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Animate vision systems couple computer vision and robotics to 
achieve robust and accurate vision, as well as other complex be- 
havior. These systems combine low-level sensory processing and 
effector output with high-level cognitive planning-all computa- 
tionally intensive tasks that can benefit from parallel processing. 
A typical animate vision application will likely consist of many 
tasks, each of which may require a different parallel programming 
model, and all of which must cooperate to achieve the desired 
behavior. These multi-model programs require an underlying soft- 
ware system that not only supports several different models of 
parallel computation simultaneously, but which also allows tasks 
implemented in different models to interact. This paper describes 
the Psyche multiprocessor operating system, which was designed 
to support multi-model programming, and the Rochester Check- 
ers Player, a multi-model robotics program that plays checkers 
against a human opponent. Psyche supports a variety of parallel 
programming models within a single operating system by accord- 
ing first-class status to processes implemented in user space. It 
also supports interactions between programming models using 
model-independent communication, wherein different types of 
processes communicate and synchronize without relying on the 
semantics or implementation of a particular programming model. 
The implementation of the Checkers Player, in which different 
parallel programming models are used for vision, robot motion 
planning, and strategy, illustrates the use of the Psyche mecha- 
nisms in an application program, and demonstrates many of the 
advantages of multi-model programming for animate vision sys- 
tems. 0 1992 Academic Press, Inc. 

1. ANIMATE VISION 

Vision can be viewed as a passive observational activ- 
ity, or as one intimately related to action (e.g., manipula- 
tion, navigation). In passive vision systems the camera 
providing the image input is immobile. Active vision sys- 
tems use observer-controlled input sensors [I]. Active 
vision results in much simpler and more robust vision 
algorithms for several reasons. A fixed camera may not 
have an object in view, whereas active vision can use 
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physical search, through navigation or manipulation, and 
can change intrinsic or extrinsic camera parameters. 
Static camera placement results in nonlinear, ill-posed 
problems, whereas known, controlled camera move- 
ments and knowledge of camera placement provide self- 
generated constraints that simplify processing. Stereo fu- 
sion is intractable, whereas an actively verging system 
simplifies stereo matching. A solitary fixed camera im- 
poses a single, possibly irrelevant, coordinate system; 
active vision can generate and use exocentric coordinate 
frames, yielding more robust quantitative and qualitative 
algorithms, and serving as a basis for spatial memory. 
Fixed spatial resolution limits imaging effectiveness, 
whereas variable camera parameters can compensate for 
range, provide a varying depth of field, and indirectly 
give information about the physical world. Segmentation 
of static, single images is a known intractable problem, 
whereas gaze control helps segmentation: active ver- 
gence or object tracking can isolate visual phenomena in 
a small volume of space, simplifying grouping. 

Another aspect of active vision is its behavioral char- 
acter; that is, intelligent activity, including perception, 
can be structured as vertically integrated skills (or behav- 
iors) that are applied in particular contexts. Table I 
shows some visual capabilities in their behavioral con- 
texts. 

Another dimension for classifying computer vision ap- 
proaches is reconstructive versus animate. In the recon- 
structionist or general-purpose paradigm, the vision task 
is to reconstruct physical scene parameters from image 
input, to segment the image into meaningful parts, and 
ultimately to describe the visual input in such a way that 
higher-level systems can act on the descriptions to ac- 
complish general tasks. During the last decade, substan- 
tial progress in reconstructionist vision has been made 
using both passive and active systems that exploit physi- 
cal and geometric constraints inherent in the imaging pro- 
cess [17]. However, reconstructionist vision appears to 
be nearing its limits without reaching its goal. 

An alternative to reconstructionist vision derives from 
the observation that biological systems do not, in general, 
perform goal-free, consequence-free vision [4]. This ob- 
servation suggests that vision may, of necessity, be a 
more interactive, dynamic, and task-oriented process 
than is assumed in the reconstructionist approach. Ani- 
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TABLE I 
Computations Simplified by Behavioral Assumptions 

Visual task Behavioral context 

Shape from shading 

Time to adjacency 

Kinetic Depth 

Color Homing 

Optic Flow 
Stereo Depth 

Edge Homing 

Binocular Object Tracking 

Light source not directly behind viewer 
[251 

Rectilinear motion; gaze in the direction 
of motion [21] 

Lateral head motion while fixating a 
point in a stationary world [4] 

Target object is distinguished by its color 
spectrum [36] 

Texture-rich environment [I61 
System can fixate environmental points 

[371 
Target position can be described by 

approximate directions from texture in 
its surround [24] 

Vergence and tracking operate simulta- 
neously [I31 

mate vision researchers, inspired by successful biological 
systems, seek to develop practical, deployable vision 
systems using two principles: the active, behavioral ap- 
proach (Table I), and task-oriented techniques that link 
perception and action. Table I1 summarizes the key dif- 
ferences between the reconstructionist vision paradigm 
and the task-oriented approach. 

Animate vision thus needs cooperation between com- 
plex high-level symbolic algorithms and intensive low- 
level, real-time processing. The computations required 
by animate vision systems are so extensive that a parallel 
implementation is necessary to achieve the required per- 
formance. Fortunately many of the tasks in an animate 
vision system are inherently parallel. Inputs from multi- 
ple sensors can be processed in parallel. Early vision 
algorithms are intensely data-parallel. Planning and strat- 
egy algorithms frequently search a large state space, 
which can be decomposed into smaller spaces that are 
searched in parallel. Thus, there is no problem finding 
parallelism in the application. However, the type of par- 

TABLE I1 
Key Differences between Passive Vision and 

Task-Oriented Vision 

Passive vision Task-oriented vision 

Use all vision modules Use a subset of vision modules 
Process entire image Process areas of the image 
Maximal detail Sufficient detail 
Extract representation first Ask question first 
Answer question from Answer question from scene 

representation data data 
Unlimited resources Limited resources 

allelism we would like to exploit varies among tasks in 
the system-no single model of parallel computation is 
likely to suffice for all tasks. 

The difficulty arises because parallelism can be applied 
in many ways, using different programming constructs, 
languages, and runtime libraries for expressing parallel- 
ism. Each of these environments can be characterized by 
the process model it provides: the abstraction for the 
expression and control of parallelism. The process model 
typically restricts the granularity of computation that can 
be efficiently encapsulated within a process, the fre- 
quency and type of synchronization, and the form of 
communication between processes. A typical animate vi- 
sion application will likely consist of many tasks, each of 
which may require a different parallel programming 
model, and all of which must cooperate to achieve the 
desired behavior. These multi-model programs require an 
underlying software system that not only supports sev- 
eral different models of parallel computation simulta- 
neously, but which also allows tasks implemented in dif- 
ferent models to interact. 

In this paper we argue that an architecture for animate 
vision systems must support multi-model programming. 
We describe an operating system, called Psyche, that 
was designed to support multi-model programming. We 
illustrate the use of Psyche, and the general concept of 
multi-model programming, by describing the implementa- 
tion of the Rochester Checkers Player, a multi-model ro- 
botics application. The Checkers Player visually moni- 
tors a standard checkerboard, decides on a move in 
response to a move by a human opponent, and moves its 
own pieces. We describe the implementation of our 
Checkers Player in detail, emphasizing the use of several 
different programming models, and the integration of 
tasks in the implementation. 

2. SOFTWARE REQUIREMENTS FOR ANIMATE VISION 

Animate vision systems are inherently parallel. The 
hardware devices they use provide one source of parallel- 
ism. The algorithms used for device control and for com- 
bining perception and action provide another source. The 
real issue is how to harness the parallelism inherent in the 
application without being overwhelmed by the complex- 
ity of the resulting software. Our experiences with two 
DARPA benchmarks for parallel computer vision [ l l ,  341 
and a recent goal-oriented system [26, 271 illustrate the 
utility of multiple parallel programming environments for 
implementing computer vision algorithms, and the diffi- 
culty of successfully integrating the components of an 
animate vision system. 

The first DARPA benchmark contained a suite of non- 
interacting routines for low- and high-level vision tasks. 
The low-level vision routines required manipulation of 
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two-dimensional pixel arrays using data parallelism, best 
accomplished using an SIMD style of computation. To 
implement these functions we used BBN's Uniform Sys- 
tem library package [33]. We were able to show that 
pixel-level data-parallel functionality could be imple- 
mented on a shared-memory multiprocessor with nearly 
linear speedup given additional processors [12]. (Al- 
though we now use pipelined hardware for most low- 
level vision tasks, those functions not available in hard- 
ware can be implemented reasonably in software.) 

The functions for high-level vision required coarser- 
grain parallelism than is provided by the Uniform Sys- 
tem. To implement these functions we used two parallel 
programming environments developed at Rochester: a 
message-passing library [I91 and a parallel programming 
language [28]. These examples demonstrated the utility 
of the message-passing paradigm on a shared-memory 
machine. 

Several of the tasks in the first benchmark suite called 
for graph algorithms that are naturally implemented with 
many independent, lightweight processes, one per node 
in the graph. The lack of such a programming model was 
a major impediment in the development of the graph algo- 
rithms, and led to the subsequent development of a new 
programming environment [29]. 

Each of these vision tasks naturally suggested a partic- 
ular model of parallelism that made programming that 
particular application easier in some way. Clearly, having 
multiple programming models to chose from was a bene- 
fit of our software environment. 

The second benchmark called for an integrated scene- 
describing system. This benchmark emphasized integra- 
tion of several levels of image understanding to describe 
a scene of polygons at various discrete depths. It thus 
underscored the usefulness of a unified approach to 
multi-model parallelism. Unfortunately, our previous in- 
dividual solutions were implemented using several differ- 
ent programming models and we lacked the system sup- 
port necessary to integrate them. The data structures 
produced by our SIMD computations could not be ac- 
cessed directly by processes in our MIMD computations. 
Processes of different types could not synchronize. Ironi- 
cally, the very diversity that facilitated our success in the 
first benchmark prevented a successful implementation 
of the second. 

A more recent example of the difficulties in construct- 
ing a real-time, flexible task-oriented application is the 
TEA system [26, 271, in which Bayes nets, planning, and 
a maximum-expected-utility decision rule provide a 
knowledge base and control structure to choose and ap- 
ply visual actions for information acquisition. Visual 
actions involve camera movements, imagery selection 
(foveal, peripheral, color, grey-scale), and operator se- 
lection. TEA is designed to embody all the characteris- 

tics of a task-oriented system (Table 11). Currently TEA 
uses hardware pipelined parallelism for some low-level 
vision tasks, but does not exploit parallelism elsewhere. 
As a result, the system is too slow to deal with a dynamic 
environment. We hope to achieve real-time performance 
(thus producing a real-time planning and acting system) 
by exploiting parallelism (both data parallelism and func- 
tional parallelism) in the implementation. Image process- 
ing and analysis can be parallelized easily, speeding up 
individual modules and allowing several visual modules 
to run together on a scene. Propagation of belief through 
the network can proceed in parallel with motor control 
for object tracking or changing of viewpoint. Recent 
work with an eight-node transputer configuration has 
demonstrated the practicality of a multi-model approach, 
and has shown that sufficient image input bandwidth is 
available to support real-time operation. 

The DARPA benchmarks, the TEA system, and other 
applications experience illustrate the potential advan- 
tages of using a large-scale MIMD multiprocessor as the 
controlling architecture in integrated animate vision sys- 
tems. Our experiences also demonstrate the importance 
of matching each application, or parts of a large applica- 
tion, to an appropriate parallel programming environ- 
ment, and the importance of integrating functions across 
environment boundaries. We will now describe a multi- 
processor operating system designed to facilitate both the 
construction and integration of multiple parallel program- 
ming environments. 

3. THE PSYCHE MULTIPROCESSOR 
OPERATING SYSTEM 

3.1. Background 

The widespread use of distributed and multiprocessor 
systems in the last decade has spurred the development 
of programming environments for parallel processing. 
These environments provide many different notions of 
processes and styles of communication. Coroutines, 
lightweight run-to-completion threads, lightweight block- 
ing threads, heavyweight single-threaded processes, and 
heavyweight multi-threaded processes are all used to ex- 
press concurrency. Individually routed synchronous and 
asynchronous messages, unidirectional and bidirectional 
message channels, remote procedure calls, and shared 
address spaces with semaphores, monitors, or spin locks 
are all used for communication and synchronization. 
These communications and process primitives, among 
others, appear in many combinations in the parallel pro- 
gramming environments in use today. 

A parallel programming environment defines a model 
of processes and communication. Each model makes as- 
sumptions about communication granularity and fre- 
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quency, synchronization, the degree of concurrency de- 
sired, and the need for protection. Successful models 
make assumptions that are well matched to a large class 
of applications, but no existing model has satisfied all 
applications. Problems therefore arise when we attempt 
to use a single operating system as the host for many 
different models, because the traditional approach to op- 
erating system design adopts a single model of parallel- 
ism and embeds it in the kernel. The operating system 
mechanisms are seldom amenable to change and may not 
be well matched to a new parallel programming model 
under development, resulting in awkward or inefficient 
implementations in some parallel applications. For exam- 
ple, although the traditional Unix interface has been used 
to implement many parallel programming models, in 
most cases the implementation has needed to compro- 
mise on the semantics of the model (e.g., by blocking all 
threads in a shared address space when any thread makes 
a system call) or accept enormous inefficiency (e.g., by 
using a separate Unix process for every lightweight 
thread of control). 

Since 1984 we have explored the design of parallel pro- 
gramming environments on shared-memory multiproces- 
sors. Using the Chrysalis operating system from BBN [5] 
as a low-level interface, we created several new program- 
ming libraries and languages, and ported several others 
[20]. We were able to construct efficient implementations 
of many different models of parallelism because Chrysa- 
lis allows the user to manage memory and address spaces 
explicitly, and provides efficient low-level mechanisms 
for communication and synchronization. As in most op- 
erating systems, however, Chrysalis processes are 
heavyweight (each process resides in its own address 
space), so lightweight threads must be encapsulated in- 
side a heavyweight process, and cannot interact with the 
processes of another programming model. 

Each of our programming models was developed in 
isolation, without support for interaction with other 
models. Our experiences with the implementation of 
these individual models, coupled with our integration ex- 
periences in the DARPA benchnmarks, convinced us of 
the need for a single operating system that would provide 
both an appropriate interface for implementing multiple 
models and conventions for interactions across models. 
The Psyche multiprocessor operating system [30-321 was 
designed to satisfy this need. 

Rather than establish a high-level model of processes 
and communication to which programming environments 
would have to be adapted, Psyche adopts the basic con- 
cepts from which existing environments are already con- 
structed (e.g., procedure calls, shared data, address 
spaces, and interrupts). These concepts can be used to 
implement, in user space, any notion of process desired. 
These concepts can also be used to build shared data 

structures that form the basis for interprocess communi- 
cation between different types of processes. 

3.2. Psyche Kernel Interface 

The Psyche kernel interface provides a common sub- 
strate for parallel programming models implemented by 
libraries and language runtime packages. It provides a 
low-level interface that allows new packages to be imple- 
mented as needed and implementation conventions that 
can be used for communication between models when 
desired. 

The kernel interface is based on four abstractions: 
realms, protection domains, processes, and virtual pro- 
cessors. 

Each realm contains code and data. The code provides 
a protocol for accessing the data. Since all code and data 
are encapsulated in realms, computation consists of invo- 
cation of realm operations. Interprocess communication 
is effected by invoking operations of realms accessible to 
more than one process. 

To facilitate the sharing of arbitrary data structures at 
run time, Psyche arranges for every realm to have a 
unique system-wide virtual address. This uniform ad- 
dressing allows processes to share pointers without wor- 
rying about whether they might refer to different data 
structures in different address spaces. 

Depending on the degree of protection desired, invoca- 
tion of a realm operation can be as fast as an ordinary 
procedure call (optimized invocation), or as safe as a re- 
mote procedure call between heavyweight processes 
(protected invocation). The two forms of invocation are 
initiated in exactly the same way, with the native archi- 
tecture's jump-to-subroutine instruction. In some cases 
this instruction generates a page fault, allowing the kernel 
to intervene when necessary during protected invoca- 
tions. 

A process in Psyche represents a thread of control 
meaningful to the user. A virtual processor is a kernel- 
provided abstraction on top of which user-defined pro- 
cesses are implemented. There is no fixed correspon- 
dence between virtual processors and processes. One 
virtual processor will generally schedule many pro- 
cesses. Likewise, a given process may run on different 
virtual processors at different points in time. On each 
physical node of the machine, the kernel time-slices the 
virtual processors currently located on that node. 

As it invokes protected operations, a process moves 
through a series of protection domains, each of which 
embodies a set of access rights appropriate to the in- 
voked operation. Within each protection domain, the 
representations of processes are created, destroyed, and 
scheduled by user-level code without kernel interven- 
tion. As a process moves among domains, it may be rep- 
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resented in many different ways (e.g., as lightweight 
threads of various kinds or as requests on the queue of a 
server). 

Asynchronous communication between the kernel and 
virtual processors is based on signals, which resemble 
software interrupts. User-level code can establish inter- 
rupt handlers for wall clock and interval timers. The in- 
terrupt handlers of a protection domain are the entry 
points of a scheduler for the processes of the domain, so 
protection domains can be used as boundaries between 
distinct models of parallelism. Each scheduler is respon- 
sible for the processes executing within its domain, man- 
aging their representations, and mapping them onto the 
virtual processors of the domain. 

These Psyche kernel mechanisms support multi-model 
programming by facilitating the construction of first-class 
user-level threads [23] and model-independent communi- 
cation [22]. First-class user-level threads enjoy the func- 
tionality of traditional kernel processes, while retaining 
the efficiency and flexibility of being implemented outside 
the kernel. Model-independent communication allows 
different types of processes to communicate and syn- 
chronize using mechanisms that are not tied to the se- 
mantics or implementation of a particular parallel pro- 
gramming model. 

3.3. First-Class User-Level Threads 

In a multi-model programming system most program- 
mers do not use the kernel interface directly; user-level 
thread packages and language runtime environments pro- 
vide the functionality seen by the programmer. This 
means that the kernel is in charge of coarse-grain re- 
source allocation and protection, while the bulk of short- 
term scheduling occurs in user space. In according first- 
class status to user-level threads, we intend to allow 
threads defined and implemented in user space to be used 
in any reasonable way that traditional kernel-provided 
processes can be used. For example, first-class threads 
can execute 110 and other blocking operations without 
denying service to their peers. Also, time-slicing imple- 
mented in user space can be coordinated with preemption 
implemented by the kernel. 

Our general approach is to provide user-level code 
with the same timely information and scheduling options 
normally available to the kernel. Software interrupts are 
generated by the kernel when a scheduling decision is 
required of a parallel programming environment imple- 
mented in user space. Examples include timer expiration, 
imminent preemption, and the commencement and com- 
pletion of blocking system calls. Timer interrupts support 
the time-slicing of threads in user space. Warnings prior 
to preemption allow the thread package to coordinate 
synchronization with kernel-level scheduling. Every sys- 
tem call is nonblocking by default; the kernel simply de- 

livers an interrupt when the call occurs, allowing the 
user-level scheduler to run another thread. 

The kernel and the runtime environment also share 
important data structures, making it easy to convey infor- 
mation in both directions. These data structures indicate 
the state of the currently executing process, the address 
of a preallocated stack to be used when handling software 
interrupts, and a collection of variable for managing the 
behavior of software interrupts. User-writeable data can 
be used to specify what ought to happen in response to 
kernel-detected events. When the kernel and user-level 
code are allowed to share data, changes in desired behav- 
ior can occur frequently (for example, when context 
switching in user space). 

3.4. Model-Independent Communication 

In Psyche, a multi-model program can be constructed 
as a set of modules (groups of realms), each of which may 
implement a (potentially different) programming model. 
Each module defines a set of interface procedures that 
are used to access the code and data encapsulated by the 
module. To communicate between modules, and hence 
between different programming models, processes in- 
voke interface procedures to access the memory associ- 
ated with a module. 

Shared memory is a viable communication medium be- 
tween programming models, but by itself is insufficient to 
implement a wide range of communication styles. In- 
terprocess communication requires several steps, includ- 
ing data transfer, control transfer and synchronization. 
While shared memory is sufficient to implement data 
transfer, both control transfer and synchronization de- 
pend on the precise implementation of processes. For 
this reason processes of different types usually communi- 
cate using simple, low-level mechanisms (e.g., shared 
memory and spin locks, with no protection mechanisms 
in place) or generic, high-level communication primitives 
(e.g., remote procedure calls requiring kernel interven- 
tion for protection). 

The Psyche approach to interprocess communication, 
especially when the communicating processes are of dif- 
ferent types, is based on two concepts: 

A procedural interface for control and data trans- 
fer-Each shared data structure is encapsulated within a 
module and can only be accessed by invoking the appro- 
priate interface procedures. Invocations (i.e., procedure 
calls to realm operations) implement control and data 
transfer. Either optimized or protected invocations may 
be appropriate, depending on whether the shared data 
structure resides within its own protection domain. 

A kernel-supported interface for process manage- 
ment-Each module that implements a parallel program- 
ming model provides an interface to a set of process man- 
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agement routines. These routines, which are typically 
used to block and unblock a thread of control imple- 
mented within the programming model, can be invoked 
from within shared data structures, providing a means for 
synchronization among dissimilar process types. A data 
structure shared between the kernel and user contains 
pointers to the current set of process management rou- 
tines; these pointers are updated during each context 
switch. 

These mechanisms can be used to implement two distinct 
types of interactions between dissimilar programming 
models: shared data structures and direct invocations 
from one programming model to another. 

Shared data structures are typically passive; the code 
associated with a data structure is executed only when a 
process invokes an operation on the data structure. 
When a process needs to wait for some condition while 
executing in an interface procedure, the code (shared by 
all processes that access the data structure) can follow 
the pointers to the process management routines for the 
currently executing process. It can then save the address 
of the unblock routine in the shared data structure, and 
call the block routine. At a later point in time, when 
another process establishes the condition, that process 
can retrieve the pointer to the unblock routine, and call 
into the module that manages the waiting process, caus- 
ing the process to unblock. The call to unblock may itself 
be a protected invocation if the two processes are from 
different programming environments. 

A direct invocation from one programming model to 
another causes a process to move from its native pro- 
gramming environment into the runtime environment of 
another programming model. This type of invocation can 
be very efficient (allowing a process to execute in another 
environment at the cost of single procedure call), but 
poses several problems for the implementation. In partic- 
ular, differences in process representation and behavior 
in the two environments can lead to process interference, 
wherein implicit assumptions about the nature of pro- 
cesses are embedded in the implementation of a program- 
ming model, and then violated by a calling process. 

The simplest example of process interference occurs 
when a process enters a nonreentrant runtime environ- 
ment. Many programming models use a run-until-block 
scheduling policy, and the underlying implementation 
typically assumes only one process can execute at a time 
in the environment. These implementations do not re- 
quire explicit synchronization, relying instead on the im- 
plicit assumption of mutually exclusive execution. This 
assumption is violated if a process is allowed to enter the 
runtime environment at any time using a procedure call. 

There are many examples of process interference, but 
in each case an assumption about the nature of processes 
is embedded in the implementation of a runtime environ- 

ment, and then violated by a process that calls into that 
environment from outside. One way to avoid process in- 
terference is to disallow procedure calls between pro- 
gramming models, requiring instead that a native process 
execute on behalf of each caller. Rather than introduce 
the overhead of process creation and scheduling on every 
interaction between programming models, we can avoid 
process interference by placing two constraints on the 
structure of programming environments: 

The code in an environment must be organized so as 
to isolate process dependencies. Code and data that de- 
pend on the native process model are placed into a full- 
model portion of the environment. Code and data that 
only depend on the process management interface of the 
currently executing process are placed into a semi-model 
portion. Only native processes should execute code in 
the full-model portion of the environment; any process 
can execute code in the semi-model portion. 

Every process that enters a runtime environment 
from outside must pass through an interface procedure 
that schedules a process for execution. If the required 
operation is located in the semi-model portion of the en- 
vironment, the calling process may be allowed to execute 
the operation immediately, or may be scheduled for exe- 
cution at a later time. If the required operation is located 
in the full-model portion of the environment, a local rep- 
resentative must be created and scheduled for execution 
on behalf of the calling process. 

By dividing a programming environment into full- 
model and semi-model portions, we separate those oper- 
ations that require a native process for execution from 
the operations that can be performed by any process. 
Semi-model operations can be especially efficient, since 
they do not add process management overhead (such as 
process creation or scheduling) to each operation. Full- 
model operations, on the other hand, have access to all 
the resources of the host environment, including the 
power and flexibility of the host programming model. 

3.5. RELATED WORK 

Many researchers have addressed some aspect of 
multi-model programming, including operating system 
support for user-level implementations of programming 
models, and communication mechanisms for use across 
programming models. We will describe the work most 
closely related to our approach on both of these issues. 

Implementing Multiple Models 

Several systems have addressed the need for coopera- 
tion between the kernel and user-level thread package to 
facilitate scheduling. Like Psyche, these systems allow 
user-level software to control the impact of general- 
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purpose, kernel-level strategies on model-specific imple- 
mentations. 

As part of the Symunix project at New York Univer- 
sity, Edler et al. [14] proposed a set of parallel program- 
ming extensions to the Unix kernel interface, including 
an asynchronous interface for the existing synchronous 
system calls in UNIX, and a quantum-extending mecha- 
nism designed to avoid preemption during critical sec- 
tions. The temporary nonpreemption mechanism em- 
ploys a counter in user space at a location known to the 
kernel. When entering a critical section, user-level code 
can increment the counter. Within reason, the kernel will 
refrain from preempting a process when the counter is 
nonzero. In contrast, the Psyche mechanism notifies the 
user level when preemption is imminent, without affect- 
ing the kernel policy. 

At the University of Washington, Anderson et al. [2] 
have explored user-level scheduling in the context of the 
Topaz operating system on the DEC SRC Firefly multi- 
processor workstation. For each address space, they 
maintain a pool of virtual processors (called scheduler 
activations) in the kernel. When a scheduler activation is 
preempted or blocks in the kernel, the kernel freezes its 
state and sends a new activation from the pool up into 
user space. The new activation (and any other running 
activations in the same address space) can examine the 
state of all processes in the address space and decide 
which ones to execute. The most important difference 
with Psyche is that scheduler activations notify the user 
level after an event has occurred, with the expectation 
that another activation on another processor will respond 
to the event. Psyche always notifies the virtual processor 
associated with an event, so that the event can be han- 
dled on the same processor on which it occurred, and by 
the virtual processor most affected by the event. 

A somewhat different approach was proposed by 
Black for use in the Mach operating system [lo]. Instead 
of having applications control their scheduling behavior 
by responding to events generated in the kernel, he added 
a collection of system calls to Mach so that threads may 
give hints to the kernel scheduler. These calls allow a 
thread to indicate that it should be descheduled, or to 
identify a particular thread that should be executed in- 
stead. 

Integrating Multiple Models 

Integrating multiple models within a single application 
requires that processes from each of the modules be able 
to communicate and synchronize. Previous work has 
considered how to cross traditional boundaries between 
programming models, such as machine or address space 
boundaries, but the problem of process interference has 
not been addressed. 

Remote procedure call (RPC) [8] is a well-known com- 

munication mechanism that allows processes to invoke 
procedures located on other machines or in other address 
spaces. Most RPC systems avoid the problem of process 
interference by requiring that a native process execute 
the called procedure. LRPC [6], a lightweight remote 
procedure call facility for communication between ad- 
dress spaces in a shared-memory multiprocessor, allows 
the calling process to execute in the called environment, 
because the implementation assumes a single process 
model. Without this assumption, process interference 
could arise, and important optimizations used in LRPC 
for thread management might not be possible. 

HRPC (heterogeneous remote procedure call) is a re- 
mote procedure call facility designed to accommodate 
hardware and software heterogeneity [7]. HRPC defines 
an interface for thread management similar to the process 
management interface in Psyche. Any thread package 
meeting the interface can be implemented easily using the 
HRPC runtime. Unlike Psyche, the HRPC thread man- 
agement interface is not intended for use by other pro- 
gramming models to access model-specific functions. 

The Portable Common Runtime (PCR) [35] supports 
multiple models within a single application by providing a 
common substrata of low-level abstractions, including 
threads, memory, and 110. Processes from different 
models can interact by making "intercalls" between en- 
vironments, but the process model (based on PCR 
threads) is the same in all environments. 

Agora [9] is one the few systems designed for a hetero- 
geneous, distributed environment that does not use some 
form of remote procedure call for communication. Agora 
provides a distributed shared memory for interprocess 
communication. Access to this shared memory is pro- 
vided through customized access functions written in a 
Lisp-like specification language. The access functions co- 
ordinate the behavior of processes within the shared 
memory using local process management routines pro- 
vided by the host operating system (i.e., Mach), much as 
a semi-model coordinates the behavior of processes that 
enter a new programming environment in Psyche. The 
primary difference between the two systems is that Ag- 
ora defines new abstractions for use by all processes (a 
distributed shared memory and specific synchronization 
events), while Psyche allows processes to interact using 
their native abstractions for communication and synchro- 
nization. 

4. A MULTI-MODEL PROGRAM FOR CHECKERS 

The Rochester Checkers Player is a multi-model vision 
application implemented on top of Psyche. A checkers- 
playing robot conducts a game of checkers (draughts) 
against a human opponent, cyclically sensing the oppo- 
nent's move, and then planning and executing its re- 
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sponse, all within about 5 s. The robot uses a voice syn- 
thesizer to issue status information, error messages, and 
occasional gratuitous remarks. 

4.1. Hardware Environment 

A modern computer vision laboratory is likely to in- 
clude sophisticated effectors or mobile vehicles, and 
movable, computer-configurable sensors. The work de- 
scribed in this paper was performed in such a laboratory, 
which currently consists of six key components (Fig. I): 
a binocular head containing movable cameras for visual 
input; a robot arm that supports and moves the head; a 
special-purpose parallel processor for high-bandwidth, 
low-level vision processing; and several choices of 
general-purpose MIMD parallel processors for computa- 
tions from high-level vision and planning to motor con- 
trol. Two components not relevant to this paper are a 16- 
degree-of-freedom Utah dextrous manipulator (hand) and 
a Dataglove for input of manipulation configurations. 

The head has two movable grey-scale CCD television 
cameras and a fixed color camera providing input to a 
MaxVideo pipelined image-processing system. One mo- 
tor controls the tilt angle of the two-camera platform, and 
separate motors control each camera's pan angle, provid- 
ing independent vergence control (Fig. 2). The control- 
lers allow sophisticated velocity and position commands 
and data read-back. 

8 Processor 
Sparc Console 

Silicon Graphics 

24 Node Butterfly Transputer Array 

Parallel Processor 

(Psyche) 

v 

MaxVideo Pipeline 

FIG. 2. In this configuration the robot head has one large color 
camera, two small grey-scale cameras, a single tilt motor, twin pan 
motors, and a passively compliant checker-pushing tool. 

The robot body is a PUMA761 six-degree-of-freedom 
arm with a 2-m radius workspace and a top speed of 
about 1 mls. It is controlled by a dedicated LSI-11 com- 
puter implementing the proprietary VAL execution mon- 
itor and programming interface. 

The MaxVideo system consists of several independent 
boards that can be cabled together to achieve a wide 
range of frame-rate image analysis capabilities. The Max- 
Video boards are all register programmable and are con- 
trolled by a host processor via the VME bus. The 
ZEBRA and ZED programming systems, developed at 
Rochester, make this hardware easily and interactively 
programmble. 

A characteristic feature of our laboratory is the capa- 
bility to use a multiprocessor as the central computing 
resource and host. Our BBN Butterfly Plus Parallel Pro- 
cessor has 24 nodes, each consisting of an MC68020 pro- 
cessor, MC68851 MMU, MC68881 FPU, and 4 MBytes 
of memory. The Butterfly is a shared-memory multipro- 
cessor with nonuniform memory access times; local 
memory is roughly 12x faster to access than nonlocal 
memory. The Butterfly has a VME bus connection that 
mounts in the same card cage as the MaxVideo and mo- 
tor controller boards. The Butterfly has a serial port on 
each board; we use the port to communicate directly with 
the VAL robot control software. A Sun 41330 worksta- 
tion acts as a host terminal system. I 1 L Robot Pan-Tilt Head 1 

4.2. Parallel Programming Environments 

Dextrous Four-finger 

FIG. 1. Vision and robotics laboratory. 

The Checkers Player, like many animate vision appli- 
cations, consists of tasks to implement sensing, planning, 
and action. In our implementation, each of these func- 
tions is implemented using a different parallel program- 
ming environment: Multilisp, Lynx, the Uniform Sys- 
tem, or Uthread. 
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Multilisp [15] is a Lisp extension for parallel symbolic 
programming developed at MIT. The unit of parallelism 
in Multilisp is the future, which is a handle for the evalua- 
tion of an arbitrary s-expression that is evaluated in par- 
allel with the caller. Although the value of the s-expres- 
sion is undetermined until the expression has been 
completely evaluated, the handle for that value can be 
passed around and referenced as needed. Futures are 
evaluated last-in-first-out to avoid the combinatorial 
growth in the number of futures that would otherwise 
result from the extensive use of recursion in Lisp. Any 
attempt to reference a future before the value is deter- 
mined causes the caller to block. These two mechanisms, 
parallel execution via futures and synchronization via 
references to futures, suffice to build parallel programs in 
Lisp. 

Lynx [28] is a parallel programming language based on 
message passing. Lynx programs consist of multiple 
heavyweight processes, each with its own address space, 
that exchange messages using named communication 
channels (links). Each heavyweight process consists of 
multiple lightweight threads of control that communicate 
using shared memory. Thread creation occurs as a side- 
effect of communication; a new thread is automatically 
created to handle each incoming message. Condition 
variables are used for synchronization between threads in 
the same process; synchronous message passing pro- 
vides synchronization between processes. 

The Uniform System [33] is a shared-memory, data- 
parallel programming environment developed at BBN for 
the Butterfly. Within a Uniform System program, task 
generators are used to create a potentially large number 
of parallel tasks, each of which operates on some portion 
of a large shared address space. Task descriptors are 
placed on a global FIFO work queue, and are removed by 
processors looking for work. Each task must run to com- 
pletion, at which time another task is removed from the 
task queue. Each processor maintains processor-private 
data, which may be shared by all tasks that execute on 
that processor. The primary mechanism for communica- 
tion is the globally shared memory, which is accessible to 
all Uniform System tasks on all processors. Since tasks 
are not allowed to block, spinlocks are used for synchro- 
nization. 

Uthread is a simple, lightweight thread package devel- 
oped for Psyche that can be called from C+ + programs. 
Uthread is the general-purpose programming environ- 
ment of choice in Psyche, and is frequently used to imple- 
ment single-threaded servers. 

4.3. Data Structures 

The primary data structures used in the Checkers 
Player are the representations of the checkerboard and 

the moves. There are four different board representa- 
tions, each used for different tasks: 

1. A digitized image of the board from the TV camera 
(512 x 512 x 8 bits). 

2 .  Calibration information that locates the squares of 
the board in the robot's workspace. 

3.  A quantitative description of the ( X ,  Y ,  2) location 
of the centroids of pieces on the board and their color. 

4. A symbolic description of the board, denoting 
which squares contain pieces of which color. 

Three different representations for moves are used, de- 
pending on the context in which a move is considered. 
One representation is simply the new board state that 
results from the move. A move may also be represented 
as a sequence of physical coordinates for the robot mo- 
tion commands. A third representation is the list of par- 
tial moves (i.e., a push or a sequence ofjumps) needed to 
execute a move. A short pipeline of moves is maintained 
to support backing up to legal or stable states. 

The various representations for the board and move 
data structures are encapsulated within the Board Mod- 
ule, which provides synchronized access to the data 
structures, and translation routines between the various 
representations. The Board Module is implemented using 
the Uthread package; a single thread of control is created 
to initialize the data structures, after which the module 
becomes a passive data structure shared by tasks from 
other programming models. The synchronization rou- 
tines provided by the Board Module use the Psyche con- 
ventions for process management to implement sema- 
phores that can be called by any model. 

4.4. Modules 

The execution of the program is implemented as a se- 
ries of moves, each of which requires the cooperation of 
several modules and programming models. Control flow 
among the modules is indicated by the arrows in Fig. 3. 

In addition to the Board Module, there are seven other 
modules in the Checkers Player implementation. Three 
of these modules manage the robot devices; the remain- 
der implement vision, checkers strategy, and motion 
planning. 

Camera Manager-a Uthread module that initializes 
the VME memory used to control and access the Max- 
Video hardware. The Board Interpreter accesses this 
memory directly to retrieve an image from the MaxVideo 
framebuffer. 

Board Interpreter-a Uniform System program that 
transfers an image from VME memory to local Butterfly 
memory, and produces a symbolic description of the 
checkers in the image. 

Move Recognizer-a Uthread module that compares 



MARSH ET AL. 

Peripherals 1 Butterfly 
< I 

Camera Manager Board Interpreter 

(Zebra, Uthread) (Uniform System) 

I 
I 
I < Â¥> 
I Move Recognizer Board Module 

Peripherals I I 

< I Butterfly 

I 
I 
I 
I 

I 
I 
I A 
I 
I 
I 
I 
I 
I v 

FIG. 3. Functional modules and communication paths in the Checkers Player. Multiple models of parallelism (to the right of the dotted line) are 
implemented under Psyche on the Butterfly. Perceptual and motor modules (to the left of the dotted line) reside on the Butterfly and in peripherals. 

two successive symbolic board interpretations produced 
by the Board Interpreter, and recursively decomposes 
the differences into a sequence of legal partial moves 
(i.e., single jumps or moves) that transforms the first in- 
terpretation into the second. 

Game Player-a checkers game-playing program writ- 
ten in Lynx. It takes as input the list of partial moves 
describing the human's move and produces as output the 
list of partial moves to be made in response. A single 
multithreaded master process manages the parallel evalu- 
ation of possible moves; slave processes perform subtree 
exploration on behalf of the master. 

Move Planner-a trajectory calculation and planning 
program written in Multilisp. This program transforms 

(Uthread) 

Puma Robot 

(Val) 

the information gained from vision into a form useful for 
planning the robot's actions in the world. It constructs, in 
parallel, artificial potential fields that have peaks reflect- 
ing square occupancies and bias reflecting the goal loca- 
tion (see Fig. 4) [18]. For individual moves, the goal loca- 
tion is a particular square; when removing pieces, the 
goal location is one of eight goal areas off the board. 
These potential fields are considered in parallel, using a 
local search procedure that yields a gradient-descent path 
along which a checker can be pushed. The algorithm al- 
lows pieces to be temporarily moved aside or swapped 
with the moving piece. Candidate plans can be ranked by 
speed, effort, or other metrics. 

Speech Controller-a Uthread module that manages 

(U thread) 

I A 
I 
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1 

Robot Controller 
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FIG. 4. (a) A contour map of the path through the potential field resulting when piece q is moved to the left side of the board by first removing 
and then replacing a differently colored piece p. (b) A longer alternative path through a piece p that is the same color as q ,  allowing p to be moved 
off the bottom of the board, to be replaced by q. (c) The actual path selected minimizes both the path through the potential field and the cost of 
manipulating pieces. (d) A 3-D representation of the potential field for the path selected, which moves q off the bottom-left corner of the board. 

the voice synthesizer using a serial line connection. This 
module handles invocation requests for speech genera- 
tion. Since interactions with the speech board must take 
place on the node to which the board is attached, a 
Uthread process in the Speech Controller serves as a 
local proxy for interactions with the board. 

Robot Controller-a Uthread module that controls a 
serial line connection between the Butterfly and the ro- 
bot. This module sends movement commands to the ro- 
bot (equivalent to MoveTo (X,Y,Z, SPEED)), and awaits 
notification of successful completion. Once again, a 
Uthread process serves as a local proxy for interactions 
with the board. 

4.5. Intermodel Communication 

There are two kinds of interactions between modules 
in the Checkers Player: semi-model operations executed 
by a calling process, and full-model operations that re- 
quire a native process for execution. Table I11 lists the 
operations exported by the various modules, and indi- 
cates whether an operation is a semi-model or a full- 
model operation. (Some modules export no operations, 
and therefore are not listed in the table.) 

The Board Module is a passive data structure, and 
therefore only exports semi-model operations. After ini- 
tialization, all the functions within the Board Module are 
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TABLE I11 
Exported Operations Used in Checkers Player 

Module name Operation Type 

Board Module set-checkers-desc 
get_checkers_desc  
get_human_move 
set_human_move_status 
analyze-board 
update-vis ion  
update-robot 

Move Recognizer f i n L p a r t  i al-move 
Move Planner do-part ial-move 
Robot Controller move-robot 
Speech Controller speak 

semi 
semi 
semi 
semi 
semi 
semi 
semi 
semi 
f u l l  
f u l l  
f u l l  

executed by a calling process from another environment. 
Uniform System processes from the Board Interpreter 
call into the Board Module to register a new board config- 
uration. Lynx processes from the Game Player call into 
the Board Module to wait for a new human move. If the 
new board configuration represents a legal move, the 
Uniform System process from the Board Interpreter sig- 
nals the waiting Lynx process using a semaphore for con- 
dition synchronization. The semaphore is implemented 
using the process management interface for the currently 
executing process. When the Lynx process must wait for 
the semaphore, a call is made back to the Lynx runtime 
to block the process. However, before doing so the sema- 
phore implementation records the process identifier and 
the address of the unblock routine for later use by the 
Uniform System process that registers a new move. 

Lynx processes from the Game Player call the Move 
Planner to get a partial move executed. Process interfer- 
ence between the Lynx process and the Multilisp envi- 
ronment is avoided by creating a Multilisp future to per- 
form the operation. On entry to do-par t  ial-move the 
Lynx process enqueues its arguments to the called func- 
tion, and attempts to wake up a Multilisp server process. 
When the operation is completed by the server process, 
the unblock routine in the Lynx runtime environment is 
called to reschedule the Game Player's process. 

The Robot Controller and Speech Controller both ex- 
port full-model operations, since they require access to 
serial lines associated with a particular node in the ma- 
chine. The operations provided by these modules use 
server processes located on the appropriate node to im- 
plement communication with the serial line. 

4.6. The Benefits of Multi-model Programming 

The Checkers Player implementation demonstrates the 
advantages of decomposing animate vision systems by 
function, and independently selecting an appropriate par- 
allel programming model for each function. Programmers 

were free to choose the most appropriate programming 
model for each module, without placing constraints on 
how modules would be integrated. The Board Interpreter 
was written in the Uniform System because the fine-grain 
parallelism and shared memory of that programming 
model made it easy to implement the data parallel algo- 
rithm used for checker identification. The Game Player 
module was written in Lynx several years ago, and was 
easily incorporated into the Checkers Player without sig- 
nificant modifications. The Motion Planner module was 
written in Multilisp because the symbolic features of Lisp 
and the parallelism provided by the future construct 
made it easy to express the planning algorithm. The 
Board Module, the Robot Controller, and the Speech 
Controller were written in Uthread because their func- 
tions were both low-level and simple; none required the 
special features of a sophisticated programming model. 

Each of the modules was developed independently by 
a different person, and then integrated into the whole. 
Integration was simplified by the use of model- 
independent communication: each module exports a 
model-independent communication interface for use by 
other modules. Process interference was avoided within 
each module by separating operations into semi-model 
and full-model portions of the module. 

Source code statistics for the Checkers Player are pre- 
sented in Table IV. For each module this table lists the 
number of lines of code in the application, the underlying 
runtime environment, and the interface procedures 
(stubs) for the exported operations. Implementation re- 
quired about 2900 lines of new application-level code, 
and 550 lines of stub interface code (which were pro- 
duced by hand, but which could easily be produced auto- 
matically by a stub generator). We were able to reuse 
1800 lines of Lynx code, and all of the code in the runtime 
environments. We had to add almost 900 lines of code to 
the Lynx and Multilisp runtime environments to imple- 
ment the semi-model interface used by processes from 
other models, but this code is not application specific, 
and can be reused in future applications. 

Only a small percentage of the code written specifically 
for the Checkers Player required expertise with system 
software. Application programmers implemented the 
Board Interpreter, Move Planner, and Board Module. 
Each of these programmers had expertise in one pro- 
gramming model, but none required experience with the 
other models in use. Even though the Board Module was 
written in Uthread, and is accessed by Uniform System 
processes and Lynx processes, there was no need for the 
implementor to understand the details of all three pro- 
gramming models; the code contains no provisions for 
the specific types of processes that call it. The ease with 
which the Board Module was built demonstrates how 
model-independent communication simplifies the con- 
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TABLE IV 
Source Code Statistics for the Checkers Player 

Application Runtime 

Module Model Full Semi Full Semi Stubs 

Board Module 
Camera Manager 
Board Interpreter 
Move Recognizer 
Game Player 
Move Planner 
Robot Controller 
Speech Controller 

Uthread 
Uthread 
Uniform System 
Uthread 
Lynx 
Multilisp 
Uthread 
U thread 

struction and use of modules that are shared between 
different process types. 

The implementation required two months of part-time 
effort by five people. There are two reasons for the timely 
success of this effort: each programmer was free to 
choose the best available programming model for each 
module, and the integration effort did not require inti- 
mate knowledge of the other programming models in use. 
Most of the effort was devoted to application concerns, 
such as high-level and low-level vision, parallel potential 
field minimization, and a novel algorithm for determining 
a sequence of partial moves from two board configura- 
tions. Relatively little effort was required for integration. 
We were able to change many decisions about which 
modules would communicate directly with each other, 
and which should use certain shared data structures. Our 
experiences have convinced us of the importance of inte- 
gration through shared data abstractions, and customized 
communication protocols accessible from every parallel 
programming model. 

5. CONCLUSIONS 

We can summarize the tenets of active, behavioral, 
task-oriented (in short, animate) vision as follows: 

1. Vision does not function in isolation, but is instead a 
part of a complex behavioral system that interacts with 
the physical world. 

2. General-purpose vision is a chimera. There are sim- 
ply too many ways in which image information can be 
combined, and too much that can be known about the 
world for vision to construct a task-independent de- 
scription. 

3.  Directed interaction with the physical world can 
permit information that is not readily available from 
static imagery to be obtained efficiently. 

4. Vision is dynamic; fast vision processing means that 
the world can serve as its own database, with the system 

retrieving relevant information by directing gaze or at- 
tention. 

5. Vision is adaptive; the functional characteristics of 
the system may change through interactions with the 
world. 

6. Vision requires several concurrently cooperating 
layers of functionality with different degrees of potential 
parallelism. 

It has been our experience that an integrated architec- 
ture for animate vision must support multi-model parallel 
programming. That is, it should be possible to select the 
best parallel programming model for each task, and then 
to integrate those tasks into a single application easily. 

In this paper we described how the Psyche operating 
system supports multi-model programming through 
mechanisms for first-class user-level threads and model- 
independent communication. We then illustrated the use 
of those mechanisms in the implementation of a checkers 
playing robot. In the Checkers Player, different program- 
ming models were used for vision (fine-grain processes 
using shared memory), robot motion planning (Multilisp 
futures), and strategy (coarse-grain processes using mes- 
sage passing). Tasks from different programming models 
are able to synchronize and communicate using shared 
data structures. 

A major conclusion of this work is that multi-model 
parallel programming has significant software engineer- 
ing advantages. Our use of multiple models in the Check- 
ers Player was not an artificial constraint, but instead was 
a reasoned choice based on the tasks to be performed, the 
expertise of the people involved, the available software, 
and the available programming environments. By extend- 
ing the well-known software engineering principle of 
modularity to include different parallel programming en- 
vironments, we increase the expressive power, reusabil- 
ity, and efficiency of the resulting code, and thereby sim- 
plify the construction of complex, animate vision 
systems. 
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