
Operating System Support for Animate Vision*

B. MARSH, C. BROWN, T. LEBLANC, M. SCOTT, T. BECKER, P. DAS, J . KARLSSON, AND C. QUIROZ

Computer Science Department, The University of Rochester, Rochester, New York 14627

Animate vision systems couple computer vision and robotics to
achieve robust and accurate vision, as well as other complex be-
havior. These systems combine low-level sensory processing and
effector output with high-level cognitive planning-all computa-
tionally intensive tasks that can benefit from parallel processing.
A typical animate vision application will likely consist of many
tasks, each of which may require a different parallel programming
model, and all of which must cooperate to achieve the desired
behavior. These multi-model programs require an underlying soft-
ware system that not only supports several different models of
parallel computation simultaneously, but which also allows tasks
implemented in different models to interact. This paper describes
the Psyche multiprocessor operating system, which was designed
to support multi-model programming, and the Rochester Check-
ers Player, a multi-model robotics program that plays checkers
against a human opponent. Psyche supports a variety of parallel
programming models within a single operating system by accord-
ing first-class status to processes implemented in user space. It
also supports interactions between programming models using
model-independent communication, wherein different types of
processes communicate and synchronize without relying on the
semantics or implementation of a particular programming model.
The implementation of the Checkers Player, in which different
parallel programming models are used for vision, robot motion
planning, and strategy, illustrates the use of the Psyche mecha-
nisms in an application program, and demonstrates many of the
advantages of multi-model programming for animate vision sys-
tems. 0 1992 Academic Press, Inc.

1. ANIMATE VISION

Vision can be viewed as a passive observational activ-
ity, or as one intimately related to action (e.g., manipula-
tion, navigation). In passive vision systems the camera
providing the image input is immobile. Active vision sys-
tems use observer-controlled input sensors [I]. Active
vision results in much simpler and more robust vision
algorithms for several reasons. A fixed camera may not
have an object in view, whereas active vision can use

* This research was supported by the National Science Foundation
under Grants IRI-8920771, CDA-8822724, CCR-9005633, and IRI-
8903582. Support also came from ONRIDARPA Contract N00014-82-
K-0193. Brian Marsh was supported by a DARPAINASA Graduate
Research Assistantship in Parallel Processing. The government has cer-
tain rights in this material.

physical search, through navigation or manipulation, and
can change intrinsic or extrinsic camera parameters.
Static camera placement results in nonlinear, ill-posed
problems, whereas known, controlled camera move-
ments and knowledge of camera placement provide self-
generated constraints that simplify processing. Stereo fu-
sion is intractable, whereas an actively verging system
simplifies stereo matching. A solitary fixed camera im-
poses a single, possibly irrelevant, coordinate system;
active vision can generate and use exocentric coordinate
frames, yielding more robust quantitative and qualitative
algorithms, and serving as a basis for spatial memory.
Fixed spatial resolution limits imaging effectiveness,
whereas variable camera parameters can compensate for
range, provide a varying depth of field, and indirectly
give information about the physical world. Segmentation
of static, single images is a known intractable problem,
whereas gaze control helps segmentation: active ver-
gence or object tracking can isolate visual phenomena in
a small volume of space, simplifying grouping.

Another aspect of active vision is its behavioral char-
acter; that is, intelligent activity, including perception,
can be structured as vertically integrated skills (or behav-
iors) that are applied in particular contexts. Table I
shows some visual capabilities in their behavioral con-
texts.

Another dimension for classifying computer vision ap-
proaches is reconstructive versus animate. In the recon-
structionist or general-purpose paradigm, the vision task
is to reconstruct physical scene parameters from image
input, to segment the image into meaningful parts, and
ultimately to describe the visual input in such a way that
higher-level systems can act on the descriptions to ac-
complish general tasks. During the last decade, substan-
tial progress in reconstructionist vision has been made
using both passive and active systems that exploit physi-
cal and geometric constraints inherent in the imaging pro-
cess [17]. However, reconstructionist vision appears to
be nearing its limits without reaching its goal.

An alternative to reconstructionist vision derives from
the observation that biological systems do not, in general,
perform goal-free, consequence-free vision [4]. This ob-
servation suggests that vision may, of necessity, be a
more interactive, dynamic, and task-oriented process
than is assumed in the reconstructionist approach. Ani-

0743-73 15/92 $5.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

104 MARSH ET AL.

TABLE I
Computations Simplified by Behavioral Assumptions

Visual task Behavioral context

Shape from shading

Time to adjacency

Kinetic Depth

Color Homing

Optic Flow
Stereo Depth

Edge Homing

Binocular Object Tracking

Light source not directly behind viewer
[251

Rectilinear motion; gaze in the direction
of motion [21]

Lateral head motion while fixating a
point in a stationary world [4]

Target object is distinguished by its color
spectrum [36]

Texture-rich environment [I61
System can fixate environmental points

[371
Target position can be described by

approximate directions from texture in
its surround [24]

Vergence and tracking operate simulta-
neously [I31

mate vision researchers, inspired by successful biological
systems, seek to develop practical, deployable vision
systems using two principles: the active, behavioral ap-
proach (Table I), and task-oriented techniques that link
perception and action. Table I1 summarizes the key dif-
ferences between the reconstructionist vision paradigm
and the task-oriented approach.

Animate vision thus needs cooperation between com-
plex high-level symbolic algorithms and intensive low-
level, real-time processing. The computations required
by animate vision systems are so extensive that a parallel
implementation is necessary to achieve the required per-
formance. Fortunately many of the tasks in an animate
vision system are inherently parallel. Inputs from multi-
ple sensors can be processed in parallel. Early vision
algorithms are intensely data-parallel. Planning and strat-
egy algorithms frequently search a large state space,
which can be decomposed into smaller spaces that are
searched in parallel. Thus, there is no problem finding
parallelism in the application. However, the type of par-

TABLE I1
Key Differences between Passive Vision and

Task-Oriented Vision

Passive vision Task-oriented vision

Use all vision modules Use a subset of vision modules
Process entire image Process areas of the image
Maximal detail Sufficient detail
Extract representation first Ask question first
Answer question from Answer question from scene

representation data data
Unlimited resources Limited resources

allelism we would like to exploit varies among tasks in
the system-no single model of parallel computation is
likely to suffice for all tasks.

The difficulty arises because parallelism can be applied
in many ways, using different programming constructs,
languages, and runtime libraries for expressing parallel-
ism. Each of these environments can be characterized by
the process model it provides: the abstraction for the
expression and control of parallelism. The process model
typically restricts the granularity of computation that can
be efficiently encapsulated within a process, the fre-
quency and type of synchronization, and the form of
communication between processes. A typical animate vi-
sion application will likely consist of many tasks, each of
which may require a different parallel programming
model, and all of which must cooperate to achieve the
desired behavior. These multi-model programs require an
underlying software system that not only supports sev-
eral different models of parallel computation simulta-
neously, but which also allows tasks implemented in dif-
ferent models to interact.

In this paper we argue that an architecture for animate
vision systems must support multi-model programming.
We describe an operating system, called Psyche, that
was designed to support multi-model programming. We
illustrate the use of Psyche, and the general concept of
multi-model programming, by describing the implementa-
tion of the Rochester Checkers Player, a multi-model ro-
botics application. The Checkers Player visually moni-
tors a standard checkerboard, decides on a move in
response to a move by a human opponent, and moves its
own pieces. We describe the implementation of our
Checkers Player in detail, emphasizing the use of several
different programming models, and the integration of
tasks in the implementation.

2. SOFTWARE REQUIREMENTS FOR ANIMATE VISION

Animate vision systems are inherently parallel. The
hardware devices they use provide one source of parallel-
ism. The algorithms used for device control and for com-
bining perception and action provide another source. The
real issue is how to harness the parallelism inherent in the
application without being overwhelmed by the complex-
ity of the resulting software. Our experiences with two
DARPA benchmarks for parallel computer vision [l l , 341
and a recent goal-oriented system [26, 271 illustrate the
utility of multiple parallel programming environments for
implementing computer vision algorithms, and the diffi-
culty of successfully integrating the components of an
animate vision system.

The first DARPA benchmark contained a suite of non-
interacting routines for low- and high-level vision tasks.
The low-level vision routines required manipulation of

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION 105

two-dimensional pixel arrays using data parallelism, best
accomplished using an SIMD style of computation. To
implement these functions we used BBN's Uniform Sys-
tem library package [33]. We were able to show that
pixel-level data-parallel functionality could be imple-
mented on a shared-memory multiprocessor with nearly
linear speedup given additional processors [12]. (Al-
though we now use pipelined hardware for most low-
level vision tasks, those functions not available in hard-
ware can be implemented reasonably in software.)

The functions for high-level vision required coarser-
grain parallelism than is provided by the Uniform Sys-
tem. To implement these functions we used two parallel
programming environments developed at Rochester: a
message-passing library [I91 and a parallel programming
language [28]. These examples demonstrated the utility
of the message-passing paradigm on a shared-memory
machine.

Several of the tasks in the first benchmark suite called
for graph algorithms that are naturally implemented with
many independent, lightweight processes, one per node
in the graph. The lack of such a programming model was
a major impediment in the development of the graph algo-
rithms, and led to the subsequent development of a new
programming environment [29].

Each of these vision tasks naturally suggested a partic-
ular model of parallelism that made programming that
particular application easier in some way. Clearly, having
multiple programming models to chose from was a bene-
fit of our software environment.

The second benchmark called for an integrated scene-
describing system. This benchmark emphasized integra-
tion of several levels of image understanding to describe
a scene of polygons at various discrete depths. It thus
underscored the usefulness of a unified approach to
multi-model parallelism. Unfortunately, our previous in-
dividual solutions were implemented using several differ-
ent programming models and we lacked the system sup-
port necessary to integrate them. The data structures
produced by our SIMD computations could not be ac-
cessed directly by processes in our MIMD computations.
Processes of different types could not synchronize. Ironi-
cally, the very diversity that facilitated our success in the
first benchmark prevented a successful implementation
of the second.

A more recent example of the difficulties in construct-
ing a real-time, flexible task-oriented application is the
TEA system [26, 271, in which Bayes nets, planning, and
a maximum-expected-utility decision rule provide a
knowledge base and control structure to choose and ap-
ply visual actions for information acquisition. Visual
actions involve camera movements, imagery selection
(foveal, peripheral, color, grey-scale), and operator se-
lection. TEA is designed to embody all the characteris-

tics of a task-oriented system (Table 11). Currently TEA
uses hardware pipelined parallelism for some low-level
vision tasks, but does not exploit parallelism elsewhere.
As a result, the system is too slow to deal with a dynamic
environment. We hope to achieve real-time performance
(thus producing a real-time planning and acting system)
by exploiting parallelism (both data parallelism and func-
tional parallelism) in the implementation. Image process-
ing and analysis can be parallelized easily, speeding up
individual modules and allowing several visual modules
to run together on a scene. Propagation of belief through
the network can proceed in parallel with motor control
for object tracking or changing of viewpoint. Recent
work with an eight-node transputer configuration has
demonstrated the practicality of a multi-model approach,
and has shown that sufficient image input bandwidth is
available to support real-time operation.

The DARPA benchmarks, the TEA system, and other
applications experience illustrate the potential advan-
tages of using a large-scale MIMD multiprocessor as the
controlling architecture in integrated animate vision sys-
tems. Our experiences also demonstrate the importance
of matching each application, or parts of a large applica-
tion, to an appropriate parallel programming environ-
ment, and the importance of integrating functions across
environment boundaries. We will now describe a multi-
processor operating system designed to facilitate both the
construction and integration of multiple parallel program-
ming environments.

3. THE PSYCHE MULTIPROCESSOR
OPERATING SYSTEM

3.1. Background

The widespread use of distributed and multiprocessor
systems in the last decade has spurred the development
of programming environments for parallel processing.
These environments provide many different notions of
processes and styles of communication. Coroutines,
lightweight run-to-completion threads, lightweight block-
ing threads, heavyweight single-threaded processes, and
heavyweight multi-threaded processes are all used to ex-
press concurrency. Individually routed synchronous and
asynchronous messages, unidirectional and bidirectional
message channels, remote procedure calls, and shared
address spaces with semaphores, monitors, or spin locks
are all used for communication and synchronization.
These communications and process primitives, among
others, appear in many combinations in the parallel pro-
gramming environments in use today.

A parallel programming environment defines a model
of processes and communication. Each model makes as-
sumptions about communication granularity and fre-

106 MARSH ET AL.

quency, synchronization, the degree of concurrency de-
sired, and the need for protection. Successful models
make assumptions that are well matched to a large class
of applications, but no existing model has satisfied all
applications. Problems therefore arise when we attempt
to use a single operating system as the host for many
different models, because the traditional approach to op-
erating system design adopts a single model of parallel-
ism and embeds it in the kernel. The operating system
mechanisms are seldom amenable to change and may not
be well matched to a new parallel programming model
under development, resulting in awkward or inefficient
implementations in some parallel applications. For exam-
ple, although the traditional Unix interface has been used
to implement many parallel programming models, in
most cases the implementation has needed to compro-
mise on the semantics of the model (e.g., by blocking all
threads in a shared address space when any thread makes
a system call) or accept enormous inefficiency (e.g., by
using a separate Unix process for every lightweight
thread of control).

Since 1984 we have explored the design of parallel pro-
gramming environments on shared-memory multiproces-
sors. Using the Chrysalis operating system from BBN [5]
as a low-level interface, we created several new program-
ming libraries and languages, and ported several others
[20]. We were able to construct efficient implementations
of many different models of parallelism because Chrysa-
lis allows the user to manage memory and address spaces
explicitly, and provides efficient low-level mechanisms
for communication and synchronization. As in most op-
erating systems, however, Chrysalis processes are
heavyweight (each process resides in its own address
space), so lightweight threads must be encapsulated in-
side a heavyweight process, and cannot interact with the
processes of another programming model.

Each of our programming models was developed in
isolation, without support for interaction with other
models. Our experiences with the implementation of
these individual models, coupled with our integration ex-
periences in the DARPA benchnmarks, convinced us of
the need for a single operating system that would provide
both an appropriate interface for implementing multiple
models and conventions for interactions across models.
The Psyche multiprocessor operating system [30-321 was
designed to satisfy this need.

Rather than establish a high-level model of processes
and communication to which programming environments
would have to be adapted, Psyche adopts the basic con-
cepts from which existing environments are already con-
structed (e.g., procedure calls, shared data, address
spaces, and interrupts). These concepts can be used to
implement, in user space, any notion of process desired.
These concepts can also be used to build shared data

structures that form the basis for interprocess communi-
cation between different types of processes.

3.2. Psyche Kernel Interface

The Psyche kernel interface provides a common sub-
strate for parallel programming models implemented by
libraries and language runtime packages. It provides a
low-level interface that allows new packages to be imple-
mented as needed and implementation conventions that
can be used for communication between models when
desired.

The kernel interface is based on four abstractions:
realms, protection domains, processes, and virtual pro-
cessors.

Each realm contains code and data. The code provides
a protocol for accessing the data. Since all code and data
are encapsulated in realms, computation consists of invo-
cation of realm operations. Interprocess communication
is effected by invoking operations of realms accessible to
more than one process.

To facilitate the sharing of arbitrary data structures at
run time, Psyche arranges for every realm to have a
unique system-wide virtual address. This uniform ad-
dressing allows processes to share pointers without wor-
rying about whether they might refer to different data
structures in different address spaces.

Depending on the degree of protection desired, invoca-
tion of a realm operation can be as fast as an ordinary
procedure call (optimized invocation), or as safe as a re-
mote procedure call between heavyweight processes
(protected invocation). The two forms of invocation are
initiated in exactly the same way, with the native archi-
tecture's jump-to-subroutine instruction. In some cases
this instruction generates a page fault, allowing the kernel
to intervene when necessary during protected invoca-
tions.

A process in Psyche represents a thread of control
meaningful to the user. A virtual processor is a kernel-
provided abstraction on top of which user-defined pro-
cesses are implemented. There is no fixed correspon-
dence between virtual processors and processes. One
virtual processor will generally schedule many pro-
cesses. Likewise, a given process may run on different
virtual processors at different points in time. On each
physical node of the machine, the kernel time-slices the
virtual processors currently located on that node.

As it invokes protected operations, a process moves
through a series of protection domains, each of which
embodies a set of access rights appropriate to the in-
voked operation. Within each protection domain, the
representations of processes are created, destroyed, and
scheduled by user-level code without kernel interven-
tion. As a process moves among domains, it may be rep-

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION 107

resented in many different ways (e.g., as lightweight
threads of various kinds or as requests on the queue of a
server).

Asynchronous communication between the kernel and
virtual processors is based on signals, which resemble
software interrupts. User-level code can establish inter-
rupt handlers for wall clock and interval timers. The in-
terrupt handlers of a protection domain are the entry
points of a scheduler for the processes of the domain, so
protection domains can be used as boundaries between
distinct models of parallelism. Each scheduler is respon-
sible for the processes executing within its domain, man-
aging their representations, and mapping them onto the
virtual processors of the domain.

These Psyche kernel mechanisms support multi-model
programming by facilitating the construction of first-class
user-level threads [23] and model-independent communi-
cation [22]. First-class user-level threads enjoy the func-
tionality of traditional kernel processes, while retaining
the efficiency and flexibility of being implemented outside
the kernel. Model-independent communication allows
different types of processes to communicate and syn-
chronize using mechanisms that are not tied to the se-
mantics or implementation of a particular parallel pro-
gramming model.

3.3. First-Class User-Level Threads

In a multi-model programming system most program-
mers do not use the kernel interface directly; user-level
thread packages and language runtime environments pro-
vide the functionality seen by the programmer. This
means that the kernel is in charge of coarse-grain re-
source allocation and protection, while the bulk of short-
term scheduling occurs in user space. In according first-
class status to user-level threads, we intend to allow
threads defined and implemented in user space to be used
in any reasonable way that traditional kernel-provided
processes can be used. For example, first-class threads
can execute 110 and other blocking operations without
denying service to their peers. Also, time-slicing imple-
mented in user space can be coordinated with preemption
implemented by the kernel.

Our general approach is to provide user-level code
with the same timely information and scheduling options
normally available to the kernel. Software interrupts are
generated by the kernel when a scheduling decision is
required of a parallel programming environment imple-
mented in user space. Examples include timer expiration,
imminent preemption, and the commencement and com-
pletion of blocking system calls. Timer interrupts support
the time-slicing of threads in user space. Warnings prior
to preemption allow the thread package to coordinate
synchronization with kernel-level scheduling. Every sys-
tem call is nonblocking by default; the kernel simply de-

livers an interrupt when the call occurs, allowing the
user-level scheduler to run another thread.

The kernel and the runtime environment also share
important data structures, making it easy to convey infor-
mation in both directions. These data structures indicate
the state of the currently executing process, the address
of a preallocated stack to be used when handling software
interrupts, and a collection of variable for managing the
behavior of software interrupts. User-writeable data can
be used to specify what ought to happen in response to
kernel-detected events. When the kernel and user-level
code are allowed to share data, changes in desired behav-
ior can occur frequently (for example, when context
switching in user space).

3.4. Model-Independent Communication

In Psyche, a multi-model program can be constructed
as a set of modules (groups of realms), each of which may
implement a (potentially different) programming model.
Each module defines a set of interface procedures that
are used to access the code and data encapsulated by the
module. To communicate between modules, and hence
between different programming models, processes in-
voke interface procedures to access the memory associ-
ated with a module.

Shared memory is a viable communication medium be-
tween programming models, but by itself is insufficient to
implement a wide range of communication styles. In-
terprocess communication requires several steps, includ-
ing data transfer, control transfer and synchronization.
While shared memory is sufficient to implement data
transfer, both control transfer and synchronization de-
pend on the precise implementation of processes. For
this reason processes of different types usually communi-
cate using simple, low-level mechanisms (e.g., shared
memory and spin locks, with no protection mechanisms
in place) or generic, high-level communication primitives
(e.g., remote procedure calls requiring kernel interven-
tion for protection).

The Psyche approach to interprocess communication,
especially when the communicating processes are of dif-
ferent types, is based on two concepts:

A procedural interface for control and data trans-
fer-Each shared data structure is encapsulated within a
module and can only be accessed by invoking the appro-
priate interface procedures. Invocations (i.e., procedure
calls to realm operations) implement control and data
transfer. Either optimized or protected invocations may
be appropriate, depending on whether the shared data
structure resides within its own protection domain.

A kernel-supported interface for process manage-
ment-Each module that implements a parallel program-
ming model provides an interface to a set of process man-

108 MARSH ET AL.

agement routines. These routines, which are typically
used to block and unblock a thread of control imple-
mented within the programming model, can be invoked
from within shared data structures, providing a means for
synchronization among dissimilar process types. A data
structure shared between the kernel and user contains
pointers to the current set of process management rou-
tines; these pointers are updated during each context
switch.

These mechanisms can be used to implement two distinct
types of interactions between dissimilar programming
models: shared data structures and direct invocations
from one programming model to another.

Shared data structures are typically passive; the code
associated with a data structure is executed only when a
process invokes an operation on the data structure.
When a process needs to wait for some condition while
executing in an interface procedure, the code (shared by
all processes that access the data structure) can follow
the pointers to the process management routines for the
currently executing process. It can then save the address
of the unblock routine in the shared data structure, and
call the block routine. At a later point in time, when
another process establishes the condition, that process
can retrieve the pointer to the unblock routine, and call
into the module that manages the waiting process, caus-
ing the process to unblock. The call to unblock may itself
be a protected invocation if the two processes are from
different programming environments.

A direct invocation from one programming model to
another causes a process to move from its native pro-
gramming environment into the runtime environment of
another programming model. This type of invocation can
be very efficient (allowing a process to execute in another
environment at the cost of single procedure call), but
poses several problems for the implementation. In partic-
ular, differences in process representation and behavior
in the two environments can lead to process interference,
wherein implicit assumptions about the nature of pro-
cesses are embedded in the implementation of a program-
ming model, and then violated by a calling process.

The simplest example of process interference occurs
when a process enters a nonreentrant runtime environ-
ment. Many programming models use a run-until-block
scheduling policy, and the underlying implementation
typically assumes only one process can execute at a time
in the environment. These implementations do not re-
quire explicit synchronization, relying instead on the im-
plicit assumption of mutually exclusive execution. This
assumption is violated if a process is allowed to enter the
runtime environment at any time using a procedure call.

There are many examples of process interference, but
in each case an assumption about the nature of processes
is embedded in the implementation of a runtime environ-

ment, and then violated by a process that calls into that
environment from outside. One way to avoid process in-
terference is to disallow procedure calls between pro-
gramming models, requiring instead that a native process
execute on behalf of each caller. Rather than introduce
the overhead of process creation and scheduling on every
interaction between programming models, we can avoid
process interference by placing two constraints on the
structure of programming environments:

The code in an environment must be organized so as
to isolate process dependencies. Code and data that de-
pend on the native process model are placed into a full-
model portion of the environment. Code and data that
only depend on the process management interface of the
currently executing process are placed into a semi-model
portion. Only native processes should execute code in
the full-model portion of the environment; any process
can execute code in the semi-model portion.

Every process that enters a runtime environment
from outside must pass through an interface procedure
that schedules a process for execution. If the required
operation is located in the semi-model portion of the en-
vironment, the calling process may be allowed to execute
the operation immediately, or may be scheduled for exe-
cution at a later time. If the required operation is located
in the full-model portion of the environment, a local rep-
resentative must be created and scheduled for execution
on behalf of the calling process.

By dividing a programming environment into full-
model and semi-model portions, we separate those oper-
ations that require a native process for execution from
the operations that can be performed by any process.
Semi-model operations can be especially efficient, since
they do not add process management overhead (such as
process creation or scheduling) to each operation. Full-
model operations, on the other hand, have access to all
the resources of the host environment, including the
power and flexibility of the host programming model.

3.5. RELATED WORK

Many researchers have addressed some aspect of
multi-model programming, including operating system
support for user-level implementations of programming
models, and communication mechanisms for use across
programming models. We will describe the work most
closely related to our approach on both of these issues.

Implementing Multiple Models

Several systems have addressed the need for coopera-
tion between the kernel and user-level thread package to
facilitate scheduling. Like Psyche, these systems allow
user-level software to control the impact of general-

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION 109

purpose, kernel-level strategies on model-specific imple-
mentations.

As part of the Symunix project at New York Univer-
sity, Edler et al. [14] proposed a set of parallel program-
ming extensions to the Unix kernel interface, including
an asynchronous interface for the existing synchronous
system calls in UNIX, and a quantum-extending mecha-
nism designed to avoid preemption during critical sec-
tions. The temporary nonpreemption mechanism em-
ploys a counter in user space at a location known to the
kernel. When entering a critical section, user-level code
can increment the counter. Within reason, the kernel will
refrain from preempting a process when the counter is
nonzero. In contrast, the Psyche mechanism notifies the
user level when preemption is imminent, without affect-
ing the kernel policy.

At the University of Washington, Anderson et al. [2]
have explored user-level scheduling in the context of the
Topaz operating system on the DEC SRC Firefly multi-
processor workstation. For each address space, they
maintain a pool of virtual processors (called scheduler
activations) in the kernel. When a scheduler activation is
preempted or blocks in the kernel, the kernel freezes its
state and sends a new activation from the pool up into
user space. The new activation (and any other running
activations in the same address space) can examine the
state of all processes in the address space and decide
which ones to execute. The most important difference
with Psyche is that scheduler activations notify the user
level after an event has occurred, with the expectation
that another activation on another processor will respond
to the event. Psyche always notifies the virtual processor
associated with an event, so that the event can be han-
dled on the same processor on which it occurred, and by
the virtual processor most affected by the event.

A somewhat different approach was proposed by
Black for use in the Mach operating system [lo]. Instead
of having applications control their scheduling behavior
by responding to events generated in the kernel, he added
a collection of system calls to Mach so that threads may
give hints to the kernel scheduler. These calls allow a
thread to indicate that it should be descheduled, or to
identify a particular thread that should be executed in-
stead.

Integrating Multiple Models

Integrating multiple models within a single application
requires that processes from each of the modules be able
to communicate and synchronize. Previous work has
considered how to cross traditional boundaries between
programming models, such as machine or address space
boundaries, but the problem of process interference has
not been addressed.

Remote procedure call (RPC) [8] is a well-known com-

munication mechanism that allows processes to invoke
procedures located on other machines or in other address
spaces. Most RPC systems avoid the problem of process
interference by requiring that a native process execute
the called procedure. LRPC [6], a lightweight remote
procedure call facility for communication between ad-
dress spaces in a shared-memory multiprocessor, allows
the calling process to execute in the called environment,
because the implementation assumes a single process
model. Without this assumption, process interference
could arise, and important optimizations used in LRPC
for thread management might not be possible.

HRPC (heterogeneous remote procedure call) is a re-
mote procedure call facility designed to accommodate
hardware and software heterogeneity [7]. HRPC defines
an interface for thread management similar to the process
management interface in Psyche. Any thread package
meeting the interface can be implemented easily using the
HRPC runtime. Unlike Psyche, the HRPC thread man-
agement interface is not intended for use by other pro-
gramming models to access model-specific functions.

The Portable Common Runtime (PCR) [35] supports
multiple models within a single application by providing a
common substrata of low-level abstractions, including
threads, memory, and 110. Processes from different
models can interact by making "intercalls" between en-
vironments, but the process model (based on PCR
threads) is the same in all environments.

Agora [9] is one the few systems designed for a hetero-
geneous, distributed environment that does not use some
form of remote procedure call for communication. Agora
provides a distributed shared memory for interprocess
communication. Access to this shared memory is pro-
vided through customized access functions written in a
Lisp-like specification language. The access functions co-
ordinate the behavior of processes within the shared
memory using local process management routines pro-
vided by the host operating system (i.e., Mach), much as
a semi-model coordinates the behavior of processes that
enter a new programming environment in Psyche. The
primary difference between the two systems is that Ag-
ora defines new abstractions for use by all processes (a
distributed shared memory and specific synchronization
events), while Psyche allows processes to interact using
their native abstractions for communication and synchro-
nization.

4. A MULTI-MODEL PROGRAM FOR CHECKERS

The Rochester Checkers Player is a multi-model vision
application implemented on top of Psyche. A checkers-
playing robot conducts a game of checkers (draughts)
against a human opponent, cyclically sensing the oppo-
nent's move, and then planning and executing its re-

110 MARSH ET AL.

sponse, all within about 5 s. The robot uses a voice syn-
thesizer to issue status information, error messages, and
occasional gratuitous remarks.

4.1. Hardware Environment

A modern computer vision laboratory is likely to in-
clude sophisticated effectors or mobile vehicles, and
movable, computer-configurable sensors. The work de-
scribed in this paper was performed in such a laboratory,
which currently consists of six key components (Fig. I):
a binocular head containing movable cameras for visual
input; a robot arm that supports and moves the head; a
special-purpose parallel processor for high-bandwidth,
low-level vision processing; and several choices of
general-purpose MIMD parallel processors for computa-
tions from high-level vision and planning to motor con-
trol. Two components not relevant to this paper are a 16-
degree-of-freedom Utah dextrous manipulator (hand) and
a Dataglove for input of manipulation configurations.

The head has two movable grey-scale CCD television
cameras and a fixed color camera providing input to a
MaxVideo pipelined image-processing system. One mo-
tor controls the tilt angle of the two-camera platform, and
separate motors control each camera's pan angle, provid-
ing independent vergence control (Fig. 2). The control-
lers allow sophisticated velocity and position commands
and data read-back.

8 Processor
Sparc Console

Silicon Graphics

24 Node Butterfly Transputer Array

Parallel Processor

(Psyche)

v

MaxVideo Pipeline

FIG. 2. In this configuration the robot head has one large color
camera, two small grey-scale cameras, a single tilt motor, twin pan
motors, and a passively compliant checker-pushing tool.

The robot body is a PUMA761 six-degree-of-freedom
arm with a 2-m radius workspace and a top speed of
about 1 mls. It is controlled by a dedicated LSI-11 com-
puter implementing the proprietary VAL execution mon-
itor and programming interface.

The MaxVideo system consists of several independent
boards that can be cabled together to achieve a wide
range of frame-rate image analysis capabilities. The Max-
Video boards are all register programmable and are con-
trolled by a host processor via the VME bus. The
ZEBRA and ZED programming systems, developed at
Rochester, make this hardware easily and interactively
programmble.

A characteristic feature of our laboratory is the capa-
bility to use a multiprocessor as the central computing
resource and host. Our BBN Butterfly Plus Parallel Pro-
cessor has 24 nodes, each consisting of an MC68020 pro-
cessor, MC68851 MMU, MC68881 FPU, and 4 MBytes
of memory. The Butterfly is a shared-memory multipro-
cessor with nonuniform memory access times; local
memory is roughly 12x faster to access than nonlocal
memory. The Butterfly has a VME bus connection that
mounts in the same card cage as the MaxVideo and mo-
tor controller boards. The Butterfly has a serial port on
each board; we use the port to communicate directly with
the VAL robot control software. A Sun 41330 worksta-
tion acts as a host terminal system. I 1 L Robot Pan-Tilt Head 1

4.2. Parallel Programming Environments

Dextrous Four-finger

FIG. 1. Vision and robotics laboratory.

The Checkers Player, like many animate vision appli-
cations, consists of tasks to implement sensing, planning,
and action. In our implementation, each of these func-
tions is implemented using a different parallel program-
ming environment: Multilisp, Lynx, the Uniform Sys-
tem, or Uthread.

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION I l l

Multilisp [15] is a Lisp extension for parallel symbolic
programming developed at MIT. The unit of parallelism
in Multilisp is the future, which is a handle for the evalua-
tion of an arbitrary s-expression that is evaluated in par-
allel with the caller. Although the value of the s-expres-
sion is undetermined until the expression has been
completely evaluated, the handle for that value can be
passed around and referenced as needed. Futures are
evaluated last-in-first-out to avoid the combinatorial
growth in the number of futures that would otherwise
result from the extensive use of recursion in Lisp. Any
attempt to reference a future before the value is deter-
mined causes the caller to block. These two mechanisms,
parallel execution via futures and synchronization via
references to futures, suffice to build parallel programs in
Lisp.

Lynx [28] is a parallel programming language based on
message passing. Lynx programs consist of multiple
heavyweight processes, each with its own address space,
that exchange messages using named communication
channels (links). Each heavyweight process consists of
multiple lightweight threads of control that communicate
using shared memory. Thread creation occurs as a side-
effect of communication; a new thread is automatically
created to handle each incoming message. Condition
variables are used for synchronization between threads in
the same process; synchronous message passing pro-
vides synchronization between processes.

The Uniform System [33] is a shared-memory, data-
parallel programming environment developed at BBN for
the Butterfly. Within a Uniform System program, task
generators are used to create a potentially large number
of parallel tasks, each of which operates on some portion
of a large shared address space. Task descriptors are
placed on a global FIFO work queue, and are removed by
processors looking for work. Each task must run to com-
pletion, at which time another task is removed from the
task queue. Each processor maintains processor-private
data, which may be shared by all tasks that execute on
that processor. The primary mechanism for communica-
tion is the globally shared memory, which is accessible to
all Uniform System tasks on all processors. Since tasks
are not allowed to block, spinlocks are used for synchro-
nization.

Uthread is a simple, lightweight thread package devel-
oped for Psyche that can be called from C+ + programs.
Uthread is the general-purpose programming environ-
ment of choice in Psyche, and is frequently used to imple-
ment single-threaded servers.

4.3. Data Structures

The primary data structures used in the Checkers
Player are the representations of the checkerboard and

the moves. There are four different board representa-
tions, each used for different tasks:

1. A digitized image of the board from the TV camera
(512 x 512 x 8 bits).

2 . Calibration information that locates the squares of
the board in the robot's workspace.

3. A quantitative description of the (X , Y , 2) location
of the centroids of pieces on the board and their color.

4. A symbolic description of the board, denoting
which squares contain pieces of which color.

Three different representations for moves are used, de-
pending on the context in which a move is considered.
One representation is simply the new board state that
results from the move. A move may also be represented
as a sequence of physical coordinates for the robot mo-
tion commands. A third representation is the list of par-
tial moves (i.e., a push or a sequence ofjumps) needed to
execute a move. A short pipeline of moves is maintained
to support backing up to legal or stable states.

The various representations for the board and move
data structures are encapsulated within the Board Mod-
ule, which provides synchronized access to the data
structures, and translation routines between the various
representations. The Board Module is implemented using
the Uthread package; a single thread of control is created
to initialize the data structures, after which the module
becomes a passive data structure shared by tasks from
other programming models. The synchronization rou-
tines provided by the Board Module use the Psyche con-
ventions for process management to implement sema-
phores that can be called by any model.

4.4. Modules

The execution of the program is implemented as a se-
ries of moves, each of which requires the cooperation of
several modules and programming models. Control flow
among the modules is indicated by the arrows in Fig. 3.

In addition to the Board Module, there are seven other
modules in the Checkers Player implementation. Three
of these modules manage the robot devices; the remain-
der implement vision, checkers strategy, and motion
planning.

Camera Manager-a Uthread module that initializes
the VME memory used to control and access the Max-
Video hardware. The Board Interpreter accesses this
memory directly to retrieve an image from the MaxVideo
framebuffer.

Board Interpreter-a Uniform System program that
transfers an image from VME memory to local Butterfly
memory, and produces a symbolic description of the
checkers in the image.

Move Recognizer-a Uthread module that compares

MARSH ET AL.

Peripherals 1 Butterfly
< I

Camera Manager Board Interpreter

(Zebra, Uthread) (Uniform System)

I
I
I < Â¥>
I Move Recognizer Board Module

Peripherals I I

< I Butterfly

I
I
I
I

I
I
I A
I
I
I
I
I
I v

FIG. 3. Functional modules and communication paths in the Checkers Player. Multiple models of parallelism (to the right of the dotted line) are
implemented under Psyche on the Butterfly. Perceptual and motor modules (to the left of the dotted line) reside on the Butterfly and in peripherals.

two successive symbolic board interpretations produced
by the Board Interpreter, and recursively decomposes
the differences into a sequence of legal partial moves
(i.e., single jumps or moves) that transforms the first in-
terpretation into the second.

Game Player-a checkers game-playing program writ-
ten in Lynx. It takes as input the list of partial moves
describing the human's move and produces as output the
list of partial moves to be made in response. A single
multithreaded master process manages the parallel evalu-
ation of possible moves; slave processes perform subtree
exploration on behalf of the master.

Move Planner-a trajectory calculation and planning
program written in Multilisp. This program transforms

(Uthread)

Puma Robot

(Val)

the information gained from vision into a form useful for
planning the robot's actions in the world. It constructs, in
parallel, artificial potential fields that have peaks reflect-
ing square occupancies and bias reflecting the goal loca-
tion (see Fig. 4) [18]. For individual moves, the goal loca-
tion is a particular square; when removing pieces, the
goal location is one of eight goal areas off the board.
These potential fields are considered in parallel, using a
local search procedure that yields a gradient-descent path
along which a checker can be pushed. The algorithm al-
lows pieces to be temporarily moved aside or swapped
with the moving piece. Candidate plans can be ranked by
speed, effort, or other metrics.

Speech Controller-a Uthread module that manages

(U thread)

I A
I
I Voice

1

Robot Controller

(C++/Uthread) <

I
I
I
I

Synthesis

< /

I
V

I

Move Planner

(Multilisp)

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION

FIG. 4. (a) A contour map of the path through the potential field resulting when piece q is moved to the left side of the board by first removing
and then replacing a differently colored piece p. (b) A longer alternative path through a piece p that is the same color as q , allowing p to be moved
off the bottom of the board, to be replaced by q. (c) The actual path selected minimizes both the path through the potential field and the cost of
manipulating pieces. (d) A 3-D representation of the potential field for the path selected, which moves q off the bottom-left corner of the board.

the voice synthesizer using a serial line connection. This
module handles invocation requests for speech genera-
tion. Since interactions with the speech board must take
place on the node to which the board is attached, a
Uthread process in the Speech Controller serves as a
local proxy for interactions with the board.

Robot Controller-a Uthread module that controls a
serial line connection between the Butterfly and the ro-
bot. This module sends movement commands to the ro-
bot (equivalent to MoveTo (X,Y,Z, SPEED)), and awaits
notification of successful completion. Once again, a
Uthread process serves as a local proxy for interactions
with the board.

4.5. Intermodel Communication

There are two kinds of interactions between modules
in the Checkers Player: semi-model operations executed
by a calling process, and full-model operations that re-
quire a native process for execution. Table I11 lists the
operations exported by the various modules, and indi-
cates whether an operation is a semi-model or a full-
model operation. (Some modules export no operations,
and therefore are not listed in the table.)

The Board Module is a passive data structure, and
therefore only exports semi-model operations. After ini-
tialization, all the functions within the Board Module are

114 MARSH ET AL.

TABLE I11
Exported Operations Used in Checkers Player

Module name Operation Type

Board Module set-checkers-desc
get_checkers_desc
get_human_move
set_human_move_status
analyze-board
update-vis ion
update-robot

Move Recognizer f i n L p a r t i al-move
Move Planner do-part ial-move
Robot Controller move-robot
Speech Controller speak

semi
semi
semi
semi
semi
semi
semi
semi
f u l l
f u l l
f u l l

executed by a calling process from another environment.
Uniform System processes from the Board Interpreter
call into the Board Module to register a new board config-
uration. Lynx processes from the Game Player call into
the Board Module to wait for a new human move. If the
new board configuration represents a legal move, the
Uniform System process from the Board Interpreter sig-
nals the waiting Lynx process using a semaphore for con-
dition synchronization. The semaphore is implemented
using the process management interface for the currently
executing process. When the Lynx process must wait for
the semaphore, a call is made back to the Lynx runtime
to block the process. However, before doing so the sema-
phore implementation records the process identifier and
the address of the unblock routine for later use by the
Uniform System process that registers a new move.

Lynx processes from the Game Player call the Move
Planner to get a partial move executed. Process interfer-
ence between the Lynx process and the Multilisp envi-
ronment is avoided by creating a Multilisp future to per-
form the operation. On entry to do-par t ial-move the
Lynx process enqueues its arguments to the called func-
tion, and attempts to wake up a Multilisp server process.
When the operation is completed by the server process,
the unblock routine in the Lynx runtime environment is
called to reschedule the Game Player's process.

The Robot Controller and Speech Controller both ex-
port full-model operations, since they require access to
serial lines associated with a particular node in the ma-
chine. The operations provided by these modules use
server processes located on the appropriate node to im-
plement communication with the serial line.

4.6. The Benefits of Multi-model Programming

The Checkers Player implementation demonstrates the
advantages of decomposing animate vision systems by
function, and independently selecting an appropriate par-
allel programming model for each function. Programmers

were free to choose the most appropriate programming
model for each module, without placing constraints on
how modules would be integrated. The Board Interpreter
was written in the Uniform System because the fine-grain
parallelism and shared memory of that programming
model made it easy to implement the data parallel algo-
rithm used for checker identification. The Game Player
module was written in Lynx several years ago, and was
easily incorporated into the Checkers Player without sig-
nificant modifications. The Motion Planner module was
written in Multilisp because the symbolic features of Lisp
and the parallelism provided by the future construct
made it easy to express the planning algorithm. The
Board Module, the Robot Controller, and the Speech
Controller were written in Uthread because their func-
tions were both low-level and simple; none required the
special features of a sophisticated programming model.

Each of the modules was developed independently by
a different person, and then integrated into the whole.
Integration was simplified by the use of model-
independent communication: each module exports a
model-independent communication interface for use by
other modules. Process interference was avoided within
each module by separating operations into semi-model
and full-model portions of the module.

Source code statistics for the Checkers Player are pre-
sented in Table IV. For each module this table lists the
number of lines of code in the application, the underlying
runtime environment, and the interface procedures
(stubs) for the exported operations. Implementation re-
quired about 2900 lines of new application-level code,
and 550 lines of stub interface code (which were pro-
duced by hand, but which could easily be produced auto-
matically by a stub generator). We were able to reuse
1800 lines of Lynx code, and all of the code in the runtime
environments. We had to add almost 900 lines of code to
the Lynx and Multilisp runtime environments to imple-
ment the semi-model interface used by processes from
other models, but this code is not application specific,
and can be reused in future applications.

Only a small percentage of the code written specifically
for the Checkers Player required expertise with system
software. Application programmers implemented the
Board Interpreter, Move Planner, and Board Module.
Each of these programmers had expertise in one pro-
gramming model, but none required experience with the
other models in use. Even though the Board Module was
written in Uthread, and is accessed by Uniform System
processes and Lynx processes, there was no need for the
implementor to understand the details of all three pro-
gramming models; the code contains no provisions for
the specific types of processes that call it. The ease with
which the Board Module was built demonstrates how
model-independent communication simplifies the con-

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION 115

TABLE IV
Source Code Statistics for the Checkers Player

Application Runtime

Module Model Full Semi Full Semi Stubs

Board Module
Camera Manager
Board Interpreter
Move Recognizer
Game Player
Move Planner
Robot Controller
Speech Controller

Uthread
Uthread
Uniform System
Uthread
Lynx
Multilisp
Uthread
U thread

struction and use of modules that are shared between
different process types.

The implementation required two months of part-time
effort by five people. There are two reasons for the timely
success of this effort: each programmer was free to
choose the best available programming model for each
module, and the integration effort did not require inti-
mate knowledge of the other programming models in use.
Most of the effort was devoted to application concerns,
such as high-level and low-level vision, parallel potential
field minimization, and a novel algorithm for determining
a sequence of partial moves from two board configura-
tions. Relatively little effort was required for integration.
We were able to change many decisions about which
modules would communicate directly with each other,
and which should use certain shared data structures. Our
experiences have convinced us of the importance of inte-
gration through shared data abstractions, and customized
communication protocols accessible from every parallel
programming model.

5. CONCLUSIONS

We can summarize the tenets of active, behavioral,
task-oriented (in short, animate) vision as follows:

1. Vision does not function in isolation, but is instead a
part of a complex behavioral system that interacts with
the physical world.

2. General-purpose vision is a chimera. There are sim-
ply too many ways in which image information can be
combined, and too much that can be known about the
world for vision to construct a task-independent de-
scription.

3. Directed interaction with the physical world can
permit information that is not readily available from
static imagery to be obtained efficiently.

4. Vision is dynamic; fast vision processing means that
the world can serve as its own database, with the system

retrieving relevant information by directing gaze or at-
tention.

5. Vision is adaptive; the functional characteristics of
the system may change through interactions with the
world.

6. Vision requires several concurrently cooperating
layers of functionality with different degrees of potential
parallelism.

It has been our experience that an integrated architec-
ture for animate vision must support multi-model parallel
programming. That is, it should be possible to select the
best parallel programming model for each task, and then
to integrate those tasks into a single application easily.

In this paper we described how the Psyche operating
system supports multi-model programming through
mechanisms for first-class user-level threads and model-
independent communication. We then illustrated the use
of those mechanisms in the implementation of a checkers
playing robot. In the Checkers Player, different program-
ming models were used for vision (fine-grain processes
using shared memory), robot motion planning (Multilisp
futures), and strategy (coarse-grain processes using mes-
sage passing). Tasks from different programming models
are able to synchronize and communicate using shared
data structures.

A major conclusion of this work is that multi-model
parallel programming has significant software engineer-
ing advantages. Our use of multiple models in the Check-
ers Player was not an artificial constraint, but instead was
a reasoned choice based on the tasks to be performed, the
expertise of the people involved, the available software,
and the available programming environments. By extend-
ing the well-known software engineering principle of
modularity to include different parallel programming en-
vironments, we increase the expressive power, reusabil-
ity, and efficiency of the resulting code, and thereby sim-
plify the construction of complex, animate vision
systems.

MARSH ET AL.

REFERENCES

Aloimonos, Y., and Shulman, D. Integration of Visual Modules.
Academic Press, New York, 1989.

Anderson, T. E., Bershad, B. N., Lazowska, E.D., and Levy,
H. M. Scheduler activations: Effective kernel support for the user-
level management of parallelism. ACM Trans. Comput. Systems,
10, 1 (Feb. 1992), 53-79.

Ballard, D. H., and Ozcandarli, A. Real-time kinetic depth. In
Proc. Second International Conference on Computer Vision, Nov.
1988, pp. 524-531.

Ballard, D. H. Animate vision. Artif. Intell. 48, 1 (Feb. 1991), 57-
86.

BBN Advanced Computers, Inc. Chrysalis Programmers Manual,
Version 4.0. Cambridge, MA, Feb. 1988.

20. LeBlanc, T. J., Scott, M. L., and Brown, C. M. Large-scale paral-
lel programming: Experience with the BBN Butterfly parallel pro-
cessor. Proc. ACMISIGPLAN PPEALS 1988. New Haven. CT,

Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy,
H. M. Lightweight remote procedure call. ACM Trans. Comput.
Systems, 8, 1 (Feb. 1990). 37-55.

Bershad, B. N., Ching, D. T. , Lazowska, E. D., Sanislo, J . , and
Schwartz, M. A remote procedure call facility for interconnecting
heterogeneous computer systems. IEEE Trans. Software Engrg.
SE-13, 8 (Aug. 1987), 880-894.

Birrell, A. D. and Nelson, B. J. Implementing remote procedure
calls. ACM Trans. Comput. Systems, 2, 1 (Feb. 1984), 39-59.

Bisiani, R., and Forin, A. Multilanguage parallel programming of
heterogeneous machines. IEEE Trans. Comput. 37, 8 (Aug. 1988),
930-945.

Black, D. L. Scheduling support for concurrency and parallelism in
the Mach Operating System. Computer 23, 5 (May 1990), 35-43.

Brown, C. M., Fowler, R. J. , LeBlanc, T. J. , Scott, M. L.,
Srinivas, M., Bukys, L., Costanzo, J., Crowl, L., Dibble, P., Gaf-
ter, N., Marsh, B., Olson, T., and Sanchis, L. DARPA parallel
architecture benchmark study. Butterfly Proj. Rep. 13, Computer
Science Department, University of Rochester, Oct. 1986.

Brown, C. M., Olson, T., and Bukys, L. Low-level image analysis
on a MIMD architecture. Proc. of the First IEEE International
Conference on Computer Vision, London, June 1987, pp. 468-475.

Coombs, D. J., and Brown, C. Cooperative gaze holding in binocu-
lar vision. IEEE Control Systems, 11, 4 (June 1991), 24-33.

Edler, J., Lipkis, J., and Schonberg, E. Process management for
highly parallel UNIX systems. Proc. of the USENIX Workshop on
UNIX and Supercomputers, 1988.

Halstead, R. H., Jr. Multilisp: A language for concurrent symbolic
computation. ACM Trans. Programming Languages Systems, 7 ,4
(Oct. 1985), 501-538.

Heeger, D. J. Optical flow from spatiolemporal filters. Proc. First
International Conference on Computer Vision, June 1987, pp. 181-
190.

Klinker, G., Shafer, S., and Kanade, T. A physical approach to
color image understanding. Internat. J. Comput. Vision, 4, 1 (Jan.
1990), 7-38.

Latombe, J. C. Robot Motion Planning. Kluwer Academic, Bos-
ton, 1990.

LeBlanc, T. J. Structured message passing on a shared-memory
multiprocessor. Proc. of the 21st Hawaii International Conference
on System Science, Kailua-Kona, HI, January 1988, pp. 188-194.

21. Lee, D. N., and Lishman, J. R. Visual control of locomotion.
Scand. J. Psych. 18 (1977). 224-230.

22. Marsh, B. D. Multi-model parallel programming. Ph.D. thesis,
Computer Science Department, University of Rochester, July 1991.

23. Marsh, B. D., Scott, M. L., LeBlanc, T. J., and Markatos, E. P.
First-class user-level threads. Proc. 13th Symposium on Operating
Systems Principles. Pacific Grove, CA, Oct. 1991, pp. 110-121.

24. Nelson, R. C. and Aloimonos, J . Obstacle avoidance using flow
field divergence. IEEE Trans. Pattern Anal. Mach. Intell. 11,
(1989), 1102-1 106.

Pentland, A. P. Shape from shading: A theory of human perception.
Proc. Second International Conference on Computer Vision, NOV.
1988.

Rimey, R. D., and Brown, C. M. Where to look next using a Bayes
net: An overview. DARPA Image Understanding Workshop Pro-
ceedings, Feb. 1992.

Rimey, R. D., and Brown, C. M. Where to look next using a Bayes
net: Incorporating geometric relations. European Conference on
Computer Vision, May 1992.

Scott, M. L . The Lynx distributed programming language: Motiva-
tion, design, and experience. Comput. Languages, 16, 314 (1991),
209-233.

Scott, M. L., and Jones, K. R. Ant Farm: A lightweight process
programming environment. Butterfly Proj. Rep. 21, Computer Sci-
ence Department, University of Rochester, August 1988.

Scott, M. L. , LeBlanc, T. J., and Marsh, B. D. Design rationale for
Psyche, a general-purpose multiprocessor operating system. Proc.
of the 1988 International Conference on Parallel Processing, Vol.
11-Software, August 1988, pp. 255-262.

Scott, M. L., LeBlanc, T . J., and Marsh, B. D. Evolution of an
operating system for large-scale shared-memory multiprocessors.
TR 309, Computer Science Department, University of Rochester,
Mar. 1989.

Scott, M. L., LeBlanc, T. J., and Marsh, B. D. Multi-model parallel
programming in Psyche. Proc. of the Second ACMISIGPLAN
Symposium on Principles and Practice of Parallel Programming.
Seattle, WA, March 1990, pp. 70-78.

Thomas, R. H., and Crowther, W. The Uniform System: An ap-
proach to runtime support for large scale shared memory parallel
processors. Proc. of the 1988 International Conference on Parallel
Processing, Vol. 11-Software. Aug. 1988, 245-254.

Weems, C. C., Hanson, A. R., Riseman, E. M., and Rosenfeld, A.
An integrated image understanding benchmark: Recognition of a 24-
D Mobile. Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, June 1988.

Weiser, M., Demers, A., and Hauser, C. The Portable Common
Runtime approach to interoperability. Proc. 12th Symposium on
Operating Systems Principles, Litchfield, AZ, Dec. 1989, pp. 1 14-
122.

Wixson, L. E., and Ballard, D. H . Real-time detection of multi-
colored objects, SPIE Symp. on Advances in Intelligent Robotics
Systems. Nov. 1989, pp. 435-446.

. Yeshurun, Y ., and Schwartz, E. L. Cepstral filtering on a columnar
image architecture: A fast algorithm for binocular stereo segmenta-
tion. Robotics Research Report 286, Courant Institute, New York,
1987.

BRIAN MARSH is a research scientist at the Matsushita Information
Technology Laboratory in Princeton. New Jersey. His research inter- -.

July 1988, pp. 161-172. ests include multiprocessor and distributed operating systems. Marsh

OPERATING SYSTEM SUPPORT FOR ANIMATE VISION 117

received his M.S. and Ph.D. degrees in computer science from the
University of Rochester in 1988 and 1991.

CHRIS BROWN is a professor in the computer science department
of the University of Rochester. His research interests include geometric
invariance, cognitive and reflexive gaze control, and integration of com-
puter vision, robotics, and parallel computation into active intelligent
systems. Brown received his Ph.D. in information sciences from the
University of Chicago in 1972.

TOM LEBLANC is an associate professor in the computer science
department at the University of Rochester. His research interests in-
clude parallel programming environments and multiprocessor operating
systems. LeBlanc received his Ph.D. in computer science from the
University of Wisconsin at Madison in 1982.

MICHAEL SCOTT is an associate professor in the computer science
department at the University of Rochester. His research focuses on
programming languages, operating systems, and program development
tools for parallel and distributed computing. Scott received his Ph.D. in
computer science from the University of Wisconsin at Madison in 1985.

Received April 25, 1991; revised December 9, 1991; accepted January
1992

TIM BECKER is on the technical staff of the computer science de-
partment at the University of Rochester. His recent work has included
projects in computer vision and robotics, and the implementation of the
Psyche multiprocessor operating system. Becker received his B.S. in
industrial engineering from the Pennsylvania State University in 1980.

CESAR QUIROZ is a software engineer with EXELE Information
Systems, East Rochester, NY. His research interests are centered
around the study of parallelism in programming language implementa-
tion, especially the parallelization of imperative code. Quiroz received
his Ph.D. in computer science from the University of Rochester in 1991.

PRAKASH DAS is a system designer at Transarc Corporation in
Pittsburgh. His research interests include multiprocessor operating sys-
tems. Das received his M.S. in computer science from the University of
Rochester in 1991.

JONAS KARLSSON is a graduate student in the computer science
department at the University of Rochester. His research interests in-
clude multiagent planning and robot motion planning. Karlsson re-
ceived his B.S. in computer science from Stanford University in 1990.

