


The Rochester Checkers Player: 
Multi-Model Parallel Programming 

for Animate Vision 

B.D. Marsh, C.M. Brown, TJ. LeBlanc, 
M.L. Scott, T.G. Becker, P.Ch. Das, 

J. Karlsson, and C.A. Quiroz 

Computer Science Department 

Abstract 

Animate vision systems couple computer vision and robot
ics to achieve robust and accurate vision, as \Veil as other 
complex behavior. These systems combine low-level sen· 
sory processing and effector output with high-level cogni
tive planning-all computationally intensive tasks that can 
benefit from parallel processing. Nosingle model of parallel 
programming is likely to serve for all tasks, however. Early 
vision algorithms are intensely data parallel, often utilizing 
fine-grain parallel computations that share an image, while 
cognition algorithms decompose naturally by function, of
ten consisting ofloosely-coupled, coarse·grain parallel units. 
A typical animate vision application will likely consist of 
many tasks, each of which may require a different parallel 
programming model, and all of which must cooperate to 
achieve the desired behavior. These multi-model programs 
require an underlying software system that not only suppons 
several different models of parallel computation simulta
neously, but that also allows tasks implemented in different 
models to interact. 

In this paper we describe Checkers, a multi-model parallel 
program that implements a robot checkers player. Checkers 
runs on the BBN Butterfly multiprocessor under the Psyche 
operating system, which we designed to suppon multi
model programming. Checkers visually monitorsa standard 
checkerboard, decides on a move in response to a move by 
a human opponent, and moves its own pieces. Different 
parallel programming models are used for vision, robot 
motion planning, and strategy. Tasks from different pro
gramming models are able to synchronize and communicate 
using a shared checkerboard data structure. The Checkers 
implementation, which required only two months of pan
time effon by five people, demonstrates many of the advan
tages of multi-model programming (e.g., expressive power, 
modularity, code reuse, efficiency), and the imponance of 
integration through shared data abstractions and customized 
communication protocols accessible from every parallel 
programming model. 

1. Introduction 

Vision can be viewed as a passive, observation-oriented 
activity. or as one intimately related to action (e.g .• manipu-

lation, navigation). In the reconstructionist or general· 
purpose paradigm, the vision task is to reconstruct physical 
scene parameters from image input. to segment the image 
into meaningful pans. and ultimately to describe the visual 
input in such a way that higher-level systems can act on the 
descriptions to accomplish general tasks. An alternative to 
reconstructionist vision derives from the observation that 
biological systems do not, in general. seem to perform goal· 
free, consequence-free vision [Ballard 1991]. This observa
tion suggests that vision may, of necessity, be a more 
interactive, dynamic. and task-oriented process than is as
sumed in the reconstructionist approach. Animate vision 
researchers. inspired by successful biological systems 
[Coombs et al. 1990; Waxman et al. 1988], seek to develop 
practical, deployable vision systems by discovering and 
exploiting principles that link perception and action. 

Animate vision systems require movable. computer
configurable sensors, and sophisticated effectors or mobile 
vehicles. In addition, the computations required by animate 
vision systems are so extensive that parallel processors are 
necessary to achieve the required performance. Our panicu
lar laboratory is a representative architecture for animate 
vision systems, and consists of five key components: a 
binocular head containing movable cameras for visual input, 
a robot arm that suppons and moves the head, a dextrous 
manipulator, a special-purpose parallel processor for high
bandwidth low-level vision processing, and a general-pur
pose MIMD parallel processor for high-level vision and 
planning. 

The head has two movable grey-scale CCD television cam
eras and a fixed color camera providing input to a Max Video 
pipelined image-processing system. One motor controls the 
tilt angle of the two-eye platform; separate motors control 
each camera's pan angle, providing independent vergence 
control. The robot body is a PUMA 761 six degrees-of
freedom arm with a two meter radius workspace and a top 
speed of about one meter/second. Our dextrous manipulator 
is a 16 degrees-of-freedom Utah hand. The MaxVideo 
system consists of several independent boards that can be 
connected together to achieve a wide range of frame-rate 
image analysis capabilities. Our MIMD mUltiprocessor is a 
24-node, shared-memory Butterfly Plus Parallel Processor. 

Our system architecture, and animate vision systems in 
general, are inherently parallel. The multiple hardware de
vices provide one source of parallelism. The algorithms used 
for device control and for combining perception and action 
provide another source. Although both the hardware archi
tecture and the applications are highly parallel. the type of 
parallelism we would like to exploit varies among tasks in 
the system. Nosingle model of parallel computation is likely 
to suffice for all tasks. 

7 



The difficulty arises because parallelism can be applied in 
many ways, using different programming constructs, lan
guages, and runtime libraries for expressing parallelism. 
Each of these environments can be characterized by the 
process model it provides: the abstraction for the expression 
and control of parallelism. The process model typically 
restricts the granularity of computation that can be effi
ciently encapsulated within a process, the frequency and 
type of synchronization, and the form of communication 
between processes. A typical animate vision application 
willlikel y consist of many tasks, each of which may require 
a different parallel programming model, and all of which 
must cooperate to achieve the desired behavior. Thesemulti
model programs require an underlying software system that 
not only supports several different models of parallel com
putation simultaneously, but that also allows tasks imple
mented in different models to interact. 

The central claim of this paper is that an integrated vision 
architecture must support multiple models of parallelism. 
We support this claim by describing a complex animate 
vision application, Checkers, constructed as a multi-model 
program. Checkers runs on the BBN Butterfly multiproces
sor under the Psyche operating system, which was designed 
to support multi-model programming. Checkers visually 
monitors a standard checkerboard, decides on a move in 
response to a move by a human opponent, and moves its own 
pieces. Different parallel programming models are used for 
vision (fine-grain processes using shared memory), robot 
motion planning (Multilisp futures), and strategy (coarse
grain processes using message passing). Tasks from differ
ent programming models are able to synchronize and com
municate using a shared checkerboard data structure. The 
Checkers implementation, which required only two months 
of part-time effort by five people, demonstrates many ofthe 
advantages of multi-model programming (e.g., expressive 
power, modularity, code reuse, efficiency), and the impor
tance of integration through shared data abstractions and 
customized communication protocols accessible from every 
parallel programming model. 

In the next section we present an overview of the Psyche 
operating system and describe how it supports multi-model 
programming. We then describe the implementation of our 
checkers player in detail, emphasizing the use of several 
different parallel programming environments and the inte
gration oftasks in the implementation. We conclude with a 
discussion of our experiences with Checkers and multi
model programming. 

2_ Psyche Operating System Overview 

2.1 Background 

A parallel programming environment defines a model of 
processes and communication. Successful models make 
assumptions that are well-matched to a large class of appli-

8 

cations, but no existing model has satisfied all applications. 
Problems therefore arise when attempting to use a single 
operating system as the host for many different models, 
because the traditional approach to operating system design 
adopts a single model of parallelism and embeds it in the 
kernel. The operating system mechanisms are seldom ame
nable to change and may not be well-matched to a new 
parallel programming model under development, resulting 
in awkward or inefficient implementations. 

Since 1984 we have explored the design of parallel program
ming environments on shared-memory multiprocessors. 
Using the Chrysalis operating system from BBN [1988] as 
a lOW-level interface, we created several new programming 
libraries and languages, and ported several others [LeBlanc 
et al. 1988]. We were able to construct efficient implemen
tations of many different models of parallelism because 
Chrysalis allows the user to manage memory and address 
spaces explicitly, and provides efficient low-level mecha
nisms for communication and synchronization. As in most 
operating systems, however, Chrysalis processes are heavy
weight (each process resides in its own address space), so 
lightweight threads must be encapsulated inside a heavy
weight process, and cannot interact with the processes of 
another programming model. 

Each of our programming models was developed in isola
tion, without support for interaction with other models. Our 
experiences with the implementation of these individual 
models, coupled with our integration experiences in DARPA 
benchmarks [Brown et aJ. 1986], convinced us of the need 
for a single operating system that would provide both an 
appropriate interface for implementing multiple models and 
conventions for interactions across models. The Psyche 
multiprocessor operating system [Scott et aJ. 1988; 1989; 
1990] was designed to satisfy this need. 

Rather than establish a high-level model of processes and 
communication to which programming environments would 
have to be adapted, Psyche adopts the basic concepts from 
which existing environments are already constructed (e.g., 
procedure calls, shared data, address spaces, interrupts). 
These concepts can be used to implement, in user space, any 
notion of process desired. These concepts can also be used 
to build shared data structures that form the basis for 
interprocess communication between different types of pro
cesses. 

2.2 Psyche Kernel Interface 

The Psyche kernel interface provides a common substrate 
for parallel programming models implemented by libraries 
and language run-time packages. It provides a low-level 
interface that allows new packages to be implemented as 
needed, and implementation conventions that can be used 
for communication between models when desired. 



The kernel interface is based on four abstractions: realms, 
protection domains, processes, and virtual processors. 

Each realm contains code and data. Since all code and data 
is encapsulated in realms, computation consists of invoca
tion of realm operations. Interprocess communication is 
effected by invoking operations of realms accessible to more 
than one process. 

Depending on the degree of protection desired, invocation of 
a realm operation can beas fast as an ordinary procedure call 
(optimized invocation), or as safe as a remote procedure call 
between heavyweight processes (protected invocation). The 
two forms of invocation are initiated in exactly the same 
way, with the native architecture's jump-to-subroutine in
struction. In some cases this instruction generates a page 
fault, allowing the kernel to intervene when necessary dur
iog invocations. 

A process in Psyche represents a thread of control meaning
ful to the user. A virtual processor is a kernel-provided 
abstraction on top of which user-defined processes are 
implemented. There is no fixed correspondence between 
virtual processors and processes. One virtual processor will 
generally schedule many processes. Likewise, a given pro
cess may run on different virtual processors at different 
points in time. On each physical node of the machine, the 
kernel time-slices fairly among the virtual processors cur
rently located on that node. 

As it invokes protected operations, a process moves through 
a series of protection domains, each of which embodies a set 
of access rights appropriate to the invoked operation. Within 
each domain, the representations of processes are created, 
destroyed, and scheduled by user-level code without kernel 
intervention. As a process moves among domains, it may be 
represented in many different ways (e.g., as lightweight 
threads of various kinds or as requests on the queue of a 
server). 

Within a protection domain, each process maintains a data 
structure shared with the kernel containing pointers to pro
cess management functions, such as block and unblock 
routines. The kernel never calls these operations itself, but 
identifies them in the kernel/user data area, so that user-level 
code can invoke them directly. Dissimilartypes of processes 
can use these primitive operations to build scheduler-based 
synchronization mechanisms, such as semaphores. 

Asynchronous communication between the kernel ahd vir
tual processors is based on software interrupts. User-level 
code can establish interrupt handlers for wall clock and 
interval timers. The interrupt handlers of a protection do
main are the entry points of a scheduler for the processes of 
the domain. Each scheduler is responsible for the processes 
in its domain at the current time, managing theirrepresenta-

tions and mapping them onto the virtual processors of the 
domain. 

These Psyche kernel mechanisms support multi-model pro
gramming by facilitating the construction ofJirst-class user
level threads and process·independent communication 
[Marsh 1991; Marsh et al. 1991]. First-class user-level 
threads enjoy the functionality of traditional kernel pro
cesses, while retaining the efficiency and flexibility of being 
implemented outside the kernel. Process-independent com
munication allows different types of processes to communi
cate and synchronize using mechanisms that are not tied to 
the semantics or implementation of a particular parallel 
programming model. 

2.3 First-Class User-Level Threads 

In a multi-model programming system most programmers 
do not use the kernel interface directly; user-level thread 
packages and language runtime environments provide the 
functionality seen by the programmer. This means that the 
kernel is in charge of coarse-grain resource allocation and 
protection, while the bulkof short-term scheduling occurs in 
user space. In according first-class status to user-level 
threads, we intend to allow threads defined and implemented 
in user space to be used in any reasonable way that traditional 
kernel-provided processes can be used. For example, first
class threads can execute 110 and other blocking operations 
without denying service to their peers. Different kinds of 
threads, in separate but overlapping address spaces, can 
synchronize access to shared data structures. Time-slicing 
implemented in user space can be coordinated wi th preemp
tion implemented by the kernel. 

Our general approach is to provide user-level code with the 
same timely information and scheduling options normally 
available to the kernel. Software interrupts are generated by 
the kernel when a scheduling decision is required of a 
parallel programming environment implemented in user 
space. Examples include timer expiration, imminent pre
emption, and the commencement and completion of block
ing system calls. Timer interrupts support the time-slicing of 
threads in user space. Warnings prior to preemption allow 
the thread package to coordinate synchronization with ker
nel-level scheduling. Every system call is non-blocking by 
default; the kernel simply delivers an interrupt when the call 
occurs, allowing the user-level scheduler to run another 
thread. 

The kernel and the runtime environment also share impor
tant data structures, making it easy to convey information 
cheaply (in both directions). These data structures indicate 
(among other things) the state of the currently executing 
process, the address of a preallocated stack to be used when 
handling software interrupts, and a collection of variables 
for managing the behavior of software interrupts. User
writable data can be used to specify what ought to happen in 

9 



response to kernel-detected events. By allowing the kernel 
and user-level code to share data, changes in desired behav
iorcan occur frequently (for example, when context switch
ing in user space). 

2.4 Process-Independent Communication 

Shared memory is a viable communication medium between 
models, but by itself is insufficient to implement a wide 
range of communication styles. Interprocess communica
tion requires several steps, including data transfer, control 
transfer, and synchronization. While sh'll""d memory is 
sufficient to implement data transfer, both control transfer 
and synchronization depend on the precise implementation 
of processes. For this reason processes of different types 
usually communicate using extremely simple, low-level 
mechanisms (e.g .. shared memory and spin locks, with no 
protection mechanisms in place) or generic, high-level com
munication primitives (e.g., remote procedure calls requir
ing kernel intervention for protection). 

The Psyche approach to interprocess communication (espe
cially when the communicating processes are of different 
types) is based on two concepts: 

• A procedural inteiface for control and data trans
fer: Each shared data structure is encapsulated 
within one or more realms and is only accessible 
using realm invocations. Invocations (Le., proce
dure calls) are a communication mechanism, pro
viding for control and data transfer. Either opti
mized or protected invocations may be appropri
ate, depending on whetherthe shared data structure 
resides within its own protection domain. 

• A kernel-supponed inteifacefor process manage
ment: Each parallel programming model provides 
an interface to its process management routines. 
These routines, which are typically used to block 
and unblock a thread of control implemented within 
the programming model, can be invoked from 
within shared data structures, providing a means 
for synchronization among dissimilar process types. 

These mechanisms can be used to implement two different 
types of interactions between dissimilar programming mod
els: (1) shared data structures; and (2) direct invocations 
from one programming model to another. Shared data struc
tures are typically passive; the associated management code 
is executed only when a process invokes an operation on the 
data structure. A direct invocation from one programming 
model to another causes a process to move from one pro
gramming environment into the runtime environment of 
another programming model. Subject to certain limitations, 
the process can then perform operations available to pro
cesses of the new environment. We now describe how both 
varieties of interactions are used in our implementation of 
Checkers. 

10 

3. A Multi.Model Robot Chec:kers Player 

Checkers is a multi-model vision and manipulation applica
tion implemented on top of Psyche. A checkers-playing 
robot conducts a game of checkers against a human oppo
nent, cyclically sensing the opponent's move, and then 
planning and executing its response. (See Figure I.) 

An inexpensive, standard-sized checkers game is used. The 
board squares are 46mm on a side; the pieces, made of light 
plastic, are 30mm in diameter and 5mm in height. The 
position ofthe board is fixed in the coordinate system of the 
robot. Normal fluorescent lighting is used. The camera's 
internal parameters (aperture and focus) are manually ad
justed before the game, and the external parameters (the 
exact positions of the pan and tilt motors, and the robot's 
position) are compensated by an initial calibration proce
dure (finding pixel coordinates of the corners of the board). 

The human is given the black pieces and the first move. The 
normal rules of play are obeyed, including multiple captures, 
crowning, and the extended capabilities of kings. A king is 
not crowned by the robot-it remembers which pieces on the 
board are kings. The human can either flip promoted pieces 
to expose an embossed crown, or stack pieces. The Utah 
hand was not used in our implementation of Checkers; the 
robot pushes pieces around the board using a passively 
compliant checker-pushing tool instead. 

During play the human player modifies the board by moving 
a piece. The sensing task detects the change in the board 
configuration and interprets it symbolically in terms of the 
primitive moves of checkers. In a checkers strategy task, the 
robot runs a symbolic game-playing algorithm to find its 
response to the human move. The board position reported by 
the vision subsystem and the symbolic move computed by 
the robot are used to plan an optimal sequence of primitive, 
physically-realizable actions by the effector task. When this 
movement plan is available, the robot arm is engaged to 
execute the plan. Central control, communication, data 
representation, and synchronization are provided by a board 
maintenance task. The robot emits status information, error 
messages, and occasional gratuitous remarks through a 
voice-synthesis board. 

In our curren~ implementation, the robot watches the board 
from a home position directly overhead. When the program 
begins execution, the robot goes to the home positiqn and 
waits for the human to make the first move. A few seconds 
after the human's move, the robot head descends, acquires a 
piece with its passively-compliant effector, and pushes it. 
During acapture it pushes the captured piece(s) off the board 
and completes the move. It then returns to its home position 
and waits for the board to assume a new legal state as a result 
of the next human move. The human interacts with the 
program simply by playing checkers. 



Peripherals 
Butterfly 

.. 

Human 
Camera Manager b Board Interpreter 
(Zebra, Uthread) (Uniform System) 

I 
a I 

I 
I C 

~~ 
I __________ 01 

d 
Move Recognizer Board Module 

@ 
(Uthread) (Uthread) 

@ 0 
e 

0 @ 

Checkers Player 0 I -----------
I (Lynx) 
I 

\ 
I 

\ 
I 
I 
I 
I 
I f 
I 
I 
I 

Puma Robot Robot Controller Move Planner 
(Val) h (C++iUthread) g (Multilisp) 

Peripherals .. Butterfly 

.. 
Figure 1 Functional modules and communication paths in the Checkers Player. Multiple models of parallelism 
(to the right of the dotted line) are implemented under Psyche on the Butterfly. Perceptual and motor modules (to 
the left of the dotted line) reside on the Butterfly and in peripherals. 

3.1 Parallel Programming Environments 

Checkers,like many animate vision applications, consists of 
tasks to implement sensing, planning, and action. In our 
implementation, each of these functions is implemented 
using a different parallel programming environment: 
Multilisp, Lynx, the Uniform System, Uthread, or Zebra. 

Multilisp [Halstead 1985] is a Lisp extension for parallel 

symbolic programming developed at MIT. The unit of 
parallelism in Multilisp is thejUture. which is a handle forthe 
evaluation of an arbitrary s-expression that is evaluated in 
parallel with the caller. Any attempt to reference a future 
hefore the value is determined causes the caller to block. 
Futures are evaluated last-in-first-out to avoid the combina
torial growth in the number offutures that would otherwise 
result from the extensive use of recursion in Lisp. 

II 



Lynx [Scott 1987] is a parallel programming language based 
on message passing. Lynx programs consist of multiple 
heavyweight processes, each with their own address space, 
that exchange messages using named communication chan
nels (links). Each heavyweight process consists of multiple 
lightweight threads of control that communicate using shared 
memory. 

The Uniform System [Thomas and Crowther 1988] is a 
shared-memory, data-parallel programming environment 
developed at BBN for the Butterfly. Within a Uniform 
System program, task generators are used to create a poten
tially large number of parallel tasks, each of which operates 
on some portion of a large shared address space. Task 
descriptors are placed on a global FIFO work queue, and are 
removed by processors looking for work. Each task must run 
to completion, at which time another task is removed from 
the task queue. Since tasks are notallowed to block, spinlocks 
are used for synchronization. 

Uthread is a simple, lightweight thread package developed 
at Rochester that can he called from C++ programs. Uthread 
is the general-purpose programming environment of choice 
in Psyche, and is frequently used to implement single
threaded servers. 

Zebra [Tilley 1989], also developed at Rochester, is an 
object-oriented programming system for the MaxVideo 
image processing hardware. 

We chose these environments for four reasons. First, each of 
these environments was specifically developed for a particu
lar application domain that was a subset of our problem 
domain. Second, implementations of all five environments 
were either already available for our hardware or could be 
easily ported to our hardware. Third, the principals involved 
in the project had extensive experience with one or more of 
these implementations and would not have to learn a new 
system. Finally, we already had a software base for vision, 
planning, and checkers playing composed of programs writ
ten in the Uniform System, Lisp, and Lynx, respectively. 

3.2 Checkers Data Structures 

The primary data structures used to implement Checkers are 
the representations of the board and moves. A short pipeline 
of representations is needed to support backing up to legal or 
stable states. There are four different board representations, 
each used for different tasks: 

1. A digitized image of the board from the TV camera 
(512 x 512 x 8 bits). 

2. Calibration information that locates the squares of 
the board in the robot's workspace. 

3. A quantitative description of the (X,Y,Z) location of 
the centroids of pieces on the board and their color. 

12 

4. A symbolic description of the board, denoting 
which squares contain pieces of which color. 

Three different representations for moves are used, depend
ing on the context in which a move is considered. One 
representation is simply the new board state that results from 
the move. A move may also be represented as a sequence of 
physical coordinates for the robot motion commands. A 
third representation is the list of partial moves (Le., a push or 
a sequence of jumps) needed to execute a move. 

The various representations for the board and move data 
structures are encapsulated within the Board Module, which 
provides synchronized access to the data structures, and 
translation routines between the various representations. 
The Board Module is implemented using the Uthread pack
age; a single thread of control is created to initialize the data 
structures, after which the module becomes a passive data 
structure shared by tasks from other programming models. 
The synchronization routines provided by the Board Module 
use the Psyche conventions for process management to 
implement semaphores that can be called by any model. 

3.3 Checkers Tasks 

Six different tasks cooperate to implement Checkers. Two 
manage the camera and robot devices; the remainder imple
ment vision, move recognition, checkers strategy, and mo
tion planning. 

Camera Manager-a Uthread module that creates and ini
tializes a Psyche realm for the VME memory used to control 
and access the MaxVideo hardware. This module registers 
the name and address of the realm with a name server. The 
Board Interpreter accesses this realm directly to retrieve an 
image from the MaxVideo framebuffer. 

Board lnterpreter-a Uniform System program that trans
fers an image from the Camera Manager (in VME memory) 
to local Butterfly memory, and produces a symbolic descrip
tion of the checkers in the image. The data transfer of 0.25 
Mbytes of image information over the VME bus takes 
28Oms. After transferring the image, the Board Interpreter 
segments the image into 64 board squares and analyzes each 
square in parallel. Each task attempts to recognize the color 
of its square, }Vhether the square contains a piece, and if so. 
of what color. (We cannot differentiate black pieces from 
the dark squares using grey levels, so we play on the light 
squares.) Each square is then labeled according to the color 
of the square and the color of the piece on that square (e.g., 
BlackSquare, WhiteSquare, RedPieceOnWhiteSquare, 
BlackPieceOn WhiteSquare, Unrecognized). Foreachsquare 
containing a piece, the centroid of the piece is calculated as 
the centroid of the relevant pixels. The center of each empty 
square is similarly calculated, first in pixel coordinates, and 
then in world coordinates using calibration information 
acquired at the start of execution. Once a complete interpre-



tation containing no unrecognized squares is calculated, the 
Board Interpreter accepts the interpretation. If the new 
interpretation differs from the previous interpretation, the 
result is reported to the Board Module. Using four proces
sors the Board Interpreter can interpret the image input a 
little more often than once every second. 

Move Recognizer-a Uthread module that compares two 
successive symbolic board interpretations produced by the 
Board Interpreter, and recursively decomposes the differ
ences into a sequence of legal partial moves (i.e., single 
jumps or moves) that transforms the fIrst interpretation into 
the second. 

Checkers Player-a checkers game-playing program writ
ten in Lynx. It takes as input the list of partial moves 
describing the human's move and produces as output the list 
of partial moves to be made in response. A single multi
threaded master process manages the parallel evaluation of 
possible moves; slave processes perform work on behalf of 
the master. The master explores the fIrst few levels of the 
game tree, while building the game tree data structure. At a 
fIxed depth in the tree (typically four or fIve levels), the 
master enters board positions into the slaves' work queue. 
When the results come back, the master updates the game 
tree, performs any necessary pruning (i.e., to throwaway 
moves that are now known to be sub-optimal), and produces 
new entries for the work queue. Both the quality and the 
speed of the game tree search are maximized when there is 
a slave process running on every available processor. 

Move Planner-a trajectory calculation and planning pro
gram written in Multilisp. This program transforms the 
information gained from vision into a form useful for plan
ning the robot's actions in the world. Two versions of this 
program have been written. The fIrst version sequentially 
executes partial moves after converting the symbolic infor
mation to robot coordinates, pushing captured pieces off the 
board using a diagonal path through non-playing (dark) 
squares. The second version constructs, in parallel, artifIcial 
potential fIelds that have peaks reflecting square occupan
cies and bias reflecting the goal location [Latombe 1990]. 
For individual moves, the goal location is a particular 
square; when removing pieces, the goal location is one of 
eight goal areas off the board. These potential fIelds are 
considered in parallel, using a local search procedure that 
yields a gradient-descent path along which a checker can be 
pushed. Since the algorithm allows pieces to be temporarily 
moved aside or swapped with the moving piece, it is a route
maker as well as a route-finder. The result is a set of plans, 
one of which is chosen based on some cost function, such as 
the total estimated time to complete the move, or the shortest 
distance to push the checker. 

Robot Controller-a Uthread module that controls a serial 
line connection between the Butterfly and the Puma robot. 
The Robot Controller sends movement commands in the 

VAL language (equivalent to MoveTo (X,Y,Z,SPEED)) 
and waits for notifIcation of successful completion. 

3.4 The Implementation of Moves 

The execution of the program is implemented as a series of 
moves, each of which requires the cooperation of several 
modules and programming models. The following is a 
description of the events that comprise a move, including the 
initialization phase that occurs at the start of execution. 
(Control flow among the modules is indicated by the lettered 
arrows in Figure I.) 

An initialization procedure creates and initializes all the 
major modules, and enables the VME interrupts. The Check
ers Player immediately invokes the Board Module to obtain 
the first human move in symbolic form. The Board Inter
preter begins to analyze images produced by the low-level 
vision hardware in an attempt to recognize the first move. 

The Board Interpreter continuously receives an image from 
the camera (a-b) and analyzes it. !fthe image is the same as 
the previous image, or if interpretation is unsuccessful, the 
Board Interpreter tries again. !f the board position has 
changed, the Board Interpreter invokes the Board Module 
(c) to update the board description, passing the symbolic and 
quantitative positions. 

When the Board Module receives a new board position from 
the Board Interpreter, it invokes the Move Recognizer (d) to 
parse the difference between new and old board positions 
into partial checkers moves. These partial moves are stored 
in the Board Module to be retrieved by the Checkers Player. 
After a successful return from the Move Recognizer, the 
original invocation from the Board Interpreter to the Board 
Module returns, which causes the Board Interpreter to then 
wait for a new image to analyze. 

When the invocation from the Checkers Player to the Board 
Module (e) discovers that a new valid list of partial moves 
has appeared in the Board Module, it returns the fIrst partial 
move to the checkers game tree evaluation program. If 
several partial moves are needed to complete the move, 
additional invocations from the Checkers Player to the 
Board Module (e) follow. If any of the partial moves 
represents an illegal move, the Checkers Player resets its 
internal state to the beginning of the move sequence, and 
flushes the current state information and list of partial moves 
in the Board Module. It also synchronizes with the Board 
Interpreter (e-c), which informs the human and produces a 
new board state. 

As long as the incoming list of partial moves is legal, the 
Checkers Player will wait for moves to appear in the Board 
Module. As a result, board interpretation can occur several 
times while the human makes a move, particularly if the 
move is a complex jump. The Checkers Player and Board 
Module interact (e) until a complete move is input. At this 

13 



point the checkers-playing program runs and generates its 
reply to the human's move in the form of a symbolic board 
position. This board position is passed to the Board Inter
preter, which generates a list of partial moves required to 
implement the differences between the updated board posi
tion and the current position. 

Once the Board Interpreter has produced a set of partial 
moves that define the robot's response, the Checkers Player 
invokes the Move Planner (I) with the partial move se
quence. Partial moves are passed to the Move Planner one at 
a time, and each one causes a sequence of low-level move 
commands and acknowledgements to flow back and forth 
between the Move Planner, the Robot Controller, and the 
robot (g-h). 

3.5 Inter-Model Communication 

The implementation of a single move illustrates two distinct 
styles of interactions among programming models: data 
structures shared between models and direct procedure calls 
(or invocations) between models. Both styles ofinteraction 
require synchronization between processes of different types. 

The Board Module must synchronize access to data struc
tures shared by processes from the Multilisp, Lynx, Uniform 
System, and Uthread environments. To access these data 
structures, processes call directly into the Board Module and 
execute the associated code. When a process must block 
within the Board Module, the code uses the pointerprovided 
by the kernel to find the correct block and unblock routines 
for the currently executing process type. A process that must 
block on a semaphore first places the address of its unblock 
routine in the semaphore data structure, and then calls its 
block routine. When another process wants to release a 
process that is blocked on a semaphore, it simply retrieves 
the address of the appropriate unblock routine from the 
semaphore data structure and calls the routine. If protection 
between process types is desired, the appropriate rights can 
be stored with the address of the routines, and protected 
invocations can be required. 

There are several advantages to using shared data abstrac
tions for communication between models. First. since we 
use a simple procedural interface to access shared data, there 
is a uniform interface between models, regardless of the 
number or type of programming models involved. Second, 
communication is efficient because processes can use shared 
memory to communicate directly. Third, synchronization 
across models is efficient due to the underlying mechanisms 
for implementing synchronization (a kernel pointer to user
level process management routines, and a procedural inter
face to routines that block and unblock a process). Finally, 
although the Board Module resembles a blackboard com
munication structure. shared data abstractions between 
models can be used to implement a wide variety of commu
nication mechanisms, including message channels and mail
boxes. 

14 

A different type of interaction occurs between the Checkers 
Player and the Move Planner, wherein a Lynx thread calls 
directly into the Multilisp environment of the Move Planner. 
Since the Move Planner already provides exactly the func
tionality required by the Checkers Player, an intervening 
data structure would simply add unnecessary generality and 
overhead (such as the cost of extra invocations). Instead, 
every entry point exported by the Move Planner refers to a 
stub routine designed for invocation by processes outside the 
Multi lisp world. This stub routine copies parameters into the 
Multilisp heap and dispatches a Multilisp future to execute 
the Lisp function associated with the invocation. After the 
future executes the correct Multilisp function, the Multilisp 
runtime calls the Lynx scheduler directly to unblock the 
Lynx thread. 

Direct calls between arbitrary environments are often com
plicated by the fact that the code in each environment makes 
many assumptions about the representation and scheduling 
of processes. Psyche facilitates direct calls between mod
ules by separating the code that depends on the semantics of 
processes from the code used as an external interface. As a 
result, an application like Checkers can be constructed from 
a collection of self-contained modules, without regard to the 
programming model used within each module. 

4_ Conclusions 

Several complete games have been played with Checkers. 
The robot plays a competent game; the quality and speed of 
its moves are a function of the number of processors devoted 
to strategy. More important than the quality of the play, 
however, is that Checkers demonstrates the advantages of 
decomposing animate vision systems by function, and inde
pendently selecting an appropriate parallel programming 
model for each function. By extending the well-known 
software engineering principle of modularity to include 
different parallel programming environments, we increase 
the expressive power, reusability, and efficiency of par aIle I 
programming systems and applications. These properties 
add significantly to our ability to build complex animate 
vision applications. 

The entire Checkers implementation required only two 
months of part-time effort by five people. Our use of mul
tiple parallel programming models was not an artificial 
constraint, but instead was a reasoned choice based on the 
tasks to be performed, the expertise of the people involved, 
the available software, and the available programming envi
ronments. 

We were able to resurrect a Lynx checkers-playing program 
(Scon) that had been implemented years ago as a stand-alone 
program. The Uniform System image-analysis library was 
plugged into Checkers after several years of disuse. The 
vision tasks (Das), MovePlanner(Karlsson), Board Module 
(Becker), and Move Recognizer (Quiroz), as well as neces-



sary Psyche support for the particular models we used 
(Marsh), were all developed in parallel by people that had 
expertise in a particular problem domain and the related 
software environment. Coding these modules was a part
time activity extending over several weeks. 

Integration was a full-time activity that took only a few days. 
During integration, we made (and subsequently changed) 
many decisions about which modules would communicate 
directly with each other, and which should use the shared 
data structures. Our experiences have convinced us of the 
importance of integration through shared data abstractions 
and customized communication protocols accessible from 
every parallel programming model. 

Many improvements are possible and some are ongoing. 
The board interpretation module is now being modified to 
use color instead of grey-scale input for more robust and 
discriminating classification. We have written a calibration 
routine that locates the board precisely in the image, and 
thereby automatically accounts for nonrepeatability in robot 
positioning from day to day. We would like to investigate 
hand-eye coordination and recovery from imperfectly per
formed moves. We would also like to use our newly 
acquired dextrous manipulator to make moves by picking up 
the pieces. 

We have not yet made extensive experiments to determine 
whether there are bottlenecks in the system, either in hard
ware or software. If software bottlenecks are found, we will 
have several options to improve performance. The alloca
tion of processors to tasks can be changed easily, as can the 
communication protocols between tasks. Our ability to build 
the stylized data abstractions and communication protocols 
used in Checkers suggests that we will have little difficulty 
experimenting with alternatives. It is precisely this type of 
flexibility that is required in animate vision systems, and our 
experiences suggest that multi-model programming in gen
eral, and the Psyche mechanisms in particular, can provide 
the needed flexibility. 

Acknowledgements 

This research was supported by the National Science Foun
dation under Grants IRI-892077I, CDA-8822724, CCR-
9005633, and IRI-8903582, and by ONRIDARP A contract 
NOOOI4-82-K-0193. Brian Marsh is supported by a DARPAI 
NASA Graduate Research Assistantship in Parallel Process
ing. The government has certain rights in this material. 

References 

BBN Advanced Computers Inc., "Chrysalis Programmers 
Manual Version 4.0," Cambridge, MA, February 1988. 

Ballard, D.H., "Animate vision," Artiftciallntelligence 48, 
I, 57-86, February 1991. 

Brown, C.M., RJ. Fowler, T.J. LeBlanc, M.L. Scott, M. 
Srinivas, L. Bukys, J. Costanzo, L.A. Crowl, P.C. 

Dibble, N.M. Gafter, B.D. Marsh, T.J. Olson, and L.A. 
Sanchis, "DARPA parallel architecture benchmark 
study," Butterfly Project Report 13, Computer Science 
Dept., U. Rochester, October 1986. 

Coombs, D.J., T.J. Olson, and C.M. Brown, "Gaze control 
and segmentation," Proc., AAAI-90 Workshop on Quali
tative Vision, Boston, MA, July 1990. 

Halstead, R., "Multilisp: A language for concurrent sym
bolic computation," ACM TOPLAS 7, 4, 501-538, Oc
tober 1985. 

Latombe, J.c. Robot Motion Planning. Boston, MA: 
Kluwer Academic Publishers, 1990. 

LeBlanc, T.J., M.L. Scott, and C.M. Brown, "Large-scale 
parallel programming: Experience with the BBN But
terfly parallel processor," Proc., 1st ACM Conf on 
Parallel Programming: Experience with Applications, 
Languages and Systems, 161-172, July 1988. 

Marsh, B.D., "Multi-model parallel programming," Ph.D. 
Thesis and forthcoming TR, Computer Science Dept., 
U. Rochester, August 1991. 

Marsh, B.D., M.L. Scott, T.J. LeBlanc, and E.P. Markatos, 
"First-class user-level threads," to appear, Proc., 13th 
Symp. on Operating Systems Principles, October 1991. 

Scott, M.L., "Language support for loosely-coupled distrib
uted programs," IEEE Trans. on Software Engineering 
SE-13, 1,88-103, January 1987. 

Scott, M.L., T.J. LeBlanc, and B.D. Marsh, "Design ration
ale for Psyche, a general-purpose multiprocessor oper
ating system," Proc., 1988 1111'1. Conf on Parallel 
Processing, Vol. ll-Software, 255-262, August 1988. 

Scott, M.L., T.J. LeBlanc, and B.D. Marsh, "Evolution of an 
operating system for large-scale shared-memory multi
processors," TR 309, Computer Science Dept., U. Roch
ester, March 1989. 

Scott, M.L, T.J. LeBlanc, and B.D. Marsh, "Multi-model 
paraUel programming in Psyche," Proc., 2nd ACM 
COllf on Principles and Practice of Parallel Program
ming, 70-78, March 1990. 

Thomas, RH. and A.W. Crowther, "The Uniform System: 
An approach to runtime support for large scale shared 
memory parallel processors," Proc., 19881111'/. Conf 
on Parallel Processing, Vol. ll-Software, 245-254, 
August 1988. 

Tilley, D.G., "Zebra for MaxVideo: An application of ob
ject-oriented microprogramming to register level de
vices,"TR315, Computer Science Dept., U. Rochester, 
November 1989. 

Waxman, A.M., W.L. Wong. R Goldenberg, S. Bayle, and 
A. Baloch, "Robotic eye-head-neck motions and visual 
navigation reflex learning using adaptive linear neu
rons," Neural Networks Supplemelll: Abstracts of 1st 
INNS Meeting, 1,365, 1988. 

15 


	cover
	1991_CSE-RR

