
Human-Computer Interaction - INTERACT '90
D. Diaper et al. (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1990

619

PENGUIN: A Language for Reactive Graphical User Interface Programming

Sue-Ken Yap and Michael L. Scott
Department of Computer Science, University of Rochester, Rochester, NY 14627
ken@cs.rochester.edu, scott@cs.rochester.edu

PENGUIN is a grammar-based language for programming graphical user interfaces. Code for each thread of control in a
multi-threaded application is confined to its own module, promoting modularity and reuse of code. Networks of PENGUIN

components (each composed of an arbitrary number of modules) can be used to construct large reactive systems with
parallel execution, internal protection boundaries, and plug-compatible communication interfaces. We argue that the
PENGUIN building-block approach constitutes a more appropriate framework for user interface programming than the
traditional Seeheim Model. We discuss the design of PENGUIN and relate our experiences with applications.

1 Introduction

Graphical user interfaces are an essential part of current program­
ming environments. Graphical windowing systems such as X [1]
have become widely available. Unfortunately, programming tools
for composing interfaces have not improved commensurately.

L 1 Event-driven programming

Windowing applications commonly use the "big loop and case
statement" technique to dispatch incoming events. As a concrete
example, the code for a document previewer will typically look
like this:

display a page
loop

get an input event
case event of

keystroke:

/**/
mouse button:

do user command
repaint signal:

end case
end loop

repaint window

In this program organization unrelated .streams of input flow
through a common dispatch point, adversely affecting modularity
and the ease of revision of the interface. Suppose, for example,
that the programmer decides to augment the previewer to allow
the user to jump to page N. A page number is a string of digits,
so digit keystrokes must be collected. The collection of keystrokes
can occur within a single branch of the case statement, but then
the window will be insensitive to repaint signals until the number
has been entered in its entirety. Alternatively, the digits can be
collected one at a time, in successive iterations of the main loop,
but only at the cost of declaring global variables to retain state
between digits.

Some windowing libraries use another technique: callback rou­
tines. Semantic actions need not be embedded in an explicit
loop, but the program has to register callback routines with an

event dispatcher at initialization time. Like the digit-at-a-time
approach above, this method has the drawback of requiring rou­
tines to maintain explicit, self-contained state between events. It
also complicates the handling of unexpected or exceptional events.

Similar problems arise if the programmer wishes the previewer
to be sensitive to user interrupts while painting the page. There is
no easy way to integrate the reading of individual document char­
acters from the file system into the event loop or callback routines
without adversely affecting the clarity of the code. System-specific
interrupt handling can be used as a work-around, but will lower
the portability of the previewer.

In both cases, the crucial observation is that the polling and
callback methods fail to reflect the logical structure of multi­
threaded interfaces. Both methods force the programmer to deal
with events in isolation, despite the fact that most interesting com­
putations comprise a series of events. Because they are designed
for ordinary sequential language, both methods must explicitly
mirror the potential interleaving of unrelated events.

To overcome the limitations of the polling or callback tech­
niques, we propose a programming language that supports event­
driven programming. Rather than dictating when input is ex­
pected, we suggest that programs be reactive. The resulting
change of perspective can lead to a clearer programs.

In PENGUIN, the sequencing of input events is expressed by
grammars. PENGUIN does not have input statements or input
procedures. The appearance of a terminal in a grammar indicates
that the program is willing to accept that terminal as input in the
context of the surrounding symbols. Grammars are contained in
modules and the composition of modules is a module that is sen­
sitive to the input specified by union of all the grammars, taking
into account the context (source) of the input. This decentralized
module-by-module approach to input specification makes it easy
to modify input syntax. Modules are also managers of private
data, distinct in each instance of a module. As a result, the se­
mantics of modules are local, decreasing the risk of inadvertent
interaction between unrelated segments of code.

Previous event-driven languages include Esterel [2] and Input
Tools [3, 4]. Esterel allows event specifications to be compiled into
an automaton. Piecewise construction of larger programs is not
supported; the automaton generated is global to the entire pro­
gram. Communication is by broadcasting. Input Tools [3, 4] al­
lows programs to be composed hierarchically, with low-level tools
accepting input, processing it, and propagating information up-

620

wards to higher-level tools. There is no provision for input selec­
tion based on the source of an event, so broadcasting of events
is still required. Experience with an implementation of Input
Tools [5) suggests that this broadcasting is a serious source of
inefficiency, particularly for large systems.

PENGUIN encourages modular construction, separates the gram­
matical specification of input sequencing from the bulk of the pro­
gram code, and does not require broadcasting of events.

1.2 Composing applications

Another deficiency of current graphical user interfaces is the dif­
ficulty of composing graphical applications from free-standing,
pre-existing pieces. Experience with pipes in the Unix operating
systeml shows that it is possible to build stream-based process
communication mechanisms that are extremely easy to use. It
has been suggested [6) that similar support be provided for non­
linear process graphs as well, but even the linear variety has yet
to be heavily used in user interface design. While most Unix pro­
grams can participate in multi-process combinations, the average
graphical program is a free-standing entity, not easily connected
to other programs.

We propose the PENGUIN component model for the composition
of multi-component programs. A PENGUIN component is a set of
modules linked with a parser for their grammars. A component
can be free-standing or can be connected to other components in a
general communication graph. Easy composition of components
with compatible interfaces encourages code re-use, rapid proto­
typing, and the construction of flexible, general-purpose tools.

Two systems that explored facilities for the composition of
graphical programs are ConMan [7) and Fabrik [8). ConMan is
a high-level visual language that allows the user to build a com­
plex application from components on the fly. Its primary goal is
the manipulation of graphical images. Its components are pro­
grams that transform or display data. Fabrik is a similar system
for experimenting with visual programming, but its components
are interactors or computational modules. Both systems define
specialized environments.

PENGUIN provides a formal, generalized model to describe in­
tercomponent connections. Since PENGUIN components are reac­
tive, the composition of components can achieve more than data
transformations; it can also specify the interactive behaviour of a
system of interconnected objects.

The remainder of this paper describes how the design of PEN­
GUIN achieves the goal of making user interfaces easier to build
and easier to understand.

2 Language Overview

This section provides a quick overview of the PENGUIN language.
PENGUIN's compilation units, modules, are organized around aug­
mented context-free grammars. The design decisions taken and
algorithms used by PENGUIN have already been described[9). A
PENGUIN implementation consists of a compiler that translates
grammars and their associated data declarations and action rou­
tines into executable program components. Data and actions are
written in a host language (currently C++) of which PENGUIN is
an extension. The output of the PENGUIN compiler is a program
in the host language without extensions.

The most noticeable difference between programming a user in­
terface in PENGUIN and a conventional language is that the spu­
rious juxtaposition of unrelated threads of execution introduced

by the event loop model disappears. The programmer only needs
to consider the sequencing within a thread of control.

2.1 Forks

The productions of a PENGUIN grammar specify valid sequences
of terminals that may be received by the grammar's module. Ter­
minals are matched by input events, following context matching
rules, and may carry information from the outside world via at­
tributes. Input events encompass more than data received by in­
put statements in conventional languages; they also include asyn­
chronous signals and exceptions, which are difficult to handle in
a non-reactive language.

Multi-threaded execution in PENGUIN programs is achieved
with fork productions. There are two types of fork productions:
the AND fork and the OR fork. A variety of useful behaviour
can be synthesized with these two variants. A fork creates one or
more subparsers, which are disjoint, concurrent regions of parser
activity. A module may be thus willing to accept terminals from
multiple sources. Moreover terminals from independent sources
may be accepted by a PENGUIN program in arbitrary order, with­
out the need to accommodate their interleaving in user-written
code.

tool t> canvas panel;
run I> work abort;

In the first example the AND fork (specified with a t> derivation
symbol instead of the usual =» requires that all the component
windows start running in parallel and that all of them complete
before the parent advances past the fork. In grammar terms, the
yield of the non-terminal tool is some arbitrary interleaving of
the yields of the non-terminals canvas and panel. In procedural
terms, a subparser for canvas and a subparser for panel begin
execution in parallel; when they complete, the subparser for tool
can continue.

In the second example the OR fork (specified with I» requires
that only one of work or abort complete. Specifically, hitting
the abort button will cancel all work in progress in the sibling
window, returning the locus of control to the parent production.
Completing work will disable the subparser for abort. By nesting
abort productions, the programmer can allow the user to back out
of multiple levels of interaction.

A PENGUIN program is thus driven from below by the arrival
of events that match terminals, and from above by the creation
of threads of control by fork productions. Forks are a linguis­
tic mechanism for domesticating threads for use in user interface
programs. The PENGUIN compiler handles the messy thread man­
agement which would otherwise have had to be coded by the pro­
grammer.

2.2 Context

The presence of more than one active production requires a mech­
anism for dispatching events. We stipulate that every input event
be tagged with context, an attribute that uniquely identifies its
source. In a typical windowing system, the source of a event would
be a window, but alternative interpretations are equally valid. In
a flight simulator, context attributes could be used to distinguish
between mechanically similar flight controls. The PENGUIN parser
contains a dispatcher that delivers incoming events to productions
in which they match both in value and in context.

Here is a simple dialogue that awaits the key k and then creates
two new sub-windows with an t> production. Both sub-windows

must terminate before the parser proceeds. Inheritance rules are
written using a notation similar to argument passing in imper­
ative languages: Y(GX. c1) means that the first attribute of Y is
copied from the c1 attribute of X. In practice, default context rules
eliminate much of this verbiage.

terminal key (context ctx) = 'k';
nonterm S(context ctx). X(context c1. context c2);
nonterm Y(context c). Z(context c);
nonterm nev(lcontext ctxl. context ctx2);

5 => key(GS.ctx) nev X(Gnev.ctx1.Gnev.ctx2)
It> Y(GI.c1) Z(GI.c2);

The non-terminal nev, whose sub-productions are not shown,
causes the creation of two new windows and returns their contexts.
These contexts are passed to Y and Z, so that they can operate
independently, even if their token alphabets overlap.

Attribute flow rules for context, enforced by the PENGUIN com­
piler, ensure that at most one production will accept an incoming
event. The compiler can compute in advance the locations that
the parser must examine to find a match. As in regular attribute
grammars. attributes other than context carry information about
the symbol to which they are attached.

2.3 Modules

The unit of compilation in PENGUIN is the module. A module
contains a header, declarations, private variables. and a grammar.
PENGUIN does not allow the programmer to write a main program.
The locus of control is retained by the PENGUIN parser which is
the dispatcher of input events. The PENGUIN parser is the heart of
an executing interactive program. It should not be confused with
the portion of PENGUIN compiler that parses PENGUIN source.
The programmer provides modules to be linked with the PENGUIN

parser. The parser initially predicts a non-terminal of the topmost
module. The chain of predictions eventually will require one or
more terminals to be consumed.

Declarations inform the compiler of the types of attributes of
symbols in the grammar. Attributes transmit information be­
tween productions. Inherited attributes pass information to de­
scendants while synthesized attributes return information to an­
cestors. Attributes are attached to all symbols: terminals and
non-terminals.

terminal lparen = '('. rparen ')';
nonterminal S(int ilint j);

These declarations state that the value of the terminallparen
is the character code for' (' and that the nonterminal S carries an
inherited attribute i and a synthesized attribute j.

Productions may refer to non-terminals in other modules (ex­
ternals). Since there may be more than one instance of an external
module active, an external non-terminal is qualified with a module
handle. A handle is initialized by predicting its create symbol
(which every module must provide).

module canvas C;
module panel P;

create => C:create P:create;
tool t> C:start P:start;

621

Private data are local to each instance of a module. They pro­
vide a repository for the shared state of related events. indepen­
dent of the rest of the program. The current version of the PEN­

GUIN compiler does not check type declarations, so the data types
available are those provided in the target language.

Changes to the outside world are effected via actions, which are
symbols in productions representing executable code. The code
is executed when the PENGUIN parser reaches the position of the
action while recognizing its production.

nonterminal click(color nevc);

click => lett_button
$(change_color(Gclick.nevc);

output ("OK") ; $);

In the code fragment above, an action to change the color of the
button is executed after the event lett_button has been received.
As the example shows, actions may use inherited attributes. as
with other items.

Ideally, actions that are triggered by events would take no no­
ticeable time. In practice an input buffer smooths out the effect
of delays in actions. As long as the input is ordered by time and
buffer overrun does not occur, a PENGUIN program does not lose
any input information. Communication between parallel PEN­

GUIN components (discussed in the following section) provides a
more general solution for programming actions that may introduce
arbitrary delays.

3 Components

A set of modules linked with a PENGUIN parser is a component.
A component may be a free-standing program or may co-operate
with other components. The synergy of co-operating components
makes it easy to adapt existing tools to novel applications.

PENGUIN components communicate with other components via
bidirectional reliable data streams. The unit of information ex­
changed is the token or terminal. Each token is a complete piece
of information and can be as small as a single character or as large
as a picture-whatever is appropriate for the application.

Figure 1 is an example of components co-operating to imple­
ment a game-playing program. The Chess component controls
the reaction of the application to user input, received via the pre­
sentation component. A second, parallel presentation component
provides another display of the game in progress. Since move gen­
eration and evaluation may require substantial amounts of com­
putation, some work is given to parallel components to preserve
the interactiveness of the user interface. This is an example of a
general technique that can be applied to any computation that
may delay the flow of events through the grammar: do the work
in a separate component and devise a protocol for sending data
to, receiving results from, and querying the status of the sibling
component. In response to queries the user interface might say
"Thinking" if the move generator is still busy.

Two features of PENGUIN provide flexibility in creating net­
works of components. First, communication partners need not
know the identity or implementation details of their peers. Sec­
ond, the connection graph of components does not have to be
fixed until run time, allowing alternative configurations to be cre­
ated. Tokens are addressed to output streams, not to named
components, and the connections between components can be es­
tablished under program control. The only requirement for two
components to be able to communicate is that each send only

622

Move
generator

Opening
book

Chess
Display

I+----.!{Present­
ation)

Another
display

Figure 1: A multi-component Chess program.

tokens that are in the other's input alphabet. The behaviour of
a component is determined by the grammar within. Alternative
implementations of components can be produced to meet a func­
tional specification. Interchangeable components are useful for
selecting between different versions of components or for produc­
ing different effects. The example above, for instance, could be
configured with a variety of different move generators or opening
books. A logging component could also be interposed between the
Chess and Display components, to record the entire session.

4 The Seeheim Model Reconsidered

User

Figure 2: The Seeheim model of a UIMS.

In the original Seeheim model [10], depicted in Figure 2, a pro­
gram is postulated to have three layers: application, dialogue and
presentation. These layers correspond to division by semantic,
syntactic and lexical functions. The Seeheim model assumes that
a separation between syntax and semantics provides the most
natural partition of a graphical application. The fallacy of this
assumption can be seen in our game-playing example. A chess
program must examine the positions of other pieces on the board
to discover whether it is legal to move a king. One can imagine
an implementation that allows the user, syntactically, to make
an illegal move, but an interface that provides immediate feed­
back, indicating that the move is not allowed, is far preferable
to one that accepts the illegal move, displays it, and then forces
it to be rescinded after performing semantic checking. Immediate
feedback requires a coupling between presentation and application
not accommodated by the Seeheim model.

Separating the application from the input device through a
long communication path creates long feedback loops that dimin­
ish both performance and conceptual clarity. Separating lexical
checking from semantic checking works well in non-interactive pro­
grams such as compilers. It can be extended to simple devices
such as buttons that have no significant semantic component and
require little feedback. It does not generalize well to non-trivial in­
teractive programs. Artificial distinctions between feedback based
on the state of a logical input device and feedback based on the
state of the application serve only to complicate programs. Both
cases can be modeled as actions that test an internal resource.
The only difference lies in the sophistication of testing.

The specification of input syntax should be separated from the
specification of computation semantics, but this separation is not
an appropriate basis for division into components. Syntax and

semantics are too tightly bound to be placed in separate compo­
nents. Components that have been segregated by lexical, syntactic
or semantic functions have logical cohesion or, at best, commu­
nicational cohesion[ll]. Both these types of cohesion are weaker
than the functional cohesion exhibited by PENGUIN components.

The Seeheim model envisions a syntactic and a semantic com­
ponent, both of which encompass all of the functional tasks of the
application. The PENGUIN model assigns each functional task to
a separate component that includes both syntax and semantics.
Seen in this framework, a presentation manager is more than just
the lexical front-end of the Seeheim model; it is a first-class com­
ponent with internal resources and syntax (protocol). A window
server such as X can be built as a PENGUIN component, and clients
should be structured as components too, rather than as a com­
pletely different kind of program.

5 Experiences with PENGUIN

We have constructed a PENGUIN compiler and used it to construct
reactive applications. We discuss two of these applications here.

5.1 pfig: A graphics editor

The first application is an adaptation of an existing line graphics
editor called xfig comprising of about 15000 lines of code, of
which about 2500 are concerned with the user interface. The
editor interface comprises a window subdivided into a canvas area,
a panel of buttons, a message window and rulers at the edges. The
window hierarchy is:

xfig
canvas
panel

buttons
message
rulers

The events that need to be handled by each window include
mouse clicks, key clicks and exposure notifications. The parent
window creates instances of each of the second level modules and
predicts their create symbols. The panel module then creates
buttons. The terminals generated by the windows have distinct
contexts so the parser is able to dispatch all events to the correct
thread.

Measurements indicate that about 700 lines of PENGUIN gram­
mar and code expanded to 2600 lines of C++ code, which replace
2500 lines of old C code. We estimate that compiler generated
C++ code is twice as bulky as good human generated C++ code,
i.e. a human would have had to write about 1300 lines of C++
to replace the 2500 lines of C code. There are 102 productions
in total of which 14 are 1;> productions. There are no I> pro­
ductions, probably because exceptional conditions were already
handled by the old C code. A similar editor created from scratch
might profitably use I> productions in some places. All of the 1;>
productions are used to create parallel threads of control, none of
which expect to complete.

5.2 alarm: Alarm clock

Our second application is a simulated alarm clock with time and
alarm displays, and buttons to set the display mode and the time

of the alarm. This application demonstrates the handling of sig­
nals as events. The window hierarchy is simple:

wrapper
clock
alarm
mode_button
set-button

A run time library timer module sets up a handler for Unix
alarm signals. When the operating system delivers an alarm sig­
nal, the library translates it into a PENGUIN event. Since Unix
signals carry no information other than the fact that they oc­
curred, an auxiliary queue is used to store a list of pending timer
events. The library obtains the context and value of the token to
create from the queue when a signal occurs.

The clock time and alarm time subwindows respond to expo­
sure events, so they will redisplay the time when the window first
appears or when it is unobscured. The clock subwindow schedules
a timer event once a minute to update the digits. The alarm sub­
window schedules a timer event for the time at which the clock is
due to beep.

Because the alarm clock was coded from scratch, there is no old
implementation to compare against. Some indication of the degree
of programming help provided by the compiler can be seen from
these statistics: some 650 lines of PENGUIN code generated about
2800 lines of C++ code. Another 550 lines of auxiliary routines
in C++ were needed. The run time library is identical to that
used by ptig, except for the addition of the timer module. There
are some 50 productions, of which 4 are forks. Our subjective
impression is that the clock would have been significantly harder
to write without PENGUIN. Now that the timer code has been
added to the run time library, future programs requiring timer
events would be even easier to write.

5.3 Evaluation

Writing modules to react only to events that concern it and let­
ting PENGUIN compose the modules and correctly dispatch events
is pleasantly natural. The distinction between module templates
and module instances is important. For example, there is only
one copy of the code for a graphical button, but as many in­
stances as there are buttons in a panel, each instance customized
via attributes.

PENGUIN makes possible an interesting technique for intermod­
ule communication we call "event forwarding." Here is an example
of how this works: A panel comprises buttons. Each button may
trigger a different action routine when clicked upon. Since the
code template for the button is common to all buttons, it is not
appropriate to put the call to the action routine in the button
code. There are two traditional ways to deal with this situation.
The first method is to give each button a unique index and have
the code use the index to find the appropriate action. This re­
quires a case statement or a global array somewhere. The second
method is to pass a pointer to an action routine to each button
(callbacks). PENGUIN has a third method: take the input event,
change the context to one expected by the recipient and forward
the event. In this example the buttons forward the event to the
parent panel. Since the button and panel are part of the same
component, the forwarding amounts to putting the modified to­
ken back on the input stream, where the parser will deliver it to
a different module. As far as the panel is concerned, a click event
has happened at its window, even though the presentation does

623

not deliver any.

The alarm clock program provides another example. The but­
ton for setting the alarm time forwards button events so that they
appear to come from the alarm display subwindow. The code for
setting the wakeup time and the variable holding the time can be
kept local to the alarm module.

It is not necessary for modules to have a parent/child relation­
ship for forwarding to work. The pointers on the top and side
rulers of pUg track the movement of the cursor in the canvas
window. The canvas receives cursor motion events, uses them to
update its display (and its internal state), and forwards them to
both of the rulers, even though the canvas is a sibling of the rulers.
Forwarding can also be used profitably in constructing a compos­
ite module comprising a viewport and a scrollbar. All actions on
the scrollbar can be made to appear to happen in the viewport,
simplifying the programming and preserving the modularity of the
composite window. The PENGUIN forwarding mechanism is more
powerful than the forwarding strategy of windowing systems such
as XlI, which can forward only to ancestor (enclosing) windows,
unless extraordinary and inconvenient arrangements are made.

Finally, because all events go through the parser, it is possi­
ble in PENGUIN to isolate windowing system dependencies in the
run time library. Details such as the layout of input event struc­
tures can be confined to a few routines that turn window system
functions into events. Different run time libraries can interface
to different window systems. The cost of porting a program to a
different windowing environment will be smaller than if the pro­
gram had been written for a single environment because fewer
idiosyncrasies will have been introduced and because the labour
of adapting the run time library can be amortized over many ap­
plications.

6 Implementation

The PENGUIN compiler was written with the help of Hex, bison,
and g++, the GNU (Free Software Foundation) C++ compiler.
The PENGUIN compiler converts a module grammar into code and
a set of tables.

The multithreading of forked productions can be implemented
with a coroutine package or with interpretive code. In the former
method, the compiler generates a conventional sequential parser
(e.g. recursive descent) for each PENGUIN subparser. One sub­
routine is used for each production, non-terminal or start symbol.
Terminals are translated to calls to a run time routine that fetches
an event. Prediction points are translated to calls that peek at the
next event and use it to decide which production routine to call.
Fork productions are translated to calls that create new threads.
A coroutine library switches between the threads of a module,
giving each thread control when a event acceptable to it arrives.
Some subtlety is required to re-join threads at the end of a fork
production: the first OR branch or last AND branch must clean
up all its siblings.

In the latter, interpretive method of parser construction, the
parser runs an extension of the normal table-driven predictive
parsing algorithm. It builds a branching (cactus) stack to repre­
sent parallel productions. When a production is predicted, one
branch of the cactus is extended. As terminals are matched, the
appropriate branch is trimmed. Forks and joins change the num­
ber of branches.

We originally planned in our implementation to use the interpre­
tive method, but eventually switched to coroutines. Both methods
are feasible but the coroutine method simplifies attribute passing.
In the interpretive method, either the set of attribute types must

624

be restricted to those known to the PENGUIN compiler, or calls to
external code must be made to copy attributes. In the coroutine
method, the PENGUIN compiler can generate appropriate assign­
ment statements and let the host language compiler implement
type-specific copying. The coroutine method has an additional
advantage when the amount of inline code is large in compari­
son to the number of symbols in the grammar. The interpretive
method turns every piece of inline code into a subroutine and de­
votes much time to linkage overhead. The coroutine method can
execute inline code in line.

Prediction tables for either the interpretive or coroutine ap­
proaches are simply initialized data. They are shared between
all instances of a module. Private variables are unique to every
module instance. In our current host language, C++[12], private
variables have a natural expression as class members. Slightly less
attractive translations could be found for other languages.

7 Conclusions

Programs have traditionally been viewed as data transformers.
They read their input, compute a function, write their output,
and terminate. Programs that run indefinitely (operating systems
for example) have been seen as exceptional cases. Programs with
graphical interfaces, however, are representative of a growing class
of applications with a heavy interactive component. Real-time
process control is also in this class. For these applications the
sequencing of acceptable input is just as important, and just as
complicated, as the operations on that input.

Mainstream programming languages have no facilities for ex­
pressing this sequencing beyond the standard control flow op­
erators. Pseudo-parallelism may be obtained by calling system
dependent operations to poll for data, but the underlying pro­
cedural execution model makes the resulting code obscure and
non-portable. It can be difficult to ascertain the effects of a given
input sequence. This in turn makes it difficult to ensure that
all valid input sequences are covered, that invalid sequences are
rejected, that appropriate actions are taken in every case, and
that resources are recovered when no longer in use, a particu­
larly important consideration for long-lived programs. PENGUIN
goes to the heart of the problem by providing a notation that
better matches the programming tasks confronted in graphical
user interfaces. This notation frees the programmer from think­
ing in sequential terms and instead encourages the decomposition
of an interface into self-contained modules with well-defined entry
points triggered by the arrival of input events. Reasoning about
the effects of input sequences and the life history of resources be­
comes much easier.

Our experience with PENGUIN suggest that its reactive execu­
tion model, its separation of dialogue and computation, and its
automatic dispatch of tokens can make complicated reactive pro­
grams easier to write, easier to read, and easier to debug and main­
tain. PENGUIN'S component model provides a basis for building
applications incrementally as a collection of co-operating compo­
nents, and encourages the reuse of existing components in new
combinations.

Notes

1. Unix is a trademark of AT&T Bell Laboratories.

References

[1] Robert W. Scheifler and Jim Gettys. The X window system.
ACM Transactions on Graphics, 6(2), April 1987.

[2] G. Berry, P. Couronne, and G. A Gonthier. Synchronous
programming ofreactive systems: an introduction to Esterel.
Technical Report 647, INRIA, March 1987.

[3] Jan van den Bos. Input tools - a new language construct for
input-driven programs. In Proceedings of the European Con­
ference on Applied Information Technology of IFIP, Septem­
ber 1979.

[4] Jan van den Bos. Abstract interaction tools: A language for
user interface management systems. ACM Transactions on
Programming Languages and Systems, 10(2):215-247, April
1988.

[5] J. Matthys. Recent experiences with input handling at
PMA. In User Interface Management Systems. Springer­
Verlag, 1985.

[6] Chris McDonald and Trevor I. Dix. Support for graphs of
processes in a command interpreter. Software Practice and
Experience, 18(10):1011-1016, October 1988.

[7] Paul E. Haeberli. ConMan: A visual programming language
for interactive graphics. In SIGGRAPH '88 Conference Pro­
ceedings, pages 103-111, August 1988.

[8] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph,
and Ken Doyle. Fabrik: A visual programming environ­
ment. In OOPSLA '88 Conference Proceedings, pages 176-
190, September 1988.

[9] Michael L. Scott and Sue-Ken Yap. A grammar-based ap­
proach to the automatic generation of user-interface dia­
logues. In CHI '88 Conference Proceedings, pages 73-78, May
1988.

[10] Gunther E. Pfaff, editor. User Interface Management Sys­
tems. Springer-Verlag, 1985.

[11] Edward Yourdon and Larry 1. Constantine. Structured De­
sign: Fundamentals of a Discipline of Computer Program and
Systems Design. Prentice-Hall, 1979.

[12] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

