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Checkers, a complex 
real-time application, 

demonstrates the 
advantages of 

decomposing animate 
vision systems by 

function and 
independently selecting 

an appropriate ' 

parallel-programming 
model for each 

function. 

v ision can be viewed as a passive, observational activity, or as one intimate 
ly related to action (for example, manipulation, navigation). In passive 
vision systems the camera providing the image input is immobile. In 

active vision systems observer-controlled input sensors are used.' Active vision 
results in much simpler and more robust vision algorithms, as outlined in Table 1. 

Another dimension for classifying computer vision approaches is reconstruc- 
tive versus animate. In the reconstructionist or general-purpose paradigm, the 
vision task is to reconstruct physical scene parameters from image input, to 
segment the image into meaningful parts, and ultimately to describe the visual 
input in such a way that higher level systems can act on the descriptions to 
accomplish general tasks. During the last decade, substantial progress in recon- 
structionist vision has been made using both passive and active systems that 
exploit physical and geometric constraints inherent in the imaging process. 
However, reconstructionist vision appears to be nearing its limits without reach- 
ing its goal. 

An alternative to reconstructionist vision derives from the observation that 
biological systems do not, in general, perform goal-free, consequence-free vi- 
 ion.^ This observation suggests that vision may, of necessity, be a more interac- 
tive, dynamic, and task-oriented process than is assumed in the reconstructionist 
approach. Animate vision researchers, inspired by successful biological systems, 
seek to develop practical, deployable vision systems by discovering and exploiting 
principles that link perception and action. Animate systems use active vision and 
are structured as vertically integrated skills or behaviors, rather than as visual 
modules that try to reconstruct different aspects of the physical world. 

Despite the computational simplifications of the animate vision paradigm, a 
parallel implementation is necessary to achieve the required performance. Fortu- 
nately, many of the tasks in an animate vision system are inherently parallel. 
Inputs from multiple sensors can be processed in parallel. Low-level-vision 
algorithms are intensely data parallel. Planning and strategy algorithms frequent- 
ly search a large state space, which can be decomposed into smaller spaces that are 
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searched in parallel. Thus, finding par- 
allelism in the application is easy. How- 
ever, the type of parallelism we would 
like to exploit varies among tasks in the 
system, and no single model of parallel 
computation is likely to suffice for all 
tasks. 

The difficulty arises because parallel- 
ism can be applied in many ways, using 
different programming constructs, lan- 
guages, and runtime libraries to express 
it. Each environment can be character- 
ized by the process model it provides: 
the abstraction for the expression and 
control of parallelism. The process model 
typically restricts the granularity of com- 
putation that can be efficiently encap- 
sulated within a process, the frequency 
and type of synchronization, and the 
form of communication between pro- 
cesses. A typical animate vision appli- 
cation will likely consist of many tasks. 
Each task may require a different paral- 
lel-programming model, and all must 
cooperate to achieve the desired behav- 
ior. These rnultirnodelprograms require 
an underlying software system that sup- 
ports several different models of paral- 
lel computation simultaneously and also 
allows tasks implemented in different 
models to interact. 

We believe that to exploit fully the 
parallelism inherent in animate vision 
systems, an integrated vision architec- 
ture must support multiple models of 
parallelism. To support this claim, we 
first describe the hardware base of a 
typical animate vision laboratory and 
the software requirements of applica- 
tions. We then briefly overview the 
Psyche operating system, which we de- 
signed to support multimodel program- 
ming. Finally, we describe a complex 
animate vision application, Checkers, 
constructed as a multimodel program 
under Psyche. 

Architecture for 
animate vision systems 

Systems for animate vision have at 
least three components: sensor input, 
cognition, and action. The goal of our 
work is to provide mechanisms for the 
efficient integration of thesecomponents 
at both the hardware andsoftware levels. 

Hardware environment. Animate vi- 
sion systems require movable, comput- 
er-configurable sensors, sophisticated 
effectors or mobile vehicles, and sever- 

al high-bandwidth computing devices. * a special-purpose parallel proces- 
Our hardware currently consists of six sor for high-bandwidth, low-level 
key components: vision processing, 

general-purpose MIMD (multiple 
a binocular head containing mov- instruction, multiple data) parallel 
able cameras for visual input, processors, 
a robot arm that supports and moves a dextrous manipulator, and 
the head, a Data Glove input device. 

Table 1. Computational features of passive and active vision systems. 

Passive Vision Active Vision 

A fixed camera may not have 
an object in view. 

Static camera placement re- 
sults in nonlinear, ill-posed 
problems. 

Stereo fusion is intractable. 

A single fixed camera imposes 
a single, possibly irrelevant, 
coordinate system. 

Fixed spatial resolution limits 
imaging effectiveness. 

Segmentation of static, single 
images is a known intractable 
problem. 

Active vision can use physical search, 
by navigation or manipulation, chang- 
ing intrinsic or extrinsic camera 
parameters. 

Known, controlled camera movements 
and active knowledge of camera place- 
ment provide self-generated constraints 
that simplify processing. 

An actively verging system simplifies 
stereo matching. 

Active vision can generate and use exo- 
centric coordinate frames, which yield 
more robust quantitative and qualitative 
algorithms and serve as a basis for spatial 
memory. 

Variable camera parameters can compen- 
sate for range, provide varying depth of 
field, and indirectly give information 
about the physical world. 

Gaze control helps segmentation: Active 
vergence or object tracking can isolate 
visual phenomena in a small volume of 
space, simplifying grouping. 

Tenets of animate vision 

Vision does not function in isolation, but is instead part of a complex behav- 
ioral system that interacts with the physical world. 

General-purpose vision is a chimera. There are simply too many ways to 
combine image information and too much to know about the world for vision to 
construct a task-independent description. 

Directed interaction with the physical world can permit information not readily 
available from static imagery to be obtained efficiently. 

Vision is dynamic. Fast vision processing implies that the world can serve as 
its own database, with the system retrieving relevant information by directing 
gaze or attention. 

Vision is adaptive. The functional characteristics of the system may change 
through interaction with the world. 
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The head, shown in Fig- 
ure 1, has two movable gray- 
scale CCD (charge-coupled 
device) television cameras 
and a fixed color camera pro- 
viding input to a MaxVideo 
pipelined image-processing 
system. One motor controls 
the tilt angle of the two-eyed 
platform. Separate motors 
control each camera's pan 
angle, providing indepen- 
dent vergence control. The 
controllers allow sophisticat- 
edvelocity and position com- 
mands and data readback. 

The robot body is a Puma 
761 six-degrees-of-freedom 
arm with a 2-meter-radius 
workspace and a top speed 
of about 1 meter per second. 
It is controlled by a dedicat- 
ed Digital Equipment Corp. 
LSI-11 computer imple- 
menting the proprietary Val 
execution monitor and pro- 
gramming interface. 

The MaxVideo system 
consists of several indepen- 

Figure 1. In this configuration, the robot head has one 
large color camera and two small gray-scale cameras, a 
single tilt motor, twin pan motors, and a passively compli- - 

ant checker-pushing tool. 

dent boards that can be connected to 
achieve a wide range of frame-rate im- 
age-analysis capabilities. The MaxVid- 
eo boards are all register programma- 
ble and can be controlled via a VMEbus. 
The Zebra and Zed programming sys- 
tems, developed at the University of 
Rochester, make this hardware easily 
and interactively programmable. 

An important feature of our labora- 
tory is the use of a shared-memory mul- 
tiprocessor as the central computing 
resource. Checkers, our animate vision 
application, uses a 32-node BBN But- 
terfly Plus parallel processor. Each node 
contains a Motorola MC68020 proces- 
sor with floating-point hardware and 4 
Mbytes of memory. The Butterfly is a 
shared-memory multiprocessor. Each 
processor can directly access any mem- 
ory in the system, although local mem- 
ory is roughly 12 times faster to access 
than nonlocal memory. The Butterfly 
has a VMEbus connection that mounts 
in the same card cage as the MaxVideo 
and motor controller boards, replacing 
aprocessor in the physical address space 
of the multiprocessor. The Butterfly also 
has a serial port on each board. We use 
the port to communicate directly with 
the Val robot controller software on its 
dedicated LSI-11. A Sun 41330 worksta- 
tion acts as a host for the system. 

Several components have only recent- 
ly been installed in our laboratory and 
therefore were not used in Checkers. 
These include an array of eight trans- 
puters for real-time control, a 16-de- 
grees-of-freedom Utah hand, andaData 
Glove used to gather manipulation data 
from humans and for teleoperation of 
the Utah hand. 

Software requirements. Animate vi- 
sion systems are inherently parallel. The 
hardware devices they use provide one 
source of parallelism. The algorithms 
used for device control and for combin- 
ing perception and action provide an- 
other source. The real issue is how to 
harness the application's inherent par- 
allelism without being overwhelmed by 
the complexity of the resultingsoftware. 
Our experiences with two DARPA 
benchmarks for parallel computer vi- 
sion3 illustrate the utility of multiple 
parallel-programming environments for 
implementing computer vision algo- 
rithms, and the difficulty of successfully 
integrating the components of an ani- 
mate vision system. 

The first benchmark contains a suite 
of noninteracting routines for low- and 
high-level-vision tasks. The low-level- 
vision routines require manipulation of 
two-dimensional pixel arrays using data 

parallelism, conveniently ac- 
complished using the SIMD 
(single instruction, multiple 
data) style of computation pro- 
vided by the Uniform System 
library from BBN.4 The func- 
tions for high-level vision re- 
quire coarser grain parallel- 
ism and communication, for 
which we used two parallel- 
programming environments 
developed at Rochester: a 
message-passing library and a 
parallel-programming lan- 
guage (Lynxs). Each environ- 
ment made programming a 
particular application easier 
in some way. 

The second benchmarkcalls 
for an integrated scene-de- 
scribing system. This bench- 
mark emphasizes integration 
of several levels of image un- 
derstanding to describe a scene 
of polygons at various discrete 
depths. It thus underscores the 
usefulness of a unified ap- 
proach to multimodel paral- 
lelism. Unfortunately, we im- 

plemented the parts of our scene- 
describing system using several differ- 
ent programmingmodels, and we lacked 
the system support necessary to inte- 
grate the various models. Processes in 
our MIMD computations could not di- 
rectly access the data structures pro- 
duced by our SIMD computations, and 
processes of different types could not 
synchronize. Ironically, the very diver- 
sity that facilitated our success in the 
first benchmark prevented a successful 
implementation of the second. 

The DARPA benchmarks and our 
other applications experience showed 
the potential advantages of using a large- 
scale MIMD multiprocessor as the con- 
trolling architecture in integrated ani- 
mate vision systems. Our experiences 
also demonstrated the importance of 
matching each application, or parts of a 
large application, to an appropriate par- 
allel-programming environment, and the 
importance of integrating functions 
across environment boundaries. 

Multimodel 
programming in Psyche 

Psyche is a multiprocessor operating 
system designed to support multimodel 
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pr~gramrning.~The abstractions provid- 
ed by the Psyche kernel allow user-level 
runtime libraries to implement custom- 
ized programming models, with each 
library retaining full control over how 
its processes are represented and sched- 
uled, and how they synchronize with the 
processes implemented by other librar- 
ies7The kernel is responsible for coarse- 
grain resource allocation and protec- 
tion, while runtime libraries implement 
short-term scheduling and process man- 
agement. 

A multimodel program consists of a 
set of modules, each of which may im- 
plement a (potentially different) pro- 
gramming model. Each module defines 
a set of interface procedures used to 
access the code and data encapsulated 
by the module. In addition, each mod- 
ule that implements a programming 
model defines a set of process-manage- 
ment routines used to control the be- 
havior of the model's processes. To com- 
municate between modules, and hence 
between different programming mod- 
els, processes call interface procedures, 
which may in turn call process-manage- 
ment routines. The two key aspects of 
this approach are 

Procedural access to  shared data. 
The interface procedures of a module 
implement a communication protocol. 
Shared data in the module represents 
the state of the protocol and is manipu- 
lated by the procedures defined in the 
interface. By invoking interface proce- 
dures, processes take on the communi- 
cation style provided by the called mod- 
ule. Interface procedures allow processes 
to gain access to arbitrarily complex 
styles of communication through a mech- 
anism - the procedure call -found in 
every model. 

Dynamically bound process man-  
agement. The process-management rou- 
tines of a module allow interface proce- 
dures to tailor their behavior to different 
programming models. Interface proce- 
dures call process-management routines 
whenever they must create, destroy, 
block, or unblock a process. They need 
not embody assumptions about any par- 
ticular model. Among other things, pro- 
cess-management routines are required 
for scheduler-based synchronization. 

To facilitate the use of shared data 
and procedures, Psyche arranges for 
every module to have a unique system- 
wide virtual address. This uniform ad- 

dressing allowsprocesses to share point- 
ers without worrying about whether they 
might refer to different data structures 
in different address spaces. It also al- 
lows processes to call interface proce- 
dures regardless of the current address 
space. Depending on the degree of pro- 
tection desired, a call to an interface 
procedure can be as fast as a normal 
procedure call (optimized invocation), 
or as safe as a remote procedure call 
between heavyweight processes (pro-  
tected invocation). The two forms of 
invocation are initiated in exactly the 
same way in Psyche, with the native 
architecture's jump-to-subroutine in- 
struction. In some cases this instruction 
generates a page fault, allowing the ker- 
nel to intervene. 

To implement a programming model, 
the user-level library must manage a set 
of virtual processors, which are kernel- 
provided abstractions of the physical 
processors. The kernel delivers a soft- 
ware interrupt to a virtual processor 
whenever it detects an event that might 
require the library to take immediate 
action. Events of this sort include pro- 
gram faults, the imminent end of a ker- 
nel-scheduling quantum, the need to 
block during a system call, and the initi- 
ation (via page fault) of a protected 
invocation. Data structures shared be- 
tween the kernel and the user (writable 
in part by the user) allow the library code 
to control the behavior of the software 
interrupt mechanism. They also provide 
a location in which to store the addresses 
of process-management routines. 

When creating a virtual processor, 
the user-level library specifies the loca- 
tion of a data structure describing that 
virtual processor. The kernel maintains 
a pointer to this descriptor (distinct on 
every physical processor) among the 
data structures shared between the ker- 
nel and the user. By convention, the 
descriptor in turn contains the address 
of a vector of pointers to process-man- 
agement routines. When multiprogram- 
ming virtual processors on top of a sin- 
gle physical processor, the kernel 
changes the pointer to the virtual pro- 
cessor descriptor on every context 
switch. When multiprogramming user- 
level processes on top of a single virtual 
processor (or on a collection of virtual 
processors), the user changes the ad- 
dress of the vector of process-manage- 
ment routines on every context switch. 
As a result, an interface procedure can 
always find the process-management 

routines of the currently executing pro- 
cess without knowing the origin or rep- 
resentation of the process. 

Using interface procedures and pro- 
cess-management routines, Psyche pro- 
grammers have developed two distinct 
idioms for interaction between dissimi- 
lar programming models. Both of these 
idioms appear in Checkers. In the first, 
a module encapsulates a passive shared 
data structure that is accessed by other 
modules containing different process 
types. In the second, a process from one 
model calls directly into a module that 
implements a different model. This sec- 
ond approach occurs both when calling 
an interface procedure directly and when 
implementingsynchronization inside an 
interface procedure. 

When a process needs to wait for 
some condition while executing in an 
interface procedure, the code can fol- 
low pointers in well-known locations to 
find the addresses of the process-man- 
agement routines of the process's pro- 
gramming model. It can then save the 
address of the unblock routine in a shared 
data structure and call the block rou- 
tine. Later, when another process es- 
tablishes the condition, it can retrieve 
the pointer to the unblock routine and 
call into the module that manages the 
waiting process, causing that process to 
unblock. 

When calling an interface procedure 
or process-management routine, a pro- 
cessmust obey certain well-defined con- 
straints to avoid interfering with the 
correct operation of the host environ- 
ment. In the general case, it may be 
necessary to create a native process to 
obtain the full capabilities of that envi- 
ronment. 

Multimodel robot 
checkers player 

Checkers is a multimodel vision ap- 
plication implemented on top of Psyche. 
A checkers-playing robot conducts a 
game against a human opponent, cycli- 
cally sensing the opponent's move and 
then planning and executing its response. 

An inexpensive, standard-size check- 
ers game is used. The camera's internal 
parameters (aperture and focus) are 
manually adjusted before the game, and 
the external parameters (the exact posi- 
tions of the pan and tilt motors, and the 
robot's position) are adjusted by an ini- 

February 1992 15 



tial calibration procedure (finding pixel 
coordinates of the corners of the board). 

The normal rules of play are obeyed, 
including multiple captures, crowning, 
and the extended capabilities of kings. 
The robot pushes pieces around the 
board; it does not pick them up. During 
play the human player modifies the 
board by moving a piece. The sensing 
task detects the change in the board 
configuration and interprets it symbol- 
ically in terms of the primitive moves of 
checkers. In a symbolic, strategic task, 
the robot considers the change to be a 
potentially legal move by the human. 
The robot validates the move and, if it is 
valid, accepts it. Once the human makes 
a valid move, the robot runs a symbolic 
game-playing algorithm to find its re- 
sponse to the human move. The effec- 
tor task uses the board position report- 
ed by the vision subsystem and the 
computed symbolic move to plan a se- 
quence of primitive, physically realiz- 
able actions. When this movement plan 
is available, the robot arm is engaged to 
execute the plan. A board maintenance 
task provides central control, commu- 
nication, data representation, and syn- 
chronization. The robot emits status 
information, error messages, and occa- 
sional gratuitous remarks through a 
voice-synthesis board. A complete ro- 
bot move, including sensing and com- 
mentary, takes about 6 seconds. 

Parallel-programming environments. 
Checkers, like many animate vision ap- 
plications, consists of tasks to imple- 
ment sensing, planning, and action. We 
implemented each of these functions 
using a different parallel-programming 
environment: Multilisp, Lynx, the Uni- 
form System, or Uthread. 

The unit of parallelism in Multilisp is 
the f u t ~ r e , ~  which is a handle for the 
future evaluation of an arbitrary S-ex- 
pression. Any attempt to reference a 
future before the value is determined 
causes the caller to block. These two 
mechanisms - parallel execution via 
futures and synchronization via refer- 
ences to futures - are used to build 
parallel Lisp programs. 

Lynx programs consist of multiple 
heavyweight processes, each with its own 
address space.5 The processes exchange 
messages using named communication 
channels (links). Each heavyweight pro- 
cess consists of multiple lightweight 
threads of control that communicate 
using shared memory. Condition vari- 

ables are used for synchronization be- 
tween threads in the same process. Syn- 
chronous message passing provides syn- 
chronization between threads in 
different processes. 

The Uniform System4 is a shared- 
memory, data-parallel programming 
environment. Task generators create a 
potentially large number of parallel tasks, 
each of which operates on some portion 
of a large shared address space. Task 
descriptors are placed on a global FIFO 
work queue and are removed by proces- 
sors looking for work. Each task must 
run to completion, at which time another 
task is removed from the task queue. 
Spin locks are used for synchronization. 

Uthread is a simple, lightweight thread 
package that can be called from C++ 
programs. Uthread is the general-pur- 
pose programming environment of 
choice in Psyche and is frequently used 
to implement single-threaded servers. 

We chose these environments for four 
reasons: 

(1) Each was specifically developed 
for a particular application domain that 
was a subset of our problem domain. 

(2) Implementations of all four envi- 
ronments were either already available 
for our hardware or could be easily port- 
ed to our hardware. 

(3) The principals involved in the 
project had extensive experience with 
one or more of these implementations 
and would not have to learn a new sys- 
tem. 

(4) We already had a software base 
for vision, planning, and checkers play- 
ing, composed of programs written in 
the Uniform System, Lisp, and Lynx, 
respectively. 

Checkers tasks. The primary data 
structures used to implement Checkers 
are the representations of the board 
and the moves. A short pipeline of rep- 
resentations is needed to support back- 
ingup to legal or stable states. There are 
four different board representations: 
digitized image, calibration information, 
(x, y ,  z )  location of the piece centroids, 
and a symbolic description of the board. 
Each is used for different tasks. 

Three different representations for 
moves are used: the new board state 
that results from the move, a sequence 
of physical coordinates for the robot 
motion commands, and the list of par- 
tial moves (that is, a push or a sequence 
of jumps) needed to execute a move. 

These representations for the board 
and the moves are encapsulated in the 
board module, which provides synchro- 
nized access to the data structures and 
translation routines between the vari- 
ous representations. We implemented 
the board module using the Uthread 
package. A single thread of control is 
created to initialize the data structures, 
after which the module becomes a pas- 
sive data structure shared by tasks from 
other programming models. The board 
module synchronization routines use the 
Psyche conventions for process man- 
agement to implement semaphores that 
any model can call. 

Six different tasks cooperate to im- 
plement Checkers. Two manage the 
camera and robot devices; the remain- 
der implement vision, recognition of 
moves, checkers strategy, and motion 
planning. 

The camera manager is a Uthread 
module that maps and initializes a mem- 
ory segment for the VME memory used 
to control and access the MaxVideo 
hardware. This module registers the 
name and address of the memory seg- 
ment with a name server. The board 
interpreter (discussed below) accesses 
this segment directly to retrieve an im- 
age from the MaxVideo frame buffer. 
The frame buffer is filled at 30 Hz by the 
digitizer but is read out only when the 
board interpreter is ready to analyze 
another image. 

The board interpreter is a Uniform 
System program that transfers an image 
from the camera manager (in VME 
memory) to local Butterfly memory and 
produces a symbolic description of the 
checkers in the image. The data transfer 
of 0.25 Mbyte of image information over 
the VMEbus takes 280 milliseconds. 
After transferring the image, the board 
interpreter segments the image into 64 
board squares and analyzes each square 
in parallel. Each task attempts to deter- 
mine the color of its square, whether the 
square contains a piece, and, if so, the 
piece's color. Each square is then la- 
beled according to the square's color 
and the piece's color. Piece centroids 
are calculated, as are centers of empty 
squares, in image and world coordinates. 
Once a complete interpretation con- 
taining no unrecognized squares is cal- 
culated, the board interpreter accepts 
the interpretation. If the new interpre- 
tation differs from the previous inter- 
pretation, the result is reported to the 
board module. Using four processors, 
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the board interpreter can interpret the 
image input about once every second. 

The move recognizer is a Uthread 
module that compares two successive 
symbolic board interpretations produced 
by the board interpreter. It recursively 
decomposes the differences into a se- 
quence of legal partial moves (single 
jumps or moves) that transforms the 
first interpretation into the second. 

The checkersplayer is a game-playing 
program written in Lynx. It takes as 
input the list of partial moves describ- 
ing the human's move and produces as 
output the list of partial moves to be 
made in response. A single multithread- 
ed master process manages the parallel 
evaluation of possible moves. Slave pro- 
cesses perform the work, implementing 
a parallel a-B game-tree search. 

The move planner is a trajectory cal- 
culation and planning program written 
in Multilisp. It constructs, in parallel, 
artificial potential fields that have peaks 
reflecting square occupancies and a glo- 
bal bias reflecting off-board goal loca- 
tions. For individual moves, the goal 
location is a particular square. When 
removing pieces, the goal location is 
one of eight goal areas off the board. 
The program considers these potential 
fields in parallel, using a local search 
procedure that yields a gradient-descent 
path along which a checker can be 
pushed. Since the algorithm allows pieces 
to be temporarily moved aside or  
swapped with the moving piece, it is a 
route-maker as well as a route-finder. 
The result is a set of plans. The algo- 
rithm chooses one plan on the basis of 
some cost function, such as the total 
estimated time to complete the move or 
the shortest distance to push the checker. 

The robot controller is a Uthread 
module that controls a serial line con- 
nection between the Butterfly and the 
Puma robot. The robot controller sends 
movement commands in the Val lan- 
guage (equivalent to  MoveTo 
(X,Y,Z,SPEED)) and waits for notifi- 
cation of successful completion. 

Implementation of moves. Program 
execution is implemented as a series of 
moves, each of which requires the coop- 
eration of several modules and program- 
ming models. Lettered arrows in Figure 
2 show control flow among the modules. 

The board interpreter continuously 
receives an image from the camera (a, 
b) and analyzes it. When the board po- 
sition changes, the board interpreter 
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Figure 2. Functional modules and communication paths in Checkers. Multiple 
models of parallelism (to the right of the dotted line) are implemented under 
Psyche on the Butterfly. Perceptual and motor modules (to the left of the dot- 
ted line) reside on the Butterfly and in peripherals. 

invokes the board module (c) to update 
the board description, passing the sym- 
bolic and quantitative positions of the 
checkers. 

When the board module receives a 
new board position from the board in- 
terpreter, it invokes the move recogniz- 
er (d) to parse the difference between 
new and old board positions into partial 
checkers moves. These partial moves 
are stored in the board module to be 
retrieved by the checkers player. After 
a successful return from the move rec- 
ognizer, the original invocation from 
the boardinterpreter to the board mod- 
ule returns, causing the board inter- 
preter to resume evaluation of raw im- 
age data. 

When the invocation from the check- 
ers player to the board module (e) dis- 
covers that a new valid list of partial 
moves has appeared in the board mod- 
ule, it returns the first partial move to 
the checkers player module. If several 
partial moves are needed to complete 
the move, additional invocations from 
the checkers player to the board mod- 
ule (e) follow. If any partial move rep- 
resents an illegal move, the checkers 
player resets its internal state to the 

beginning of the move sequence and 
flushes the current state information 
and list of partial moves in the board 
module. It also synchronizes with the 
board interpreter (e, c), which informs 
the human and produces a new board 
state. 

As long as the incoming list of partial 
moves is legal, the checkers player will 
wait for moves to appear in the board 
module. As a result, board interpreta- 
tion can occur several times while the 
human makes a move, particularly if the 
move is a complex jump. The checkers 
player and board module interact (e) 
until a complete move is made. At this 
point the checkers player module runs 
and generates its reply to the human's 
move in the form of a symbolic board 
position. This board position is passed 
to the board interpreter, which gener- 
ates a list of partial moves required to 
implement the differences between the 
updated board position and the current 
position. 

Once the board interpreter has pro- 
duced a list of partial moves that define 
the robot's response, the checkers play- 
er invokes the move planner (f) with the 
partial move sequence. Partial moves 
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Table 2. Functional modules and source code statistics (number of lines) for 
Checkers. The runtime environment code and the Lynx game player were port- 
ed from existing systems; 4,482 lines of new code were written, including 2,902 
lines of application code and 1,580 lines of interface code. 

1 Function Model Application ~untim-1 

Game player Lynx 1,800 8,838 504 
Board interpreter Uniform System 380 8,057 170 
Move planner Multilisp 900 13,127 572 
Board module Uthread 1,300 2,436 170 
Robot controller Uthread 27 2,436 110 
Speech controller Uthread 211 2,436 34 
Camera manager Uthread 84 2,436 20 

are passed to the move planner one at a 
time, and each one causes a sequence of 
low-level move commands and acknowl- 
edgments to flow back and forth be- 
tween the move planner, the robot con- 
troller, and the robot (g, h). 

Intermodel communication. The im- 
plementation of a single move illustrates 
two distinct styles of interaction among 
programming models: data structures 
shared between models and direct pro- 
cedure calls (or invocations) between 
models. Both styles of interaction re- 
quire synchronization between processes 
of different types. 

The board module must synchronize 
access to data structures shared by pro- 
cesses from the Multilisp, Lynx, Uni- 
form System, and Uthread environ- 
ments. To access these data structures, 
processes call directly into the board 
module and execute the associated code. 
When a process must block within the 
board module, the code uses pointers 
provided by the kernel to find the cor- 
rect block and unblock routines for the 
currently executing process type. Apro- 
cess that must block on a semaphore 
first places the address of its unblock 
routine in the semaphore data structure 
and then calls its block routine. When 
another process wants to release a pro- 
cess that is blocked on a semaphore, it 
simply retrieves the address of the ap- 
propriate unblock routine from the 
semaphore data structure and calls the 
routine. If protection between process 
types is desired, the appropriate rights 
can be stored with the address of the 
routines, and protected invocations can 
be required. 

There are several advantages to com- 

municating between models via shared 
data structures: 

Because we use a simple procedural 
interface to access shared data, there is 
a uniform interface between models, 
regardless of the number or type of 
programming models involved. 

Communication is efficient because 
processes can use shared memory to 
communicate directly. 

Synchronization across models is 
efficient because of the underlyingmech- 
anisms for implementing synchroniza- 
tion (a kernel pointer to user-level pro- 
cess-management routines, and a 
procedural interface to routines that 
block and unblock a process). 

The board module resembles a black- 
board communication structure, but we 
can use shared data abstractions be- 
tween models to implement a wide vari- 
ety of communication mechanisms, in- 
cluding message channels and mailboxes. 

A different type of interaction occurs 
between the checkers player and the 
move planner: A Lynx thread calls di- 
rectly into the Multilisp environment of 
the move planner. Since the move plan- 
ner already provides exactly the func- 
tionality required by the checkers play- 
er, an intervening data structure would 
simply add unnecessary generality and 
overhead (such as the cost of extra invo- 
cations). Instead, every entry point ex- 
ported by the move planner refers to a 
stub routine designed for invocation by 
processes outside the Multilisp world. 
This stub routine copies parameters into 
the Multilisp heap and dispatches a 
Multilisp future to execute the Lisp func- 
tion associated with the invocation. After 

the future executes the correct Mul- 
tilisp function, the Multilisp runtime 
environment calls the Lynx scheduler 
directly to unblock the Lynx thread. 

Direct calls between arbitrary envi- 
ronments are often complicated by the 
fact that the code in each environment 
makesmany assumptions about the rep- 
resentation and scheduling of process- 
es. Psyche facilitates direct calls between 
modules by separating the code that 
depends on the semantics of processes 
from the code used as an external inter- 
face. As a result, an application like 
Checkers can be constructed from a 
collection of self-contained modules 
without regard to the programming 
model used within each module. 

c heckers demonstrates the advan- 
tages of decomposing animate 
vision systems by function and 

independently selecting an appropriate 
parallel-programming model for each 
function. By extending the well-known 
software engineering principle of mod- 
ularity to include different parallel-pro- 
gramming environments, we increase 
the expressive power, reusability, and 
efficiency of parallel-programming sys- 
tems and applications. These proper- 
ties add significantly to our ability to 
build complex animate vision applica- 
tions. 

The entire Checkers implementation 
required only two months of part-time 
effort by five people. Our use of multi- 
ple parallel-programming models was 
not an artificial constraint; it was a rea- 
soned choice based on the tasks to be 
performed, the expertise of the people 
involved, the available software, and 
the available programming environ- 
ments. 

We resurrected a Lynx checkers-play- 
ing program that had been implement- 
ed years ago as a stand-alone program. 
The Uniform System image-analysis li- 
brary was plugged into Checkers after 
several years of disuse. The board inter- 
preter, move planner, board module, 
and move recognizer, as well as neces- 
sary Psyche support for the particular 
models we used, were all developed si- 
multaneously by people who had exper- 
tise in a particular problem domain and 
the related software environment. Cod- 
ing these modules was a part-time activ- 
ity extending over several weeks. 

Integration was a full-time activity 
that took only a few days. During inte- 
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gration, w e  m a d e  (and subsequently 
changed) many decisions abou t  which 
modules would communicate  directly 
with each other ,  and  which should  use  
the shared da ta  structures.  O u r  experi-  
ences have convinced us of t he  impor- 
tance of integration through shared da ta  
abstractions a n d  customized communi-  
cation protocols accessible f rom every 
parallel-programming model.  Tab le  2 
shows t h e  relatively small  amoun t  of 
coding w e  had  t o  d o  t o  in tegra te  t h e  
various Checkers  subsystems. 

O u r  ability t o  build t h e  stylized da ta  
abstractions a n d  communication proto-  
cols used in Checkers  suggests that  w e  
will have little difficulty experimenting 
with alternative communication proto-  
cols o r  processor assignments. This  is  
precisely the  type of flexibility required 
in animate  vision systems, and  o u r  ex- 
periences suggest that  multimodel pro- 
gramming in general,  a n d  the  Psyche 
mechanisms in particular,  can provide 
the  needed  flexibility. I 
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