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PENGUIN is a grammar-based language for programming graphical user interfaces. Code for each thread of control in a 
multi-threaded application is confined to its own module, promoting modularity and reuse of code. Networks of PENGUIN 

components (each composed of an arbitrary number of modules) can be used to construct large reactive systems with 
parallel execution, internal protection boundaries, and plug-compatible communication interfaces. We argue that the 
PENGUIN building-block approach constitutes a more appropriate framework for user interface programming than the 
traditional Seeheim Model. We discuss the design of PENGUIN and relate our experiences with applications. 

1 Introduction 

Graphical user interfaces are an essential part of current program­
ming environments. Graphical windowing systems such as X [1] 
have become widely available. Unfortunately, programming tools 
for composing interfaces have not improved commensurately. 

L 1 Event-driven programming 

Windowing applications commonly use the "big loop and case 
statement" technique to dispatch incoming events. As a concrete 
example, the code for a document previewer will typically look 
like this: 

display a page 
loop 

get an input event 
case event of 

keystroke: 

/**/ 
mouse button: 

do user command 
repaint signal: 

end case 
end loop 

repaint window 

In this program organization unrelated .streams of input flow 
through a common dispatch point, adversely affecting modularity 
and the ease of revision of the interface. Suppose, for example, 
that the programmer decides to augment the previewer to allow 
the user to jump to page N. A page number is a string of digits, 
so digit keystrokes must be collected. The collection of keystrokes 
can occur within a single branch of the case statement, but then 
the window will be insensitive to repaint signals until the number 
has been entered in its entirety. Alternatively, the digits can be 
collected one at a time, in successive iterations of the main loop, 
but only at the cost of declaring global variables to retain state 
between digits. 

Some windowing libraries use another technique: callback rou­
tines. Semantic actions need not be embedded in an explicit 
loop, but the program has to register callback routines with an 

event dispatcher at initialization time. Like the digit-at-a-time 
approach above, this method has the drawback of requiring rou­
tines to maintain explicit, self-contained state between events. It 
also complicates the handling of unexpected or exceptional events. 

Similar problems arise if the programmer wishes the previewer 
to be sensitive to user interrupts while painting the page. There is 
no easy way to integrate the reading of individual document char­
acters from the file system into the event loop or callback routines 
without adversely affecting the clarity of the code. System-specific 
interrupt handling can be used as a work-around, but will lower 
the portability of the previewer. 

In both cases, the crucial observation is that the polling and 
callback methods fail to reflect the logical structure of multi­
threaded interfaces. Both methods force the programmer to deal 
with events in isolation, despite the fact that most interesting com­
putations comprise a series of events. Because they are designed 
for ordinary sequential language, both methods must explicitly 
mirror the potential interleaving of unrelated events. 

To overcome the limitations of the polling or callback tech­
niques, we propose a programming language that supports event­
driven programming. Rather than dictating when input is ex­
pected, we suggest that programs be reactive. The resulting 
change of perspective can lead to a clearer programs. 

In PENGUIN, the sequencing of input events is expressed by 
grammars. PENGUIN does not have input statements or input 
procedures. The appearance of a terminal in a grammar indicates 
that the program is willing to accept that terminal as input in the 
context of the surrounding symbols. Grammars are contained in 
modules and the composition of modules is a module that is sen­
sitive to the input specified by union of all the grammars, taking 
into account the context (source) of the input. This decentralized 
module-by-module approach to input specification makes it easy 
to modify input syntax. Modules are also managers of private 
data, distinct in each instance of a module. As a result, the se­
mantics of modules are local, decreasing the risk of inadvertent 
interaction between unrelated segments of code. 

Previous event-driven languages include Esterel [2] and Input 
Tools [3, 4]. Esterel allows event specifications to be compiled into 
an automaton. Piecewise construction of larger programs is not 
supported; the automaton generated is global to the entire pro­
gram. Communication is by broadcasting. Input Tools [3, 4] al­
lows programs to be composed hierarchically, with low-level tools 
accepting input, processing it, and propagating information up-
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wards to higher-level tools. There is no provision for input selec­
tion based on the source of an event, so broadcasting of events 
is still required. Experience with an implementation of Input 
Tools [5) suggests that this broadcasting is a serious source of 
inefficiency, particularly for large systems. 

PENGUIN encourages modular construction, separates the gram­
matical specification of input sequencing from the bulk of the pro­
gram code, and does not require broadcasting of events. 

1.2 Composing applications 

Another deficiency of current graphical user interfaces is the dif­
ficulty of composing graphical applications from free-standing, 
pre-existing pieces. Experience with pipes in the Unix operating 
systeml shows that it is possible to build stream-based process 
communication mechanisms that are extremely easy to use. It 
has been suggested [6) that similar support be provided for non­
linear process graphs as well, but even the linear variety has yet 
to be heavily used in user interface design. While most Unix pro­
grams can participate in multi-process combinations, the average 
graphical program is a free-standing entity, not easily connected 
to other programs. 

We propose the PENGUIN component model for the composition 
of multi-component programs. A PENGUIN component is a set of 
modules linked with a parser for their grammars. A component 
can be free-standing or can be connected to other components in a 
general communication graph. Easy composition of components 
with compatible interfaces encourages code re-use, rapid proto­
typing, and the construction of flexible, general-purpose tools. 

Two systems that explored facilities for the composition of 
graphical programs are ConMan [7) and Fabrik [8). ConMan is 
a high-level visual language that allows the user to build a com­
plex application from components on the fly. Its primary goal is 
the manipulation of graphical images. Its components are pro­
grams that transform or display data. Fabrik is a similar system 
for experimenting with visual programming, but its components 
are interactors or computational modules. Both systems define 
specialized environments. 

PENGUIN provides a formal, generalized model to describe in­
tercomponent connections. Since PENGUIN components are reac­
tive, the composition of components can achieve more than data 
transformations; it can also specify the interactive behaviour of a 
system of interconnected objects. 

The remainder of this paper describes how the design of PEN­
GUIN achieves the goal of making user interfaces easier to build 
and easier to understand. 

2 Language Overview 

This section provides a quick overview of the PENGUIN language. 
PENGUIN's compilation units, modules, are organized around aug­
mented context-free grammars. The design decisions taken and 
algorithms used by PENGUIN have already been described[9). A 
PENGUIN implementation consists of a compiler that translates 
grammars and their associated data declarations and action rou­
tines into executable program components. Data and actions are 
written in a host language (currently C++) of which PENGUIN is 
an extension. The output of the PENGUIN compiler is a program 
in the host language without extensions. 

The most noticeable difference between programming a user in­
terface in PENGUIN and a conventional language is that the spu­
rious juxtaposition of unrelated threads of execution introduced 

by the event loop model disappears. The programmer only needs 
to consider the sequencing within a thread of control. 

2.1 Forks 

The productions of a PENGUIN grammar specify valid sequences 
of terminals that may be received by the grammar's module. Ter­
minals are matched by input events, following context matching 
rules, and may carry information from the outside world via at­
tributes. Input events encompass more than data received by in­
put statements in conventional languages; they also include asyn­
chronous signals and exceptions, which are difficult to handle in 
a non-reactive language. 

Multi-threaded execution in PENGUIN programs is achieved 
with fork productions. There are two types of fork productions: 
the AND fork and the OR fork. A variety of useful behaviour 
can be synthesized with these two variants. A fork creates one or 
more subparsers, which are disjoint, concurrent regions of parser 
activity. A module may be thus willing to accept terminals from 
multiple sources. Moreover terminals from independent sources 
may be accepted by a PENGUIN program in arbitrary order, with­
out the need to accommodate their interleaving in user-written 
code. 

tool t> canvas panel; 
run I> work abort; 

In the first example the AND fork (specified with a t> derivation 
symbol instead of the usual =» requires that all the component 
windows start running in parallel and that all of them complete 
before the parent advances past the fork. In grammar terms, the 
yield of the non-terminal tool is some arbitrary interleaving of 
the yields of the non-terminals canvas and panel. In procedural 
terms, a subparser for canvas and a subparser for panel begin 
execution in parallel; when they complete, the subparser for tool 
can continue. 

In the second example the OR fork (specified with I» requires 
that only one of work or abort complete. Specifically, hitting 
the abort button will cancel all work in progress in the sibling 
window, returning the locus of control to the parent production. 
Completing work will disable the subparser for abort. By nesting 
abort productions, the programmer can allow the user to back out 
of multiple levels of interaction. 

A PENGUIN program is thus driven from below by the arrival 
of events that match terminals, and from above by the creation 
of threads of control by fork productions. Forks are a linguis­
tic mechanism for domesticating threads for use in user interface 
programs. The PENGUIN compiler handles the messy thread man­
agement which would otherwise have had to be coded by the pro­
grammer. 

2.2 Context 

The presence of more than one active production requires a mech­
anism for dispatching events. We stipulate that every input event 
be tagged with context, an attribute that uniquely identifies its 
source. In a typical windowing system, the source of a event would 
be a window, but alternative interpretations are equally valid. In 
a flight simulator, context attributes could be used to distinguish 
between mechanically similar flight controls. The PENGUIN parser 
contains a dispatcher that delivers incoming events to productions 
in which they match both in value and in context. 

Here is a simple dialogue that awaits the key k and then creates 
two new sub-windows with an t> production. Both sub-windows 



must terminate before the parser proceeds. Inheritance rules are 
written using a notation similar to argument passing in imper­
ative languages: Y(GX. c1) means that the first attribute of Y is 
copied from the c1 attribute of X. In practice, default context rules 
eliminate much of this verbiage. 

terminal key (context ctx) = 'k'; 
nonterm S(context ctx). X(context c1. context c2); 
nonterm Y(context c). Z(context c); 
nonterm nev(lcontext ctxl. context ctx2); 

5 => key(GS.ctx) nev X(Gnev.ctx1.Gnev.ctx2) 
It> Y(GI.c1) Z(GI.c2); 

The non-terminal nev, whose sub-productions are not shown, 
causes the creation of two new windows and returns their contexts. 
These contexts are passed to Y and Z, so that they can operate 
independently, even if their token alphabets overlap. 

Attribute flow rules for context, enforced by the PENGUIN com­
piler, ensure that at most one production will accept an incoming 
event. The compiler can compute in advance the locations that 
the parser must examine to find a match. As in regular attribute 
grammars. attributes other than context carry information about 
the symbol to which they are attached. 

2.3 Modules 

The unit of compilation in PENGUIN is the module. A module 
contains a header, declarations, private variables. and a grammar. 
PENGUIN does not allow the programmer to write a main program. 
The locus of control is retained by the PENGUIN parser which is 
the dispatcher of input events. The PENGUIN parser is the heart of 
an executing interactive program. It should not be confused with 
the portion of PENGUIN compiler that parses PENGUIN source. 
The programmer provides modules to be linked with the PENGUIN 

parser. The parser initially predicts a non-terminal of the topmost 
module. The chain of predictions eventually will require one or 
more terminals to be consumed. 

Declarations inform the compiler of the types of attributes of 
symbols in the grammar. Attributes transmit information be­
tween productions. Inherited attributes pass information to de­
scendants while synthesized attributes return information to an­
cestors. Attributes are attached to all symbols: terminals and 
non-terminals. 

terminal lparen = '('. rparen ')'; 
nonterminal S(int ilint j); 

These declarations state that the value of the terminallparen 
is the character code for' (' and that the nonterminal S carries an 
inherited attribute i and a synthesized attribute j. 

Productions may refer to non-terminals in other modules (ex­
ternals). Since there may be more than one instance of an external 
module active, an external non-terminal is qualified with a module 
handle. A handle is initialized by predicting its create symbol 
(which every module must provide). 

module canvas C; 
module panel P; 

create => C:create P:create; 
tool t> C:start P:start; 
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Private data are local to each instance of a module. They pro­
vide a repository for the shared state of related events. indepen­
dent of the rest of the program. The current version of the PEN­

GUIN compiler does not check type declarations, so the data types 
available are those provided in the target language. 

Changes to the outside world are effected via actions, which are 
symbols in productions representing executable code. The code 
is executed when the PENGUIN parser reaches the position of the 
action while recognizing its production. 

nonterminal click(color nevc); 

click => lett_button 
$( change_color(Gclick.nevc); 

output ("OK") ; $); 

In the code fragment above, an action to change the color of the 
button is executed after the event lett_button has been received. 
As the example shows, actions may use inherited attributes. as 
with other items. 

Ideally, actions that are triggered by events would take no no­
ticeable time. In practice an input buffer smooths out the effect 
of delays in actions. As long as the input is ordered by time and 
buffer overrun does not occur, a PENGUIN program does not lose 
any input information. Communication between parallel PEN­

GUIN components (discussed in the following section) provides a 
more general solution for programming actions that may introduce 
arbitrary delays. 

3 Components 

A set of modules linked with a PENGUIN parser is a component. 
A component may be a free-standing program or may co-operate 
with other components. The synergy of co-operating components 
makes it easy to adapt existing tools to novel applications. 

PENGUIN components communicate with other components via 
bidirectional reliable data streams. The unit of information ex­
changed is the token or terminal. Each token is a complete piece 
of information and can be as small as a single character or as large 
as a picture-whatever is appropriate for the application. 

Figure 1 is an example of components co-operating to imple­
ment a game-playing program. The Chess component controls 
the reaction of the application to user input, received via the pre­
sentation component. A second, parallel presentation component 
provides another display of the game in progress. Since move gen­
eration and evaluation may require substantial amounts of com­
putation, some work is given to parallel components to preserve 
the interactiveness of the user interface. This is an example of a 
general technique that can be applied to any computation that 
may delay the flow of events through the grammar: do the work 
in a separate component and devise a protocol for sending data 
to, receiving results from, and querying the status of the sibling 
component. In response to queries the user interface might say 
"Thinking" if the move generator is still busy. 

Two features of PENGUIN provide flexibility in creating net­
works of components. First, communication partners need not 
know the identity or implementation details of their peers. Sec­
ond, the connection graph of components does not have to be 
fixed until run time, allowing alternative configurations to be cre­
ated. Tokens are addressed to output streams, not to named 
components, and the connections between components can be es­
tablished under program control. The only requirement for two 
components to be able to communicate is that each send only 
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Move 
generator 

Opening 
book 

Chess 
Display 

I+----.!{Present­
ation) 

Another 
display 

Figure 1: A multi-component Chess program. 

tokens that are in the other's input alphabet. The behaviour of 
a component is determined by the grammar within. Alternative 
implementations of components can be produced to meet a func­
tional specification. Interchangeable components are useful for 
selecting between different versions of components or for produc­
ing different effects. The example above, for instance, could be 
configured with a variety of different move generators or opening 
books. A logging component could also be interposed between the 
Chess and Display components, to record the entire session. 

4 The Seeheim Model Reconsidered 

User 

Figure 2: The Seeheim model of a UIMS. 

In the original Seeheim model [10], depicted in Figure 2, a pro­
gram is postulated to have three layers: application, dialogue and 
presentation. These layers correspond to division by semantic, 
syntactic and lexical functions. The Seeheim model assumes that 
a separation between syntax and semantics provides the most 
natural partition of a graphical application. The fallacy of this 
assumption can be seen in our game-playing example. A chess 
program must examine the positions of other pieces on the board 
to discover whether it is legal to move a king. One can imagine 
an implementation that allows the user, syntactically, to make 
an illegal move, but an interface that provides immediate feed­
back, indicating that the move is not allowed, is far preferable 
to one that accepts the illegal move, displays it, and then forces 
it to be rescinded after performing semantic checking. Immediate 
feedback requires a coupling between presentation and application 
not accommodated by the Seeheim model. 

Separating the application from the input device through a 
long communication path creates long feedback loops that dimin­
ish both performance and conceptual clarity. Separating lexical 
checking from semantic checking works well in non-interactive pro­
grams such as compilers. It can be extended to simple devices 
such as buttons that have no significant semantic component and 
require little feedback. It does not generalize well to non-trivial in­
teractive programs. Artificial distinctions between feedback based 
on the state of a logical input device and feedback based on the 
state of the application serve only to complicate programs. Both 
cases can be modeled as actions that test an internal resource. 
The only difference lies in the sophistication of testing. 

The specification of input syntax should be separated from the 
specification of computation semantics, but this separation is not 
an appropriate basis for division into components. Syntax and 

semantics are too tightly bound to be placed in separate compo­
nents. Components that have been segregated by lexical, syntactic 
or semantic functions have logical cohesion or, at best, commu­
nicational cohesion[ll]. Both these types of cohesion are weaker 
than the functional cohesion exhibited by PENGUIN components. 

The Seeheim model envisions a syntactic and a semantic com­
ponent, both of which encompass all of the functional tasks of the 
application. The PENGUIN model assigns each functional task to 
a separate component that includes both syntax and semantics. 
Seen in this framework, a presentation manager is more than just 
the lexical front-end of the Seeheim model; it is a first-class com­
ponent with internal resources and syntax (protocol). A window 
server such as X can be built as a PENGUIN component, and clients 
should be structured as components too, rather than as a com­
pletely different kind of program. 

5 Experiences with PENGUIN 

We have constructed a PENGUIN compiler and used it to construct 
reactive applications. We discuss two of these applications here. 

5.1 pfig: A graphics editor 

The first application is an adaptation of an existing line graphics 
editor called xfig comprising of about 15000 lines of code, of 
which about 2500 are concerned with the user interface. The 
editor interface comprises a window subdivided into a canvas area, 
a panel of buttons, a message window and rulers at the edges. The 
window hierarchy is: 

xfig 
canvas 
panel 

buttons 
message 
rulers 

The events that need to be handled by each window include 
mouse clicks, key clicks and exposure notifications. The parent 
window creates instances of each of the second level modules and 
predicts their create symbols. The panel module then creates 
buttons. The terminals generated by the windows have distinct 
contexts so the parser is able to dispatch all events to the correct 
thread. 

Measurements indicate that about 700 lines of PENGUIN gram­
mar and code expanded to 2600 lines of C++ code, which replace 
2500 lines of old C code. We estimate that compiler generated 
C++ code is twice as bulky as good human generated C++ code, 
i.e. a human would have had to write about 1300 lines of C++ 
to replace the 2500 lines of C code. There are 102 productions 
in total of which 14 are 1;> productions. There are no I> pro­
ductions, probably because exceptional conditions were already 
handled by the old C code. A similar editor created from scratch 
might profitably use I> productions in some places. All of the 1;> 
productions are used to create parallel threads of control, none of 
which expect to complete. 

5.2 alarm: Alarm clock 

Our second application is a simulated alarm clock with time and 
alarm displays, and buttons to set the display mode and the time 



of the alarm. This application demonstrates the handling of sig­
nals as events. The window hierarchy is simple: 

wrapper 
clock 
alarm 
mode_button 
set-button 

A run time library timer module sets up a handler for Unix 
alarm signals. When the operating system delivers an alarm sig­
nal, the library translates it into a PENGUIN event. Since Unix 
signals carry no information other than the fact that they oc­
curred, an auxiliary queue is used to store a list of pending timer 
events. The library obtains the context and value of the token to 
create from the queue when a signal occurs. 

The clock time and alarm time subwindows respond to expo­
sure events, so they will redisplay the time when the window first 
appears or when it is unobscured. The clock subwindow schedules 
a timer event once a minute to update the digits. The alarm sub­
window schedules a timer event for the time at which the clock is 
due to beep. 

Because the alarm clock was coded from scratch, there is no old 
implementation to compare against. Some indication of the degree 
of programming help provided by the compiler can be seen from 
these statistics: some 650 lines of PENGUIN code generated about 
2800 lines of C++ code. Another 550 lines of auxiliary routines 
in C++ were needed. The run time library is identical to that 
used by ptig, except for the addition of the timer module. There 
are some 50 productions, of which 4 are forks. Our subjective 
impression is that the clock would have been significantly harder 
to write without PENGUIN. Now that the timer code has been 
added to the run time library, future programs requiring timer 
events would be even easier to write. 

5.3 Evaluation 

Writing modules to react only to events that concern it and let­
ting PENGUIN compose the modules and correctly dispatch events 
is pleasantly natural. The distinction between module templates 
and module instances is important. For example, there is only 
one copy of the code for a graphical button, but as many in­
stances as there are buttons in a panel, each instance customized 
via attributes. 

PENGUIN makes possible an interesting technique for intermod­
ule communication we call "event forwarding." Here is an example 
of how this works: A panel comprises buttons. Each button may 
trigger a different action routine when clicked upon. Since the 
code template for the button is common to all buttons, it is not 
appropriate to put the call to the action routine in the button 
code. There are two traditional ways to deal with this situation. 
The first method is to give each button a unique index and have 
the code use the index to find the appropriate action. This re­
quires a case statement or a global array somewhere. The second 
method is to pass a pointer to an action routine to each button 
(callbacks). PENGUIN has a third method: take the input event, 
change the context to one expected by the recipient and forward 
the event. In this example the buttons forward the event to the 
parent panel. Since the button and panel are part of the same 
component, the forwarding amounts to putting the modified to­
ken back on the input stream, where the parser will deliver it to 
a different module. As far as the panel is concerned, a click event 
has happened at its window, even though the presentation does 

623 

not deliver any. 

The alarm clock program provides another example. The but­
ton for setting the alarm time forwards button events so that they 
appear to come from the alarm display subwindow. The code for 
setting the wakeup time and the variable holding the time can be 
kept local to the alarm module. 

It is not necessary for modules to have a parent/child relation­
ship for forwarding to work. The pointers on the top and side 
rulers of pUg track the movement of the cursor in the canvas 
window. The canvas receives cursor motion events, uses them to 
update its display (and its internal state), and forwards them to 
both of the rulers, even though the canvas is a sibling of the rulers. 
Forwarding can also be used profitably in constructing a compos­
ite module comprising a viewport and a scrollbar. All actions on 
the scrollbar can be made to appear to happen in the viewport, 
simplifying the programming and preserving the modularity of the 
composite window. The PENGUIN forwarding mechanism is more 
powerful than the forwarding strategy of windowing systems such 
as XlI, which can forward only to ancestor (enclosing) windows, 
unless extraordinary and inconvenient arrangements are made. 

Finally, because all events go through the parser, it is possi­
ble in PENGUIN to isolate windowing system dependencies in the 
run time library. Details such as the layout of input event struc­
tures can be confined to a few routines that turn window system 
functions into events. Different run time libraries can interface 
to different window systems. The cost of porting a program to a 
different windowing environment will be smaller than if the pro­
gram had been written for a single environment because fewer 
idiosyncrasies will have been introduced and because the labour 
of adapting the run time library can be amortized over many ap­
plications. 

6 Implementation 

The PENGUIN compiler was written with the help of Hex, bison, 
and g++, the GNU (Free Software Foundation) C++ compiler. 
The PENGUIN compiler converts a module grammar into code and 
a set of tables. 

The multithreading of forked productions can be implemented 
with a coroutine package or with interpretive code. In the former 
method, the compiler generates a conventional sequential parser 
(e.g. recursive descent) for each PENGUIN subparser. One sub­
routine is used for each production, non-terminal or start symbol. 
Terminals are translated to calls to a run time routine that fetches 
an event. Prediction points are translated to calls that peek at the 
next event and use it to decide which production routine to call. 
Fork productions are translated to calls that create new threads. 
A coroutine library switches between the threads of a module, 
giving each thread control when a event acceptable to it arrives. 
Some subtlety is required to re-join threads at the end of a fork 
production: the first OR branch or last AND branch must clean 
up all its siblings. 

In the latter, interpretive method of parser construction, the 
parser runs an extension of the normal table-driven predictive 
parsing algorithm. It builds a branching (cactus) stack to repre­
sent parallel productions. When a production is predicted, one 
branch of the cactus is extended. As terminals are matched, the 
appropriate branch is trimmed. Forks and joins change the num­
ber of branches. 

We originally planned in our implementation to use the interpre­
tive method, but eventually switched to coroutines. Both methods 
are feasible but the coroutine method simplifies attribute passing. 
In the interpretive method, either the set of attribute types must 
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be restricted to those known to the PENGUIN compiler, or calls to 
external code must be made to copy attributes. In the coroutine 
method, the PENGUIN compiler can generate appropriate assign­
ment statements and let the host language compiler implement 
type-specific copying. The coroutine method has an additional 
advantage when the amount of inline code is large in compari­
son to the number of symbols in the grammar. The interpretive 
method turns every piece of inline code into a subroutine and de­
votes much time to linkage overhead. The coroutine method can 
execute inline code in line. 

Prediction tables for either the interpretive or coroutine ap­
proaches are simply initialized data. They are shared between 
all instances of a module. Private variables are unique to every 
module instance. In our current host language, C++[12], private 
variables have a natural expression as class members. Slightly less 
attractive translations could be found for other languages. 

7 Conclusions 

Programs have traditionally been viewed as data transformers. 
They read their input, compute a function, write their output, 
and terminate. Programs that run indefinitely (operating systems 
for example) have been seen as exceptional cases. Programs with 
graphical interfaces, however, are representative of a growing class 
of applications with a heavy interactive component. Real-time 
process control is also in this class. For these applications the 
sequencing of acceptable input is just as important, and just as 
complicated, as the operations on that input. 

Mainstream programming languages have no facilities for ex­
pressing this sequencing beyond the standard control flow op­
erators. Pseudo-parallelism may be obtained by calling system 
dependent operations to poll for data, but the underlying pro­
cedural execution model makes the resulting code obscure and 
non-portable. It can be difficult to ascertain the effects of a given 
input sequence. This in turn makes it difficult to ensure that 
all valid input sequences are covered, that invalid sequences are 
rejected, that appropriate actions are taken in every case, and 
that resources are recovered when no longer in use, a particu­
larly important consideration for long-lived programs. PENGUIN 
goes to the heart of the problem by providing a notation that 
better matches the programming tasks confronted in graphical 
user interfaces. This notation frees the programmer from think­
ing in sequential terms and instead encourages the decomposition 
of an interface into self-contained modules with well-defined entry 
points triggered by the arrival of input events. Reasoning about 
the effects of input sequences and the life history of resources be­
comes much easier. 

Our experience with PENGUIN suggest that its reactive execu­
tion model, its separation of dialogue and computation, and its 
automatic dispatch of tokens can make complicated reactive pro­
grams easier to write, easier to read, and easier to debug and main­
tain. PENGUIN'S component model provides a basis for building 
applications incrementally as a collection of co-operating compo­
nents, and encourages the reuse of existing components in new 
combinations. 

Notes 

1. Unix is a trademark of AT&T Bell Laboratories. 

References 

[1] Robert W. Scheifler and Jim Gettys. The X window system. 
ACM Transactions on Graphics, 6(2), April 1987. 

[2] G. Berry, P. Couronne, and G. A Gonthier. Synchronous 
programming ofreactive systems: an introduction to Esterel. 
Technical Report 647, INRIA, March 1987. 

[3] Jan van den Bos. Input tools - a new language construct for 
input-driven programs. In Proceedings of the European Con­
ference on Applied Information Technology of IFIP, Septem­
ber 1979. 

[4] Jan van den Bos. Abstract interaction tools: A language for 
user interface management systems. ACM Transactions on 
Programming Languages and Systems, 10(2):215-247, April 
1988. 

[5] J. Matthys. Recent experiences with input handling at 
PMA. In User Interface Management Systems. Springer­
Verlag, 1985. 

[6] Chris McDonald and Trevor I. Dix. Support for graphs of 
processes in a command interpreter. Software Practice and 
Experience, 18(10):1011-1016, October 1988. 

[7] Paul E. Haeberli. ConMan: A visual programming language 
for interactive graphics. In SIGGRAPH '88 Conference Pro­
ceedings, pages 103-111, August 1988. 

[8] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, 
and Ken Doyle. Fabrik: A visual programming environ­
ment. In OOPSLA '88 Conference Proceedings, pages 176-
190, September 1988. 

[9] Michael L. Scott and Sue-Ken Yap. A grammar-based ap­
proach to the automatic generation of user-interface dia­
logues. In CHI '88 Conference Proceedings, pages 73-78, May 
1988. 

[10] Gunther E. Pfaff, editor. User Interface Management Sys­
tems. Springer-Verlag, 1985. 

[11] Edward Yourdon and Larry 1. Constantine. Structured De­
sign: Fundamentals of a Discipline of Computer Program and 
Systems Design. Prentice-Hall, 1979. 

[12] Bjarne Stroustrup. The C++ Programming Language. 
Addison-Wesley, 1986. 


