
Scalable Reader-Writer Synchronization
for Shared-Memory Multiprocessors

John M. Mellor-Crummey'
(johnmcGrice.edu)

Center for Research on Parallel Computation
Rice University, P.O. Box 1892

Houston, TX 77251-1892

Abstract

Reader-writer synchronization relaxes the constraints of mu
tual exclusion to permit more than one process to inspect a
shared object concurrently, as long as none of them changes
its value. On uniprocessors, mutual exclusion and reader
writer locks are typically designed to de-schedule blocked
processes; however, on shared-memory multiprocessors it
is often advantageous to have processes busy wait. Un
fortunately, implementations of busy-wait locks on shared
memory multiprocessors typically cause memory and net
work contention that degrades performance. Several re
searchers have shown how to implement scalable mutual
exclusion locks that exploit locality in the memory hier
archies of shared-memory multiprocessors to eliminate con
tention for memory and for the processor-memory intercon
nect. In this paper we present reader-writer locks that sim
ilarly exploit locality to achieve scalability, with variants
for reader preference, writer preference, and reader-writer
fairness. Performance results on a BBN TC2000 multipro
cessor demonstrate that our algorithms provide low latency
and excellent scalability.

1 Introduction

Busy-wait synchronization is fundamental to parallel pro
gramming on shared-memory multiprocessors. Busy waiting
is generally preferred over scheduler-based blocking when
scheduling overhead exceeds expected wait time, or when
processor resources are not needed for other tasks (so that
the lower wake-up latency of busy waiting need not be bal
anced against an opportunity cost).

Because busy-wait mechanisms are often used to pro
tect very small, frequently-executed critical sections, their
performance is a matter of paramount importance. Un
fortunately, typical implementations of busy waiting tend
to produce large amounts of contention for memory and

• Supported in part by the National Science Foundation under
Cooperative Agreement number CCR-8809615.

t Supported in part by the National Science Foundation under
Institutional Infrastructure grant CDA-8822724.

Michael L. Scott t
(scottGcs.rochester.edu)

Computer Science Department
University of Rochester

Rochester, NY 14627

communication bandwidth, introducing performance bottle
necks that become markedly more pronounced in larger ma
chines and applications. When many processors busy-wait
on a single synchronization variable, they create a hot spot
that gets a disproportionate share of the processor-memory
bandwidth. Several studies [1, 4, 10] have identified synchro
nization hot spots as a major obstacle to high performance
on machines with both bus-based and multi-stage intercon
nection networks.

Recent papers, ours among them [9], have addressed the
construction of scalable, contention-free busy-wait locks for
mutual exclusion. These locks employ atomic fetch...and_tP
instructions1 to construct queues of waiting processors,
each of which spins only on locally-accessible flag variables,
thereby inducing no contention. In the locks of Anderson [2]
and Graunke and Thakkar [5], which achieve local spinning
only on cache-coherent machines, each blocking processor
chooses a unique location on which to spin, and this loca
tion becomes resident in the processor's cache. Our MCS
mutual exclusion lock (algorithm 1) exhibits the dual ad
vantages of (1) spinning on locally-accessible locations even
on distributed shared-memory multiprocessors without co
herent caches, and (2) requiring only O(P + N) space for N
locks and P processors, rather than O(N P).

Mutual exclusion is a sufficient mechanism for most forms
of synchronization, but it introduces serialization that is
not always necessary. Reader-writer synchronization, as de
scribed by Courtois, Heymans, and Parnas [3], relaxes the
constraints of mutual exclusion to permit more than one
process to inspect a shared data structure simultaneously,
so long as none of them modifies it. Operations are sepa
rated into two classes: writes, which require exclusive access
while modifying the data structure, and reads, which can be
concurrent with one another (though not with writes) be
cause they make no observable changes.

As recognized by Courtois, Heymans, and Parnas, dif
ferent fairness properties are appropriate for a reader-writer
lock depending on the context in which it is used. A "reader
preference" lock minimizes the delay for readers and max
imizes total throughput by allowing a reading process to
join a group of current readers even if a writer is waiting.
A "writer preference" lock ensures that updates are seen as
soon as possible by requiring readers to wait for any current
or waiting writer, even if other processes are currently read
ing. Both of these options permit indefinite postponement

1 A fetch..and_'l> operation [7] reads, modifies, and writes a
memory location atomically. Several conunon fetch..and_'l> oper
ations are defined in appendix A.

mls
PPoPP '91

type qnode = record
next : -qnode
locked : Boolean

type lock = -qnode

II ptr to successor in queue
II busy-waiting necessary
II ptr to tail of queue

II I points to a qnode record allocated
II Cin an enclosing scope) in shared memory
II locally-accessible to the invoking processor

procedure acquire_IockCL : -lock; I : -qnode)
var pred : -qnode
I->next := nil II initially, no successor
pred := fetch_and_storeCL, I) II queue for lock
if pred != nil II lock was not free

I->locked := true II prepare to spin
pred->next := I II link behind predecessor
repeat while I->locked II busy-wait for lock

procedure release_lockCL : -lock; I : -qnode)
if I->next = nil II no known successor

if compare_and_swapCL, I, nil)
return II no successor, lock free

repeat while I->next nil II wait for succ.
I->next->locked := false II pass lock

Algorithm 1: The MCS queue-based spin lock. An al
ternative version of release~ock can be written without
compare...and...swap, but it sacrifices FIFO ordering under
load.

and even starvation of non-preferred processes when compe
tition for the lock is high. Though not explicitly recognized
by Courtois, Heymans, and Parnas, it is also possible to
construct a reader-writer lock (called a "fair" lock here) in
which readers wait for any earlier writer and writers wait
for any earlier process.

The reader and writer preference locks presented by Cour
tois, Heymans, and Parnas use semaphores for scheduler
based blocking. Most multiprocessor implementations of
semaphores, in turn, depend on a busy-wait mutual exclu
sion lock. As noted above, there are circumstances in which
scheduler-based blocking is inappropriate: specifically when
the expected wait time is very short or when the proces
sor has nothing else to do. Moreover on a multiprocessor
when competition is high, even the serialization implied by
a mutually-exclusive implementation of semaphores may it
self be a performance problem. These observations suggest
the need for reader-writer spin locks. Unfortunately, naive
implementations of such locks are just as prone to contention
as naive implementations of traditional spin locks.

Our contribution in this paper is to demonstrate that the
local-only spinning property of our mutual exclusion spin
lock can be obtained as well for reader-writer locks. All
that our algorithms require in the way of hardware support
is a simple set of fetch...and_tP operations and a memory
hierarchy in which each processor is able to read some por
tion of shared memory without using the interconnection
network.

Section 2 discusses simple approaches to reader-writer
spin locks, including a reader preference lock in which pro
cessors attempt to induce state changes in a central flag
word, and a fair lock in which they wait for the appearance
of particular values in a pair of central counters. Section 3
presents three new algorithms for reader-writer spin locks
without embedded mutual exclusion, and with local-only
spinning. One of these latter locks is fair; the others imple
ment reader and writer preference. In section 4 we present
performance results for our locks on the BBN TC2000, a
distributed shared-memory multiprocessor with a rich set of
fetch...and_tP instructions. Our results indicate that reader-

writer spin locks with local-only spinning can provide excel
lent performance in both the presence and absence of heavy
competition, with no fear of contention on very large ma
chines. We summarize our conclusions in section 5.

2 Simple Reader-Writer Spin Locks

In this section we present simple, centralized algorithms
for busy-wait reader-writer locks with two different fair
ness conditions. The algorithms for these protocols are
constructed using atomic operations commonly available on
shared-memory multiprocessors. They provide a naive base
against which to compare local-spinning reader-writer locks,
much as a traditional test...and...set lock provides a base
against which to compare local-spinning mutual exclusion
locks. Our pseudo-code notation is meant to be more-or-Iess
self explanatory. Line breaks terminate statements (except
in obvious cases of run-on), and indentation indicates nest
ing in control constructs. Definitions of atomic operations
appear in appendix A.

2.1 A Reader Preference Lock

Algorithm 2 implements a simple reader preference spin
lock. It uses an unsigned integer to represent the state of
the lock. The lowest bit indicates whether a writer is ac
tive; the upper bits contain a count of active or interested
readers. When a reader arrives, it increments the reader
count (atomically) and waits until there are no active writ
ers. When a writer arrives, it attempts to acquire the lock
by using compare...and...swap. (Compare...and...swap tests if the
value in a memory location is equal to a given 'old' value
and sets a Boolean condition code; if the two values are
equal, a specified 'new' value is written into the memory
location.) The writer succeeds, and proceeds, only when all
bits were clear, indicating that no writers were active and
that no readers were active or interested.

lock = unsigned integer
layout of lock
31 o

type
II
II
II
II
II

+-------------------------+----------------+
I interested reader count I active writer? I
+-------------------------+----------------+

const WAFLAG = Ox1 II writer active flag
const RC_INCR = Ox2 II to adjust reader count

procedure start_writeCL : -lock)
repeat until compare_and_swapCL, 0, WAFLAG)

procedure start_readCL : -lock)
atomic_addCL, RC_INCR)
repeat until CL- a WAFLAG) 0

procedure end_writeCL : -lock)
atomic_addCL, -WAFLAG)

procedure end_readCL : -lock)
atomic_addCL, -RC_INCR)

Algorithm 2: A simple reader preference lock.

Reader preference makes sense when competition for a
lock is bursty, but not continuous. It allows as many pro
cessors as possible to proceed in parallel at all times, thereby
maximizing throughput. If heavy, continuous competition
for a reader-writer lock is expected, and it is not possible
to redesign the application program to avoid this situation,
then a fair reader-writer lock must be used to eliminate
the possibility of starvation of one class of operations. We
present such a lock in the following section.

2.2 A Fair Lock

Algorithm 3 implements fair, simple, reader-writer synchro
nization by generalizing the concept of a ticket lock [9] to
the reader-writer case. Like Lamport's Bakery lock [8],
a mutual-exclusion ticket lock is based on the algorithm
employed at service counters to order arriving customers.
Each customer obtains a number larger than that of previ
ous arriving customers, and waits until no waiting customer
has a lower number. The ticket lock generates numbers
with fetclLand-add operations, copes with arithmetic wrap
around, and compares tickets against a central now....serving
counter. In our simple, fair reader-writer lock, separate
counters track the numbers of read and write requests.

We use fetch..clear_then-add and clear_then-add oper
ations to cope with arithmetic overflow. Applied to the
value of a memory location, both operations first clear
the bits specified by a mask word, then add to the re
sults the value of an addend. The sum replaces the old
value in the memory location. Fetch_clear_then-add re
turns the value the memory location had prior to the op
eration; clear_then-add does not. Ordinary fetch-and-add
operations can be used to build a fair reader-writer lock,
but the code is slightly more complicated.

We represent the state of our lock with a pair of 32-bit un
signed integers. Each integer represents a pair of counters:
the upper 16 bits count readers; the lower 16 bits count writ
ers. The request counters indicate how many readers and
writers have requested the lock. The completion counters
indicate how many have already acquired and released the
lock. Before each increment of one of the 16 bit counts, the
top bit is cleared to prevent it from overflowing its allotted
16 bits. Tickets are strictly ordered, beginning with the val
ues in the completion counters, proceeding upward to 215

,

and cycling back to 1. With fewer than 215 processes, all
outstanding tickets are guaranteed to be distinct. Readers
spin until all earlier write requests have completed. Writers
spin until all earlier read and write requests have completed.

type counter = unsigned integer
II layout of counter
II 31 16 15 0
II +------------------------------+
II I reader count I writer count I
II +------------------------------+

const RC_INCR = Ox10000 II to adjust reader count
const WC_INCR = Ox1 II to adjust writer count
const W_MASK = Oxffff II to extract writer count

II mask bit for top of each count
const WC_TOPMSK = Ox8000
const RC_TOPMSK = Ox80000000

type lock = record
requests : unsigned integer := 0
completions : unsigned integer := 0

procedure start_writeCL : -lock)
unsigned integer prey_processes :=

fetch_clear_then_addCAL->requests,
WC_TOPMSK, WC_INCR)

repeat until completions = prey_processes

procedure start_readCL : -lock)
unsigned integer prey_writers :=

fetch_clear_then_addCAL->requests, RC_TOPMSK,
RC_INCR) A W_MASK

repeat until Ccompletions A W_MASK) = prey_writers

procedure end_writeCL: -lock)
clear_then_addCAL->completions, WC_TOPMSK, WC_INCR)

procedure end_readCL : -lock)
clear_then_addCAL->completions, RC_TOPMSK, RC_INCR)

Algorithm 3: A simple fair reader-writer lock.

The principal drawback of algorithms 2 and 3 is that they
spin on shared locations. References generated by a large
number of competing processors will lead to a hot spot that
can severely degrade performance. Interference from wait
ing processors increases the time required to release the lock
when the current holder is done, and also degrades the per
formance of any process that needs to make use of the mem
ory bank in which the lock resides, or of conflicting parts of
the interconnection network. In the next section, we present
more complex reader-writer locks that eliminate this prob
lem via local-only spinning.

3 Locks with Local-Only Spinning

In order to implement reader-writer spin locks without
inducing contention for memory or communication band
width, we need to devise algorithms that spin on local vari
ables. One obvious approach is to use the MCS spin lock
(algorithm 1) to protect critical sections that manipulate a
second layer of reader-writer queues. There are two princi
pal drawbacks to this approach. First, solutions based on
mutual exclusion introduce non-trivial amounts of serializa
tion for concurrent readers. Second, even in the absence of
lock contention the two-level structure of the resulting locks
leads to code paths that are unnecessarily long.

A more attractive approach is to design single-level locks
that implement reader-writer control with lower latency and
less serialization. We present three versions here: one that
provides fair access to both readers and writers, one that
grants preferential access to readers, and one that grants
preferential access to writers. All three avoid the memory
and interconnection network contention common to central
ized busy waiting strategies by spinning only on locally ac
cessible per-processor variables, allocated in a scope that
encloses their use.

3.1 A Fair Lock

Our fair reader-writer lock (algorithm 4) requires atomic
fetch-and....store and compare-and....swap instructions. A
read request is granted when all previous write requests have
completed. A write request is granted when all previous
read and write requests have completed.

As in the M CS spin lock, we use a linked list to keep track
of requesting processors. In this case, however, we allow a
requestor to read and write fields in the link record of its
predecessor (if any). To ensure that the record is still valid
(and has not been deallocated or reused), we require that

a processor access its predecessor's record before initializing
the record's next pointer. At the same time, we force every
processor that has a successor to wait for its next pointer to
become non-nil, even if the pointer will never be used. As
in the MCS lock, the existence of a successor is determined
by examining L->tail.

A reader can begin reading if its predecessor is a reader
that is already active, but it must first unblock its successor
(if any) if that successor is a waiting reader. To ensure
that a reader is never left blocked while its predecessor is
reading, each reader uses compare-and....swap to atomically
test if its predecessor is an active reader, and if not, notify
its predecessor that it has a waiting reader as a successor.

Similarly, a writer can proceed if its predecessor is done
and there are no active readers. A writer whose predecessor
is a writer can proceed as soon as its predecessor is done,
as in the MCS lock. A writer whose predecessor is a reader
must go through an additional protocol using a count of
active readers, since some readers that started earlier may
still be active. When the last reader of a group finishes
(reader_count = 0), it must resume the writer (if any) next
in line for access. This may require a reader to resume a
writer that is not its direct successor. When a writer is next
in line for access, we write its name in a global location. We
use fetch-and....store to read and erase this location atomi
cally, ensuring that a writer proceeds on its own if and only
if no reader is going to try to resume it. To make sure that
reader_count never reaches zero prematurely, we increment
it before resuming a blocked reader, and before updating the
next pointer of a reader whose reading successor proceeds
on its own.

type qnode = record
class : Creading, writing)
next : -qnode
state : record

blocked: Boolean II need to spin
successor_class: (none, reader, writer)

type lock = record
tail : -qnode := nil
reader_count : integer := 0
next_writer: -qnode := nil

II I points to a qnode record allocated
II Cin an enclosing scope) in shared memory
II locally-accessible to the invoking processor

procedure start_writeCL : -lock; I : -qnode)
withI-,L-

class := writing; next := nil
state := [true, none]
pred : -qnode := fetch_and_storeCAtail, I)
if pred = nil

next_writer := I
if reader_count = 0 and

fetch_and_storeCAnext_writer,nil)=I
II no reader who will resume me
blocked := false

else
II must update successor_class before
II updat ing next
pred->successor_class := writer
pred->next := I

repeat while blocked

procedure end_writeCL: -lock; I : -qnode)
with 1-, L-

if next != nil or not
compare_and_swapCAtail, I, nil)

II wait until succ inspects my state
repeat while next = nil
if next->class = reading

atomic_incrementCAreader_count)
next->blocked := false

procedure start_readCL : -lock; I -qnode)
with 1-, L-

class := reading; next := nil
state := [true, none]
pred : -qnode := fetch_and_storeCAtail, I)
if pred = nil

atomic_incrementCAreader_count)
blocked := false II for successor

else
if pred->class = writing or

compare_and_swapCApred->state,

else

[true, none], [true, reader])
II pred is a writer, or a waiting
II reader. pred will increment
II reader_count and release me
pred->next := I
repeat while blocked

II increment reader_count and go
atomic_incrementCAreader_count)
pred->next := I
blocked := false

if successor_class = reader
repeat while next = nil
atomic_incrementCAreader_count)
next->blocked := false

procedure end_readCL : -lock; I : -qnode)
with 1-, L-

if next != nil or not
compare_and_swapCAtail, I, nil)

II wait until succ inspects my state
repeat while next = nil
if successor_class = writer

next_writer := next
if fetch_and_decrementCAreader_count) = 1

II I'm last reader, wake writer if any
w : -qnode :=

fetch_and_storeCAnext_writer, nil)
if w != nil

w->blocked := false

Algorithm 4: A fair reader-writer lock with local-only spin
ning.

3.2 A Reader Preference Lock

In our reader preference lock (algorithm 5) we sepa
rate a list of waiting readers from the queue of wait
ing writers. We also employ a flag word that allows
processes to discover and, if appropriate, modify the
state of the lock atomically. The queues are manipu
lated with fetch-and....store and compare-and....swap instruc
tions; the flag word is manipulated with fetch-and_or,
fetch-and-and, and fetch-and_add instructions. It contains
one bit to indicate that one or more writers are waiting (but
that none is currently active), another bit to indicate that a
writer is currently active, and a count of the number of read
ers that are either waiting or active. The active and waiting
bits for writers are mutually exclusive. A reader cannot pro
ceed if the active writer bit is set. A writer cannot proceed
if the reader count is non-zero.

scott
Highlight

scott
Sticky Note
This code is incorrect. Keir Fraser provided the following fix in January 2003:

 if fetch_and_decrement(&reader_count) = 1
 and (w := next_writer) != nil
 and reader_count = 0
 and compare_and_store(&next_writer, w, nil)
 // I'm the last active reader and there exists a waiting
 // writer and no readers *after* identifying the writer
 w->blocked := false

To avoid race conditions between modification of the flag
word and manipulation of the reader list, each reader must
double-check the flag word after adding itself to the list.
Writers insert themselves in their queue before inspecting
the flag word. A process can (and must!) unblock appropri
ate processes (possibly including itself) when it causes the
following transitions in rdr_cnt-<md...flags:

reader count = 0 and writer interested
-+ writer active;

(reader count> 0 and writer active) or
(reader count = 0 and writer not active)

-+ reader count> 0 and writer not active.

type qnode = record
next : -qnode
blocked : Boolean

type RPQlock = record
reader_head : -qnode := nil
writer_tail : -qnode := nil
writer_head : -qnode := nil
rdr_cnt_and_flags : unsigned integer := 0

II layout of rdr_cnt_and_flags:
II 31 2 1 0
II +-----------------+-------------+-----------------+ II I interested rdrs I active wtr? I interested wtr? I
II +-----------------+-------------+-----------------+
const WIFLAG = Ox1 II writer interested flag
const WAF LAG = Ox2 II writer active flag
const RC_INCR = Ox4 II to adjust reader count

II I points to a qnode record allocated
II Cin an enclosing scope) in shared memory
II locally-accessible to the invoking processor

procedure start_write CL : -RPQlock, I : -qnode)
withI-,L-

blocked := true
next := nil
pred: -qnode := fetch_and_storeCAwriter_tail,I)
if pred = nil

writer_head := I
if fetch_and_orCArdr_cnt_and_flag, WIFLAG)

= 0
if compare_and_swapCArdr_cnt_and_flag,

WIFLAG, WAFLAG)
return

II else readers will wake up the writer
else

pred->next := I
repeat while blocked

procedure end_writeCL: -RPQlock, I : -qnode)
withI-,L

writer_head := nil
II clear wtr flag and test for waiting rdrs
if fetch_and_andCArdr_cnt_and_flag, -WAFLAG)

!= 0
II waiting readers exist
head : -qnode :=

fetch_and_store CAreader_head , nil)
if head ! = nil

head->blocked := false
II testing next is strictly an optimization
if next != nil or not

compare_and_swapCAwriter_tail, I, nil)
repeat while next = nil II resolve succ
writer_head := next
if fetch_and_orCArdr_cnt_and_flag,WIFLAG)

= 0
if compare_and_swapCArdr_cnt_and_flag,

WIFLAG, WAFLAG)
writer_head->blocked := false

II else readers will wake up the writer

procedure start_readCL : -RPQlock, I : -qnode)
with 1-, L-

II incr reader count, test if writer active
if fetch_and_addCArdr_cnt_and_flag, RC_INCR) A

WAFLAG
blocked := true
next := fetch_and_storeCAreader_head, I)
if Crdr_cnt_and_flag A WAFLAG) = 0

II writer no longer active
II wake any waiting readers
head : -qnode :=

fetch_and_storeCAreader_head, nil)
if head != nil

head->blocked := false
repeat while blocked II spin
if next != nil

next->blocked := false

procedure end_readCL : -RPQlock, I : -qnode)
with 1-, L-

II if I am the last reader, resume the first
II waiting writer Cif any)
if fetch_and_addCArdr_cnt_and_flag, -RC_INCR)

CRC_INCR + WIFLAG)
if compare_and_swapCArdr_cnt_and_flag,

WIFLAG, WAFLAG)
writer_head->blocked := false

Algorithm 5: A reader preference lock with local-only spin
ning.

3.3 A Writer Preference Lock

Like the reader preference lock, our writer preference lock
(algorithm 6) separates a list of waiting readers from the
queue of waiting writers, and uses a combination flag and
count word to keep track of the state of the lock. Where the
reader preference lock counted interested readers and kept
flags for active and interested writers, the writer preference
lock counts active readers, and keeps flags for interested
readers and active or interested writers. This change reflects
the fact that readers in a writer preference lock cannot in
discriminately join a current reading session, but must wait
for any earlier-arriving writers. To avoid a timing window
in start...read, active and interested writers are indicated
by a pair of flags, the first of which is always set by the first
arriving writer, and the second of which is set only when no
reader is in the process of joining a current reading session.
A reader cannot proceed if either of the writer flags are set
when it sets the reader flag. A writer cannot proceed if the
reader count is non-zero or if a reader has set the reader flag
when no writers were active or waiting.

The fetch-<md_or in start...read allows a reader to simul
taneously indicate interest in the lock and check for active
writers. If there are no active writers, the reader is con
sidered to have begun a reading session; it can safely use
a fetch-<md-add to clear the reader interest bit and incre
ment the active reader count. A writer that arrives after
the reader's first atomic operation will enqueue itself and
wait, even though there are no writers in line ahead of it. A
reader that joins a current reading session sets the second
writer flag on behalf of any writer that may have attempted
to acquire the lock while the reader was joining the session.

A reader that finds no other readers waiting (reader.head
= nil) uses fetch-<md....store to obtain a pointer to the most
recent arriving reader, whom it unblocks. In most cases it
will unblock itself, but if two readers arrive at approximately
the same time this need not be the case. A reader that is
not the first to arrive, or that discovers active or interested
writers, always waits to be resumed.

type qnode : record
next : -qnode
blocked : Boolean

type WPQlock = record
reader_head : -qnode := nil
writer_tail : -qnode := nil
writer_head : -qnode := nil
rdr_cnt_and_flags : unsigned integer := 0

II layout of rdr_cnt_and_flags:
II 31 3 2 0
II +-------------+-----------+---------------+------+
II I active rdrs lint. rdr? I wtr A no rdr? I wtr? I
II +-------------+-----------+---------------+------+
const WFLAG1 = Ox1
const WFLAG2 = Ox2
const RFLAG = Ox4
const RC_INCR = Ox8

II writer interested or active
II writer, no entering rdr
II rdr into but not active
II to adjust reader count

II I points to a qnode record allocated
II Cin an enclosing scope) in shared memory
II locally-accessible to the invoking processor

procedure start_writeCL : -WPQlock, I : -qnode)
with I-, L-

blocked := true
next := nil
pred : -qnode :=

fetch_and_storeCAwriter_tail, I)
if pred = nil

set_next_writerCL, I)
else

pred->next := I
repeat while blocked

procedure set_next_writerCL : -WPQlock, W : -qnode)
with L-

writer_head := W
if not Cfetch_and_orCArdr_cnt_and_flags,WFLAG1)

A RFLAG)
II no reader in timing window
if not Cfetch_and_orCArdr_cnt_and_flags,

WFLAG2) >= RC_INCR)
II no readers are active
W->blocked := false

procedure start_readCL : -WPQlock, I : -qnode)
with I-, L-

blocked := true
next := fetch_and_storeCAreader_head, I)
if next = nil

II first arriving reader in my group
II set rdr interest flag, test writer flag
if not Cfetch_and_orCArdr_cnt_and_flags,

RFLAG) A CWFLAG1 + WFLAG2»
II no active or interested writers
unblock_readersCL)

repeat while blocked
if next != nil

atomic_addCArdr_cnt_and_flags, RC_INCR)
next->blocked := false II wake successor

procedure unblock_readersCL : -WPQlock)
with L-

II clear rdr interest flag, increment rdr count
atomic_addCArdr_cnt_and_flags, RC_INCR - RFLAG)
II indicate clear of window
if Crdr_cnt_and_flags A WFLAG1) and not

Crdr_cnt_and_flags A WFLAG2)
atomic_orCArdr_cnt_and_flags, WFLAG2)

II unblock self and any other waiting rdrs
head : -qnode :=

fetch_and_storeCAreader_head, nil)
head->blocked := false

procedure end_writeCL : -WPQlock, I -qnode)
with I-, L-

if next ! = nil
next->blocked := false

else
II clear wtr flag, test rdr interest flag
if fetch_and_andCArdr_cnt_and_flags,

-CWFLAG1 + WFLAG2» A RFLAG
unblock_readersCL)

if compare_and_swapCAwriter_tail, I, nil)
return

else
repeat while next = nil
set_next_writerCL, next)

procedure end_readCL : -WPQlock, I : -qnode)
with I-, L-

if Cfetch_and_addCArdr_cnt_and_flags, -RC_INCR)
A -RFLAG) = CRC_INCR + WFLAG1 + WFLAG2)

II last active rdr must wake waiting writer
writer_head->blocked := false

II if only WFLAG1 is set and not WFLAG2, then
II the writer that set it will take care of
II itself

Algorithm 6: A writer preference lock with local-only spin
ning.

4 Empirical Performance Results

We have measured the performance of C language ver
sions of our reader-writer algorithms on a BBN Butter
fly TC2000, a distributed shared-memory multiprocessor
based on the MC88100 microprocessor. Atomic read, write,
and fetch-<md...store instructions are triggered directly by
the instruction set of the processor; other atomic operations
are triggered by kernel calls, which use a privileged archi
tectural feature to provide extended atomicity.

The implemented versions of the local-spin reader pref
erence and writer preference algorithms differ slightly from
those presented in section 3. Adjustments to the algorithms
were made to improve the single processor latency, gener
ally by means of an initial compare-<md...swap that bypasses
large parts of the protocol when it determines that no in
terfering operations are in progress. Although these adjust
ments improve the single processor latency, they add to the
cost in the case that multiple processes are competing for
the lock. Anyone wishing to reproduce our results or ex
tend our work to other machines can obtain copies of our
source code via anonymous ftp from titan.rice.edu (fpub
lic/ scalable_synch /TC2000 / read_write).

Our results were obtained by embedding a lock acquisi
tion/release pair inside a loop and averaging over 105 oper
ations. Table 1 reports the single processor latency for each
of the lock operations in the absence of competition. Re
ported values are slightly pessimistic in that the overhead
of the test loop was not factored out of the timings.

Figure 1 compares the performance of the simple reader
writer protocols with centralized busy waiting versus their
local-spin counterparts. Each data point (P, T) represents
the average time T for an individual processor to acquire
and release the lock once, with P processors competing for
access. Each processor performs a mixture of read and write
requests. We used a pseudo-random number generator (off
line) to generate request sequences in which reads outnum
ber writes 3-1. As expected, the queue based locks show
excellent performance. The single processor latencies of the
local-spin protocols are comparable to those of the far sim-

start_read! start_write/
Lock type end read end write

simple reader pref. 22.3 1),8 20.2 J1.S
simple fair 22.3 J1.S 22.3 J1.S
local-spin fair 44.5 J1.S 29.6 J1.S
local-spin reader pref. 20.3 J1.S 22.5 J1.S
local-spin writer pref. 20.2 J1.S 36.6 J1.S

Table 1: Single processor latencies for each pair of lock op
erations.

300-.---------------------------,

250 -

200 -

Time
(J1.s) 150-

6,- .~ .. -6 .. -6,

E1. -E!' -1:I--E1

~

simple fair
simple reader pref
local-spin fair
local-spin reader pref
local-spin writer pref

~A. ~e:A6.·AA
. " ~

O~---._I--.-I--.-I--,-I--,-I--,-I~

o 5 10 15 20 25 30 35

Processors

Figure 1: Timing results for reader-writer spin locks on the
BBN TC2000.

pIer centralized protocols. As the number of processors com
peting for a lock increases, the advantage of the local-spin
protocols becomes more apparent. In the simple central
ized protocols, waiting processors continuously poll the lock
status generating intense memory and network contention
that slows the progress of active processors. In the local
spin protocols, waiting processors generate no network traf
fic, keeping them out of the way of active processors. Figure
2 shows an expanded view of the performance of the local
spin algorithms. Initially, the average time for an acquire
and release pair drops as more processors compete for the
lock. This effect results from overlapped execution of por
tions of the entry and exit protocols and from increases in
the average number of simultaneous readers (particularly in
the writer preference lock).

5 Discussion and Conclusions

We have demonstrated in this paper that simple
fetch-<md_tP operations, in conjunction with local access to
shared memory, can lead to reader-writer spin locks in which
memory and interconnect contention due to busy waiting is
non-existent. Our queue-based algorithms provide excellent
single-processor latency in the absence of competition, and
work well on distributed shared memory multiprocessors.
Together with similar findings for mutual exclusion spin

Time
(J1.s)

50-.--------~--~~~--------_,
local-spin fair

40

30

20

10

local-spin reader pref
local-spin writer pref

O-+---.---.---.---,---,---,--~

o 5 10 15 20 25 30 35

Processors

Figure 2: Expanded timing results for scalable reader-writer
spin locks on the BBN TC2000.

locks and barriers [9], this result indicates that contention
due to busy-wait synchronization is much less a problem
than has generally been thought.

Our algorithms require two forms of hardware support.
First, they require a modest set of fetch-<md_tP operations.
(Our fair queue-based lock requires compare-<md...swap and
fetch...and...store. Our queue-based reader and writer pref
erence locks also require fetch-<md_or, fetch...and...and, and
fetch...and...add.) Second, they require that for every pro
cessor there be some region of shared memory that can be
inspected locally, without going through the interconnec
tion network, but which nonetheless can be modified re
motely. This requirement is satisfied by all cache-coherent
architectures, as well as by architectures in which shared
memory is distributed. Other things being equal, the ef
ficiency and scalability of our algorithms suggest that ma
chines be constructed with these attributes-that they not
skimp on the atomic operations, nor adopt "dance-hall" ar
chitectures in which all processors access shared locations
through a common global interconnect. Our experience
with fetch-<md_tP operations, particularly fetch...and...store
and compare...and...swap, is consistent with the results of Her
lihy [6] and of Kruskal, Rudolph, and Snir [7], who have
found them valuable in the construction of a wide range of
concurrent data structures.

Reader or writer preference locks are likely to be the
mechanism of choice in many applications. While more
complex than mutual exclusion locks, our algorithms have
similar latency in the single-processor case, and admit more
parallelism under load. Reader preference locks maximize
throughput; writer preference locks prevent readers from
seeing outdated information. Fair locks ensure that nei
ther readers nor writers are locked out when competition
remains high for an extended period of time, though an ap
plication in which this situation can arise is probably poorly
designed.

References

[1] A. Agarwal and M. Cherian. Adaptive backoff synchro
nization techniques. In Proceedings of the International
Symposium on Computer Architecture, pages 396-406,
May 1989.

[2] T. E. Anderson. The performance of spin lock alterna
tives for shared-memory multiprocessors. IEEE Trans
actions on Parallel and Distributed Systems, 1(1):6-16,
Jan. 1990.

[3] P. J. Courtois, F. Heymans, and D. L. Parnas. Con
current control with 'readers' and 'writers'. Communi
cations of the ACM, 14(10):667-668, Oct. 1971.

[4] H. Davis and J. Hennessy. Characterizing the syn
chronization behavior of parallel programs. In Proceed
ings of the ACM Conference on Parallel Programming:
Experience with Applications, Languages and Systems,
pages 198-211, July 1988.

[5] G. Graunke and S. Thakkar. Synchronization algo
rithms for shared-memory multiprocessors. Computer,
23(6):60-69, June 1990.

[6] M. Herlihy. A methodology for implementing highly
concurrent data structures. In Proceedings of the Sec
ond ACM Symposium on Principles and Practice of
Parallel Programming, pages 197-206, Mar. 1990.

[7] C. P. Kruskal, 1. Rudolph, and M. Snir. Efficient syn
chronization on multiprocessors with shared memory.
In Proceedings of the Fifth ACM Symposium on Prin
ciples of Distributed Computing, pages 218-228, 1986.

[8] 1. Lamport. A new solution of Dijkstra's concurrent
programming problem. Communications of the ACM,
17(8):453-455, Aug. 1974.

[9] J. M. Mellor-Crummey and M. 1. Scott. Algorithms for
scalable synchronization on shared-memory multipro
cessors. ACM Transactions on Computer Systems, to
appear. Earlier version published as TR 342, Computer
Science Department, University of Rochester, April
1990, and COMP TR90-114, Department of Computer
Science, Rice University, May 1990.

[10] G. F. Pfister and V. A. Norton. "Hot spot" contention
and combining in multistage interconnection networks.
IEEE Transactions on Computers, C-34(10):943-948,
Oct. 1985.

A Definitions of Atomic Operations

Our algorithms rely on the atomicity of reads and writes
of 8, 16 and 32 bit quantities as well as the following atomic
operations:

atomic_add(p: ·word, i: word): void
p. : = p. + i

atomic_decrement(p: ·word): void
p. : = p. - 1

atomic_increment(p: ·word): void
p. : = p. + 1

clear_then_add(p: ·word; m, i: word): void
p. := (p. & -m) + i

compare_and_swap(p: ·word; 0, n: word): boolean
cc: boolean := (p. = 0)
if cc

p. := n
return cc

fetch_and_add(p: ·word, i: word): word
temp: word := p.
p. : = p. + i
return temp

fetch_and_and(p: ·word, i: word): word
temp: word := p.
p. : = p. & i
return temp

fetch_and_decrement(p: ·word): word
temp: word := p.
p. : = p. - 1
return temp

fetch_and_or(p: ·word, i: word): word
temp: word := p.
p. : = p. I i
return temp

fetch_and_store(p: ·word, i: word): word
temp: word := p.
p. := i
return temp

fetch_clear_then_add(p: ·word; m, i: word): word
temp: word := p.
p. := (p. & -m) + i
return temp

The atomic operations described above execute indivisibly
with respect to each other and with respect to reads and
writes. Our algorithms use the simplest operation that
provides the necessary functionality. For example, we use
atomic...add rather than fetch...and...add whenever the return
value is not needed. With the exception of compare...and_
swap, the functionality of fetch_clear-theILadd subsumes
that of all of the other atomic operations listed.

