automatically on every processor that executes it. The crea­
tor of a realm can specify whether the replication should occur 
when the realm is created, when it is opened for access in a partic­
ular protection domain, or page-by-page on demand. The keruel 
maintains a mapping from virtual addresses to realms, which is 
consulted when a page fault occurs, allowing the keruel to deter­
mine whether an attempt to touch an inaccessible page constitutes 
an error, a protected invocation, or an initial use of a realm that 
should be mapped in for optimized access. 

To our simple YM system we plan to re-introduce elements of 
the more sophisticated system, either in the kernel or (preferably) 
in user space, as concrete needs emerge. The exact division of 
labor between the kernel and user has not been determined, but 
our goal is to strike a balance between efficiency of implemen­
tation and user-level flexibility. 

4.3 Scheduling 

Psyche employs a two-level scheduling system. The kernel 
scheduler is responsible for multiplexing virtual processors on 
physical processors. The actual work performed by a user, how­
ever, is determined by how processes are allocated to virtual pro­
cessors. This latter mapping is performed in user space in Psyche, 
both to allow scheduling mechanisms to accommodate many 
different process representations, and to allow scheduling policies 
to benefit from application knowledge. 

Scheduling plays an extremely important role in many applica­
tions, both for performance reasons, as in the case of 
computation-intensive mUltiprocess programs, and for correctness 
reasons, as in real-time applications. Data and code sharing, syn­
chronization, communication, remote code execution, and process 
migration can all have serious effects on the performance of the 
system, which the scheduler can mitigate by using appropriate pol­
icies. For example, under round-robin scheduling and without 
co-scheduling [Ousterhout 1981], a process may find itself unable 
to run (due to synchronization constraints) when it is allocated the 
processor, or it may immediately block or spin due to a synchroni­
zation constraint. The added overhead caused by extraneous 
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context switches and spinning in this situation slows the system as 
a whole, which in tum causes more processes to suffer from the 
same problem. A user-level scheduler, using application-specific 
knowledge, might make scheduling decisions that avoid this situa­
tion. Scheduling policy could be tuned for each application, and 
better decisions would be likely. 

To support user-level scheduling, the Psyche kernel provides 
the user with virtual processors, software interrupts, and magic 
pages with system statistics. The kernel schedules virtual proces­
sors on each physical processor in a round-robin fashion. The 
user creates and destroys virtual processors, and can assign them 
to physical processors. The user creates the processes that run on 
the virtual processors and has complete control over the schedul­
ing of processes on the virtual processors of each protection 
domain. 

Software interrupts occur when a scheduling decision has to be 
made, such as when a process leaves a protection domain for a 
protected invocation, a new process arrives in a protection 
domain, or a timer expires. The user can define handlers for each 
type of interrupt. When an interrupt occurs, a data structure 
shared between the kernel and the user is set to contain the state 
of the process that was running. The handler can use this infor­
mation to perform a context switch on the virtual processor, or to 
make long-term scheduling decisions. In order to facilitate deci­
sions, the kernel maintains statistics in magic pages, which it 
updates periodically. These statistics include the load (virtual pro­
cessor run queue length) on each physical processor, the associa­
tion between virtual processors and physical processors, and the 
current state and accumulated execution time of each virtual pro­
cessor. Potentially they could also include information on page 
faults, migrations, and replications. 

Using our mechanisms for user-level scheduling, we have 
implemented a thread package that allows users to create and 
schedule lightweight processes in a shared address space. The user 
can specify the number of virtual processors to be created and can 
assign processes to run on them. A different scheduler can be 
used on each virtual processor, and schedulers can be changed on 
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the fly. We plan to use this package to evaluate existing multipro­
cessor scheduling algorithms and experiment with new ones. 

We also plan to introduce real-time scheduling into Psyche. 
We are aware of the difficulties of adding real-time support to a 
pre-existing operating system, but we believe that our minimal 
kernel, which provides the ability to perform user-level scheduling 
and to define process models in user space, is sufficient to explore 
real-time issues. In addition, we can segregate real-time processes 
within a subset of available processors, where they can be 
managed with different policies, or dedicate the physical memory 
of a processor (without paging) to a particular application. Given 
the many real-time process models in existence, each of which 
incorporates different timing constraints, it would be impractical 
to expect a single scheduler within the kernel to meet the timing 
constraints for all models simultaneously. By exploiting Psyche 
mechanisms, we can achieve predictability for processes such as 
device handlers, whose computation time, period, or deadline is 
known, while allowing flexible scheduling polices for processes 
whose behavior is not as well known. 

5. Kernel Debugging 

The most important tool we have constructed for Psyche is a 
mechanism for remote, source-level debugging, in the style of the 
Topaz TeleDebug facility developed at DEC SRC [Redell 1988]. 
An interactive front end runs on a Sun workstation using the 
GNU gdb debugger. gdb comes with a remote debugging facility; 
relatively minor modifications were required to get it to work with 
Psyche. The debugger communicates via UDP with a multiplexor 
running on the Butterfly's host machine. The multiplexor in turn 
communicates with a low-level debugging stub (lld) that underlies 
the Psyche kernel. 

The multiplexor allows many different debugging sessions to 
be underway simultaneously, each of them talking to a different 
Psyche node. It communicates with lld via one of the serial lines 
connected to the Butterfly king node. The interrupt handler for 
the debugging line accumulates input until it recognizes a special 
debugger packet termination character. It looks inside the packet 
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to determine the node for which the packet is intended, and either 
wakes up the instance of lid on its own node or causes a remote 
interrupt to effect the same result on another node. 

The protocol between gdb and lid is strictly request-reply, and 
does not require reliable communication. Since lld is stateless and 
never issues a request, a debugger can be attached to any instance 
of the kernel at any time. lid is also very simple, by design. It 
was the first portion of the kernel to be written, and has proven 
extremely useful. With it we are able, for example, to single-step 
through interrupt drivers using all the facilities of a high-quality 
source-level debugger. 

One question that arises in the design of a remote debugging 
facility is where to keep track of the instructions that underlie 
breakpoints. If breakpoint information is kept on the host 
machine the target system becomes unusable if the debugger 
crashes. Topaz therefore maintains its breakpoint information in 
the debugging stub on the target. The guiding philosophy behind 
this decision is that it should always be possible to debug, so long 
as the debugging stub remains intact. For the sake of simplicity, 
we initially kept our breakpoints on the Sun. lld tended to break 
more often than gdb anyway, and only infrequently did we find 
ourselves unable to continue debugging because of lost informa­
tion. As the kernel has become more stable and our debugging 
needs more sophisticated, this situation has begun to change. Par­
ticularly annoying is the fact that the kernel cannot be restarted if 
its code has been corrupted by breakpoint trap instructions. We 
are planning to move breakpoint data into lid. Only the underly­
ing instructions will be maintained; associated conditions, com­
mands, enable status, etc. will still be kept in gdb. 

We have observed one serious interaction between lid and the 
virtual memory system which in hindsight can be used to illustrate 
a few important lessons. lid was designed as a kernel debugger. 
We are working on the design of a user-space debugger, but until 
it becomes operational we have been using lid in a makeshift 
fashion to debug user programs. Unfortunately, while the kernel 
is permanently resident, pages of user-level programs may not be 
present when the debugger tries to look at them. In particular, we 
quickly discovered that typed requests from the user during a 
debugging session could cause lid to trigger a page fault, something 
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it was not designed to handle, and which caused the machine to 
crash. In attempting to enhance lid to avoid this common 
accident, we found it easier to use existing VM code to force a 
page into memory than to write a new routine to determine 
whether the page could be forced into memory if desired. We 
therefore produced a version of lid that would automatically (and 
silently!) force user-level pages into memory. 

Meanwhile, we had for some time been experiencing intermit­
tent unexpected user-level bus errors. The source of the trouble 
turned out to be that we had neglected to write the clause of the 
bus error handler that handles page faults for instructions that 
span page boundaries (this is a special case because of details of 
the processor pipeline). We had great trouble finding the bug 
because it was hidden by lid. The natural course of action when 
the bug occurred was to ask lld to print the offending instructions. 
Unfortunately, lld would then fetch the instructions as data, 
silently faulting the page into memory and eliminating evidence of 
the bug. From this we learned that (I) you can't depend on a 
debugger to debug something on which the debugger depends; (2) 
you need to remember the things on which the debugger depends; 
and (3) a kernel debugger probably shouldn't depend on some­
thing as complicated as VM. 

We intend to use our existing debugging facility as the base for 
user-level debugging of multi-model programs. As part of a 
related research project we have developed sophisticated tech­
niques for monitoring and analysis of parallel programs, including 
deterministic replay of fundamentally non-deterministic programs 
[Fowler et al. 19881. We are currently developing extensions to 
our techniques that will allow the developers of programming 
language run-time packages and communication libraries to define 
debugging interfaces that allow a debugger to talk to the user in 
terms of model-specific, high level abstractions. Our goal is (1) to 
provide a framework that unifies our toolkit-based approach with 
the various techniques for program monitoring and visualization 
that have been described in the literature and (2) to develop a 
step-by-step methodology and corresponding tools for parallel pro­
gram analysis over the entire software development cycle, from 
initial debugging to performance modeling and extrapolation. 
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6. Status and Future Plans 

A full evaluation of our kernel structuring decisions will require 
more tuning and measurement than we have been able to under­
take to date. Though we can not yet quantify the tradeoffs 
between our current two-address-space structure and the alterna­
tive remapping structure, we strongly suspect that kernel interac­
tion through shared memory will be more efficient than message 
passing, even with the extra locking that memory sharing requires. 
We believe that the use of many different kinds of locks, each 
tuned to a particular type of sharing, will help to minimize the 
cost of synchronization. We recognize that locking constitutes a 
conceptual burden for kernel programmers, but we have not found 
that burden to be unreasonable. 

We have chosen to share data structures between the kernel 
and the user whenever synchronous communication is not 
required. Descriptive data structures, for example, allow the ker­
nel to inspect access rights, process names, software interrupt vec­
tors, and realm operation descriptions without requiring the user 
to provide them as explicit arguments to system calls. Kernel­
maintained data allow the user to read the time, compute load 
averages, or examine scheduling statistics. Shared flags and timers 
allow the user to disable software interrupts, ask for timer inter­
rupts, or anticipate virtual processor preemption (to avoid acquir­
ing a spin lock), all without a kernel trap. A modifiable indication 
of the current process allows the user to switch between processes 
in the same protection domain without the kernel's intervention. 
We expect userlkernel sharing to significantly reduce the number 
of system calls (and related kernel overhead) incurred by typical 
programs. 

We found that the layering of our original VM system made it 
relatively easy to understand and modify, but were reluctant to 
keep all its functionality in the kernel. We are not yet sure how 
much of that functionality can be recreated in user space, nor are 
we sure how quickly we will be able to propagate faults through 
the layers. Experience with systems such as Swift [Clark 1985] 
and the x-Kernel [Peterson et al. 1989] indicates that layering 
need not preclude efficiency. It would be premature, moreover, to 
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use performance as the principal design goal for a multiprocessor 
VM system, when it is not yet clear how to divide labor between 
the kernel and the user, or to manage the interactions between 
VM, protection, and scheduling. In as much as these structural 
issues form a central focus of our work, we are happy with the 
clarity and modularity of our layered design. 

Many of the open issues in kernel design come down to a 
question of performance. From the user's point of view, the per­
formance of software interrupts and protected procedure calls will 
be particularly important. One potential source of overhead is the 
frequent use of locks for synchronization of access to data struc­
tures shared between nodes. Another is the memory management 
context switches induced by the multiple-address-space structure 
of the kernel. A third is the propagation of page faults through 
layers of the VM system. In the course of quantifying these costs 
(and recoding to reduce them), we also plan to investigate the 
ramifications of allowing virtual processor preemption in the 
kernel. 

Multi-model parallel programming forms the focus of our 
user-level work [Scott et al. 1990]. We are evaluating the extent 
to which Psyche kernel primitives facilitate use of, and interaction 
between, disparate process and communication models. We are 
also investigating appropriate user-level tools for multi-model 
debugging, parallel program configuration, management of access 
rights, name service, and file service. At the interface between the 
kernel and the user, we are developing mechanisms for user-level 
device control, locality management, and adaptive real-time 
scheduling. With the bulk of the kernel in place, and the first 
major applications running, we are in a position to address these 
issues in earnest. 

Our evaluation effort will depend in large part on experience 
with applications, many of which will come from the department's 
robot lab. The lab includes a custom binocular "head" on the end 
of a PUMA robot "neck." Images from the robot's "eyes" feed 
into a MaxVideo pipelined image processor. Higher-level vision, 
planning, and robot control have been implemented on a unipro­
cessor Sun. Real-time response, however, will require extensive 
parallelization of these functions. The Butterfly implementation 
of Psyche provides the platform for this work. Effective 
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implementation of the full range of robot functions will require 
several different models of parallelism, for which Psyche is ideally 
suited. In addition, practical experience in the vision lab will pro­
vide feedback on the Psyche design. 
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