
Dynamic Sharing and Backward Compatibility
on 64-Bit Machines

William E. Garrett, Ricardo Bianchini,
Leonidas Kontothanassis, R. Andrew McCallum,

Jeffery Thomas, Robert Wisniewski, and
Michael L. Scott

TR 418
April 1992

University of Rochester
Computer Science Department

Rochester, NY 14627-0226

Abstract
As an alternative to communication via messages or files, shared memory has the potential to

be simpler, faster, and less wasteful of space. Unfortunately, the mechanisms available for shar-
ing in most multi-user operating systems are difficult to use. As a result, shared memory tends to
appear primarily in self-contained parallel applications, where library or compiler support can
take care of the messy details.

We see a tremendous opportunity to extend the advantages of sharing across application
boundaries. We believe that these advantages can be realized without introducing major changes
to the Unix programming model. In particular, we believe that it is both possible and desirable to
incorporate shared memory segments into the hierarchical file system name space.

Our approach has two components: First, we use dynamic linking to allow programs to
access shared data and code in the same way they access ordinary (private) variables and func-
tions. Second, we unify memory and files into a single-level store that facilitates the sharing of
pointers. This second component is made feasible by the 64-bit addresses of emerging micropro-
cessors.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
This work was supported in part by NSF grants CCR-9005633 and CDA-8822724, and by Brazilian

CAPES and NUTES/UFRJ fellowships. Authors’ email addresses:
{garrett, ricardo, kthanasi, mccallum, thomas, bob, scott}@cs.rochester.edu.

3

1. Introduction
Memory sharing between arbitrary processes is at least as old as Multics [44]. It suffered

something of a hiatus in the 1970s, but has now been incorporated into most variants of Unix.
The Berkeley mmap facility was designed, though never actually included, as part of the 4.2 and
4.3 BSD releases [34]; it appears in several commercial systems, including SunOS [23] and IRIX.
AT&T’s shm facility became available in Unix System V and its derivatives. More recently,
memory sharing via inheritance has been incorporated in the versions of Unix for several com-
mercial multiprocessors, and the external pager mechanisms of Mach [66] and Chorus [49] can be
used to establish data sharing between arbitrary processes.

Shared memory has several important advantages over interaction via files or messages.

(1) Many programmers find shared memory more conceptually appealing than message pass-
ing. The growing popularity of distributed shared memory systems [11, 20, 35, 36, 43, 47]
suggests that programmers will adopt a sharing model even at the expense of performance.

(2) Shared memory facilitates transparent, asynchronous interaction between processes, and
shares with files the advantage of not requiring that the interacting processes be active con-
currently.

(3) When interacting processes agree on data formats and virtual addresses, shared memory
provides a means of transferring information from one process to another without translat-
ing it to and from a (linear) intermediate form. The code required to save and restore infor-
mation in files and message buffers is a major contributor to software complexity, and much
research has been aimed at reducing this burden (e.g. through data description languages
[32] and RPC stub generators [3, 26]).

(4) When supported by hardware, shared memory is generally faster than either messages or
files, since operating system overhead and copying costs can often be avoided. Work by
Bershad and Anderson, for example [6], indicates that message passing should be built on
top of shared memory when possible.

(5) As an implementation technique, sharing of read-only objects can save significant amounts
of disk space and memory. All modern versions of Unix arrange for processes executing
the same load image to share the physical page frames behind their text segments. Some
(e.g. SunOS and SVR4) extend this sharing to dynamically-linked position-independent
libraries. More widespread use of position-independent code, or of logically-shared, re-
entrant code, could yield additional savings.

Both files and message passing have applications for which they are highly appropriate.
Files are ideal for data that have little internal structure, or that are frequently modified with a text
editor. Messages are ideal for RPC and certain other common patterns of process interaction. At
the same time, we believe that many interactions currently achieved through files or message
passing could better be expressed as operations on shared data. Many of the files described in
section 5 of the Unix manual, for example, are really long-lived data structures. It seems highly
inefficient, both computationally and in terms of programmer effort, to employ access routines
for each of these objects whose sole purpose is to translate what are logically shared data struc-
ture operations into file system reads and writes. In a similar vein, we see numerous opportuni-
ties for servers to communicate with clients through shared data rather than messages, with sav-
ings again in both cycles and programmer effort.

Unfortunately, anecdotal evidence suggests that user-level programmers employ shared
memory mainly for special-purpose management of memory-mapped devices, and for inter-
process interaction within self-contained parallel applications, generally on shared-memory mul-
tiprocessors. They do not use it much for interaction among applications, or between applications
and servers. Why is this?

4

Much of the explanation, we believe, stems from a lack of convenience. Consider the Sys-
tem V shm facility, the most widely available set of shared memory library calls. Processes wish-
ing to share a segment must agree on a 32-bit key. Using the key, each process calls shmget to
create or locate the segment, and to obtain its segment id, a positive integer. Each process then
calls shmat to map the segment into its address space. The name space for keys is small, and
there is no system-provided way to allocate them without conflict. Shmget and shmat take argu-
ments that determine how large the segment is, which process creates it, where it is mapped in
each address space, and with what permissions. The user must be aware of these options in order
to specify a valid set of arguments. Finally, since shmat returns a pointer, references to shared
variables and functions must in most languages (including C) be made indirectly through a
pointer. There is no performance cost for this indirection on most machines, but there is a loss in
both transparency and type safety — static names are not available, explicit initialization is
required, and any sub-structure for the shared memory is imposed by convention only.

Less immediate, but equally important, is the issue of long-term shared data management.
Segments created by shmget exist until explicitly deleted. Though they can be listed (via the ipcs
command), the simple flat name space is ill-suited to manual perusal of a significant number of
segments, and precludes the sort of cleanup that users typically perform in file systems. The shm
facility makes it too easy to generate garbage segments, and too difficult to name, protect, and
account for useful segments.

The Berkeley mmap facility is somewhat more convenient. By using the file system naming
hierarchy, mmap avoids the problems with shm keys, and facilitates manual maintenance and
cleanup of segments. Mmap’s arguments, however, are at least as numerous as those of the shm
calls. Programmers must still determine who creates a segment. They must open and map seg-
ments explicitly, and must be aware of their size, location, protection, and level of sharing. Most
important, they must access shared objects indirectly, without the assistance of the language-level
naming and type systems.

Linked data structures pose additional problems for cross-application shared memory in sys-
tems with more than one address space, since pointers may be interpreted differently by different
processes. Any data object visible to two different processes must appear at the same virtual
address from each point of view. Moreover, any two data objects simultaneously visible to the
same process must have different virtual addresses from that process’s point of view. If processes
map objects into their address spaces dynamically (e.g. as a result of following pointers), the only
general way to preclude address conflicts is to assign every sharable object a unique, global vir-
tual address. Such uniform addressing requires a consensus mechanism that is not a standard part
of existing systems. It also makes virtual addresses an extremely scare resource on 32-bit
machines.

We believe that pointers are crucial for realizing the full potential of shared memory. We
therefore adopted uniform addressing for in-core code and data in our earlier Psyche system
[52, 53], arguing that the advent of 64-bit architectures would soon eliminate the scarcity of vir-
tual addresses. With the recent release of microprocessors such as the MIPS R4000 and the DEC
Alpha [17], we believe that uniform addressing can be adopted without hesitation for large,
multi-user systems. Moreover, the truly enormous amount of space addressable in 64 bits makes
it possible to extend uniform addressing into the file system, and to unify the entire memory
hierarchy into an unsegmented single-level store.

In summary, we believe it is time for the advantages of memory sharing, long understood in
the open operating systems community [48, 57, 60], to be extended into environments with multi-
ple users and hardware-enforced protection domains. Such a move is particularly attractive on
64-bit machines, though much can be done to facilitate sharing even with shorter addresses.

5

From a practical point of view, we believe that dynamic sharing and uniform addressing can,
and in fact should, be implemented in a backward-compatible fashion in systems such as Unix.
We concur with Weiser et al. [62] that the proliferation of languages and protection boundaries in
Unix will make it difficult to realize the full flexibility of the open system model. Short of this
goal, however, we still see tremendous opportunity to make Unix more convenient and efficient
through the exploitation of shared memory, without introducing major changes to the kernel,
existing programs, or the (loosely-defined) Unix programming model.

We provide an overview of our approach in section 2, and a more detailed rationale and com-
parison to related work in section 3. We discuss implementation details in section 4, provide
examples of the use of our tools in section 5, and conclude in section 6.

2. Overview
Our emphasis on shared memory has its roots in the Psyche project [51, 52]. Our focus in

Psyche was on mechanisms and conventions that allow processes from dissimilar programming
models (e.g. Lynx threads and Multilisp futures) to share data abstractions, and to synchronize
correctly [37-40, 53]. Fundamental to this work was the assumption that sharing would occur
both within and among applications. Our current work [55] can be considered an attempt to
make that sharing commonplace in the context of traditional operating systems. We use dynamic
linking to allow processes to access shared code and data with the same syntax employed for
private code and data. In addition, we unify memory and files into a single-level store that facili-
tates the sharing of pointers, and capitalizes on emerging 64-bit architectures.

Our principal goal is to make cross-program sharing easy, while maintaining compatibility
with existing Unix facilities. In the process, we expect to improve the performance of most appli-
cations that adopt shared memory as an alternative to messages or files.

An early prototype of our system ran under SunOS, but we are now working on Silicon
Graphics machines (with SGI’s IRIX operating system), in anticipation of 64-bit hardware and of
compilers that generate 64-bit addresses. Throughout this paper, we use present tense for things
we have already built, future tense for things we definitely plan to build, and conditional tense for
things we aren’t yet sure are desirable or for which we aren’t yet sure we will want to expend the
effort of implementation.

We use the term segment to refer to what Unix and Mach call a ‘‘memory object’’. Each
segment can be accessed as a file (with the traditional Unix interface), or it can be mapped into a
process’s address space and accessed with load and store instructions. A segment that is linked
into an address space by our static or dynamic linkers is referred to as a module. Each module is
created from a template in the form of a Unix .o file. Each template contains references to sym-
bols, which are names for objects, the items of interest to programmers. (Objects have no mean-
ing to the kernel.) The linkers cooperate with the kernel to assign a virtual address to each
module. They relocate modules to reside at particular addresses (by finalizing absolute refer-
ences to internal symbols; some systems call this loading), and they link modules together by
resolving cross-module references.

2.1. Dynamic Linking
Our dynamic linking system associates a shared segment with a Unix .o file, making it

appear to the programmer as if that file had been incorporated into the program via separate com-
pilation (see figure 1). Objects (variables and functions) to be shared are generally declared in a
separate .h file, and defined in a separate .c file (or in corresponding files of the programmer’s
language of choice). They appear to the rest of the program as ordinary external objects. The
only thing the programmer needs to worry about (aside from algorithmic concerns such as syn-

6

chronization) is a few additional arguments to the linker; no library or system calls for set-up or
shared-memory access appear in the program source.

Our linker for sharing, lds, is implemented as a wrapper that extends the functionality of the
Unix ld linker. Lds defines four sharing classes for the object modules (.o files) from which an
executing program is constructed. These classes are static private, dynamic private, static public,
and dynamic public. Classes can be specified on a module-by-module basis in the arguments to
lds. They differ with respect to the times at which they are created and linked, and the way in
which they are named and addressed in the single-level store.

At static link time, lds creates a load image containing a new instance of every private static
module. It also creates any public static modules that do not yet exist, but leaves them in separate
files; it does not copy them into the load image. A public module resides in the same directory as
its template (.o) file, and has a name obtained by dropping the final ‘.o’. It also has a unique,
globally-agreed-upon virtual address (see section 2.2 below), and is internally relocated on the
assumption that it resides at that address.

cccc

External declarations

for shared code

and data (.h files)

Shared source code

and data (.c files)

a.out, with ldl
and special crt0

optional

and data (.c files)

Private source code

cc

lds

executing
program

(brought in by ldl)

lds lds

created by ldl
on first use

. . .

. . .shared1.o sharedN.o

sharedNshared1 . . .

Figure 1: Building a Program with Linked-in Shared Objects

7

Lds resolves undefined references to symbols in static modules. It does not resolve refer-
ences to symbols in dynamic modules. In fact, it does not even attempt to determine which sym-
bols are in which module, or insist that the modules yet exist. Instead, lds saves the module
names and search path information in the program load image, and links in an alternative version
of crt0.o, the Unix program start-up module. At run time, crt0 calls our lazy dynamic linker, ldl.

Ldl uses the saved information to locate dynamic modules. It creates a new instance of each
dynamic private module, and of each dynamic public module that does not yet exist. It then
maps static public modules and all dynamic modules into the process address space, and resolves
undefined references from the main load image to objects in the dynamic modules. If any module
contains undefined references (this is likely for dynamic private modules, and possible for
newly-created public modules), ldl maps the module without access permissions, so that the first
reference will cause a segmentation fault. It installs a signal handler for this fault. When a fault
occurs, the signal handler resolves any undefined external references in (all pages of) the module
that has just been accessed, mapping in (possibly inaccessibly) any new modules that are needed.

This lazy linking supports a programming style in which users refer to modules, symboli-
cally, throughout their programming environment. It allows us to run processes with a huge
‘‘reachability graph’’ of external references, while linking only the portions of that graph that are
actually used during any particular run. We envision, for example, re-writing the emacs editor
with a functional interface to which every process with a text window can be linked. With lazy
linking, we would not bother to bring the editor’s more esoteric features into a particular
process’s address space unless and until they were needed.

At static link time, modules are specified to lds the same way they are specified to ld: as
absolute or relative path names. When attempting to find modules with relative names, lds uses a
search path that can be altered by the user. It looks first in the current directory, then in an
optional series of directories specified via command-line arguments, then in an optional series of
directories specified via an environment variable, and finally in a series of default directories.
(This mechanism subsumes the search path that ld uses for library archives; see the manual pages
in the appendix for details). Lds applies the search strategy at static link time for modules with a
static sharing class. It passes a description of the search strategy to ldl for use in finding modules
with a dynamic sharing class.

A template (.o) file is generally produced by a compiler. In addition, it can at the user’s dis-
cretion be run through lds, with an argument that retains relocation information (−r on most sys-
tems). In this case, lds can be asked to include search strategy information in the new .o file.
When creating a new dynamic module from its template at run time, ldl attempts to resolve
undefined references out of the new module using the search strategy (if any) specified to lds
when creating that module. If this strategy fails, it reverts to the strategy of the module(s) that
make references into the new module. In a complicated program, resolution of external symbols
can result in a directed acyclic graph (DAG) of module inclusions, with different search strategies
at each level (see figure 2).

It is possible — expected, in fact — that large programs will have more than one symbol with
the same name. Per-module search rules eliminate ambiguity in the resolution of references to
these symbols. They preserve abstraction by allowing a process to link in a large subsystem
(with its own search rules), without worrying that symbols in that subsystem will cause naming
conflicts with symbols in other parts of the program. We discuss this issue further in section
3.4.2.

It should be emphasized that modules of all classes appear in our single-level store (or will
on a 64-bit machine), and are thus potentially sharable. The differences between public and

8

A.o - shared
B.o - private
C.o - private

 EXECUTABLE

 in memory

 in memory

 already linked

 not yet linked

 not yet in memory

module and path fixed

unknown at present

path not fixed

A.o B.o C.o

D.o

G.oG.o

E.o

G.o - privateG.o - private

F.o

D.o - private
E.o - shared

E.o - shared E.o - shared
F.o - private

Figure 2: Hierarchical Inclusion of Dynamically-Linked Modules

private modules lie in (1) whether or not a new instance is created for each process,1 (2) whether
or not the module survives process termination, and (3) where it appears in the address space and
file system (see table 1, page 21). Public modules are persistent; like traditional files they con-
tinue to exist until explicitly destroyed. (We consider the issue of garbage collection in section
3.2.) Private modules can be shared only by mapping in the file that represents the private space
of another process; private modules are never linked into more than one protection domain.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 For the purposes of this paper, we use the word ‘process’ in the traditional Unix sense. Like most
researchers, we believe that operating systems should provide separate abstractions for threads of control
and protection domains. Our work is compatible with this separation, but does not depend upon it.

9

2.2. Single-Level Store
To facilitate the use of pointers from and into shared segments, we employ a single-level

store in which every sharable object (whether dynamically linked or not) has a unique, globally-
agreed-upon virtual address. We retain the traditional Unix file system and shared memory inter-
faces, both for the sake of backward compatibility and because we believe that these interfaces
are appropriate for many applications. We treat the interfaces as alternative views of a single
underlying abstraction. This is in some sense the philosophy behind the Berkeley mmap call; we
take it a step further by providing names for ‘‘unnamed’’ memory objects (in a manner inspired
by Killian’s /proc directory [30]), and by providing every byte of secondary storage with a unique
virtual address. To some extent, we return to the philosophy of Multics, but with true global
pointers, a flat address space, and Unix-style naming, protection, and sharing.

In our 32-bit prototype, we have reserved a 1G byte region between the Unix heap and stack
segments, and have associated this region with a dedicated ‘‘shared file system’’ (see figure 4,
page 24). The file system is configured to have exactly 1024 inodes, and each file is limited to a
maximum of 1M bytes in size. Hard links (other than ‘.’ and ‘. .’) are prohibited, so there is a
one-one mapping between inodes and path names. We have modified the IRIX kernel to keep
track of the mapping internally, and have provided system calls that translate back and forth.
With 64-bit addresses, we will extend the shared file system to include all of secondary store. We
plan to provide every segment, whether shared or not, with a unique, system-wide virtual address.
At the same time, we plan to retain the ability to overload addresses within a reserved, private
portion of the 64-bit space. This ability is in contrast to the strict single-translation approach of
systems such as Opal [12, 13]. We discuss this issue further in section 3.2; for the moment,
suffice it to note that private modules (including the main module of every process) are linked
into the private, overloaded portion of the address space, but public modules are linked at their
globally-understood address.

The simplest way to allocate space in the single-level store would be to statically partition
addresses into a file specifier and offset — 4G segments of up to 4G bytes each, for example. The
fragmentation entailed by this partitioning is enormous, but it poses no implementation problems,
and still leaves plenty of room for everything in a 64-bit space. If fewer than 64 address bits are
significant, or if address bits are desired for other purposes (e.g. to extend addressing over a large
network), then most segments should be created with a smaller maximum size, determined
perhaps by Unix’s per-process file size limit.

As mentioned in the previous section, a user-level handler for the SIGSEGV signal catches
references to modules that are not currently part of the address space of the executing process.
This handler actually serves two purposes: it cooperates with ldl to implement lazy linking, and it
allows the process to follow pointers into segments that may or may not yet be mapped. When
triggered, the handler uses a (new) kernel call to translate the faulting address into a path name
and, if possible, to map the named segment into the process’s address space. If the address lies in
a module that has been set up for lazy linking, the handler invokes ldl to resolve any undefined or
relocatable references. (These may in turn cause other modules to be set up for lazy linking.)
Otherwise, the handler opens and maps the file. It then restarts the faulting instruction. For com-
patibility with programs that already catch the SIGSEGV signal, the library containing our signal
handler provides a new version of the standard signal library call. A program-provided handler
for SIGSEGV, if any, is invoked when the dynamic linking handler is unable to resolve a fault.

Memory segments that traditionally have no file system name, such as private text, data, and
stack segments, remain nameless in our prototype system. On a 64-bit machine, we plan to place
them under a special ‘‘/proc’’ hierarchy in the file system, as suggested by Killian [30].

We have considered several possible organizations for /proc. It is difficult to evaluate these
organizations, however; we doubt our ability to anticipate all the uses there could be for the

10

directory. When our 64-bit machines arrive, we are likely to start with a minimalist approach.
Each process would appear under /proc as a directory named after the process’s id. Within each
directory, a single file, named after the executable being run, would contain the process’s private
modules (both static and dynamic). For each public module linked to the process, there would be
two symbolic links, one to the module’s template and another to the module itself, which resides
in the template’s directory. Fancier organizations for /proc might separate the text, data, and
stack portions of the executable into separate files (allowing them to be protected individually),
separate the various private modules into separate files, organize processes under per-user sub-
directories (to facilitate browsing), or reflect the hierarchical order in which modules were linked.

For protection modes on files in /proc, we expect to rely on the user’s Unix umask. A pro-
cess can of course alter protections explicitly, using the existing file system interface. In general,
we expect umask-based protections to be liberal — permitting write permission on text, execute
permission on data, etc. For safety’s sake, ldl maps pages with more appropriate, restrictive per-
missions. We have considered having ldl maintain /proc without kernel assistance, but such an
approach has several drawbacks. Executables would have to be copied into /proc explicitly, at
considerable expense. Programs that do not use our tools would not appear, and programs that
terminate abnormally would not disappear. We would also have to implement a wrapper routine
around fork, to make sure that child processes appear. As a result, we believe that kernel support
for /proc will be required. The kernel can use copy-on-write techniques to avoid the overhead of
physically copying large executables into the /proc directory. It can also ensure that all processes
appear in /proc, and that space is cleaned up upon unexpected process termination.

3. Discussion and Rationale
Having provided an overview of our tool set, we now turn to a more detailed discussion of

issues and comparison to related work.

3.1. Backward Compatibility
One of the major goals of our work is to maintain as much compatibility as possible with the

Unix operating system. This goal stands in sharp contrast to the approach taken by much experi-
mental systems research, our own Psyche project included.

It is always tempting to start with a clean slate. Decisions can be made purely on the basis of
merit, without the temptation to conform to inferior but established conventions. Unfortunately,
the clean slate approach makes it difficult to build up enough infrastructure to attract real users
and accumulate meaningful experience. It also makes it easy to stray into side issues that contri-
bute little to the main thrust of the project. We devoted four years to the Psyche project without
approaching a production quality environment. We accumulated some genuine and valuable
experience, but less than we had hoped. We also discovered when we were done that many of the
issues that consumed time and energy early on (management of access rights, for example) were
in hindsight unimportant.

Our current work is similar in spirit to Psyche. As a result, we believe we have a better
understanding of where we are going at this point than we had when we started work on Psyche,
and we are willing to forgo the freedom of the clean slate approach. By emphasizing backward
compatibility,

(1) We expect to leverage a lot of existing software, and to cater to serious users. The heart of
our tool kit is of course new and experimental, but the supporting environment is solid and
pre-existing. Our modified IRIX kernel supports a large user community in daily produc-
tion use on the department’s main cycle server.

(2) We inherit a set of answers to peripheral questions. If we are uncertain which approach to
adopt on a particular issue, or if the issue is not central to what we’re doing, we can simply

11

leave it alone. Invocation of precedent has proven to be a useful aid to self-discipline, keep-
ing discussions focused on issues that really matter.

(3) We retain a set of abstractions which, while certainly not perfect, have a proven track record
of usefulness [46]. For issues on which we defer to Unix, the results will most likely be
acceptable.

We should emphasize that we are not committed to complete compatibility with Unix. We con-
sider ourselves free to make changes to anything that really needs changing. Our experience,
however, has been that very little actually falls into this category; existing tools and conventions
are remarkably compatible with both dynamic linking and uniform addressing.

Unix programmers are accustomed to building complex sets of tools. We hope to make
those tools faster, smaller, easier to write, and easier to tie together. In keeping with this goal, we
have attempted to integrate our tools with Unix, as opposed to building a new environment on
top of Unix. This means that we impose as few restrictions as possible on what users can do
while still taking advantage of our work. For example, we do not require that users program in a
given language (only that their compilers generate standard format object files), nor do we forbid
them from mapping different segments at the same virtual address in different protection domains
(see section 3.2 below). These decisions have opportunity costs: we cannot count on compilers to
implement protection, collect garbage, or generate self-descriptive data structures, nor can we
pursue hardware optimizations based on the use of a single virtual-to-physical translation [31].
From our perspective, these costs are overshadowed by the benefits of backward compatibility.

3.2. Address Space Organization
Figure 3 contains a picture of our single-level store as it will appear on a 64-bit machine. As

suggested in earlier sections, we will reserve a 32-bit portion of the 64-bit virtual address space
for private code and data. Addresses in the private portion of the address space will be over-
loaded: different segments will appear at the same (private) address in different address spaces,
and every segment in the private portion of an address space will also appear (with a different
address) in the public portion of the address space.

The kernel maintains the mapping between file names and addresses in the single-level store.
A process is free to mmap a file at some other address in the public portion of the address space,
but we assume that reasonable processes will not do so. Ldl links private modules at addresses in
the private portion of the address space and public modules at the appropriate address in the pub-
lic portion of the address space. A process can determine the public address of a private object by
calling a library routine. The routine uses a pair of kernel calls to (1) translate the private address
into a file name and offset, and (2) translate the file name into a public address. In section 5.3 we
explain how this mechanism can be used to facilitate the creation of parallel programs.

Every program begins execution in the private portion of the address space. Traditional,
unmodified Unix programs never use public addresses. Our expectation is that programmers will
gradually adopt a style of programming in which public addresses are used most of the time.
Backward compatibility is thus the main (though not the only — see below) motivation for pro-
viding private addresses. Some existing programs (generally not good ones) assume that they are
linked at a particular address. Most existing programs are created by compilers that use absolute
addressing modes to access static data, and assume that the data are private. Many create new
processes via fork.

Chase et al. [13] observe that the Unix fork mechanism is based in a fundamental way on the
use of static, private data at fixed addresses. Their Opal system, which adopts a strict, single glo-
bal translation, dispenses with fork in favor of an RPC-based mechanism for animating a newly-
created protection domain. We adopted a similar approach in Psyche; we agree that fork is an
anachronism. It works fine in our environment, however, and we retain it by weight of precedent.

12

2
64

2
32

main A

main B

address space
Proccess BProccess A

address space

private

public

store
Single-level

Figure 3: The Public/Private Address Space Organization

The child process that results from a fork receives a copy of each segment in the private portion
of the parent’s address space, and shares the single copy of each segment in the public portion of
the parent’s address space. In all cases, the parent and child come out of the fork with identical
program counters. If the parent’s PC was at a private address, the parent and child come out in
logically private but identical copies of the code. If the parent’s PC was at a public address, the
parent and child come out in logically shared code, which must be designed for concurrent execu-
tion in order to work correctly.

It is not yet clear to us whether all uses of address overloading should be considered
anachronisms. We adopted a single translation for in-core code and data in Psyche, but were not
entirely happy with the result. We were forced, for example, to change the semantics of BBN’s
Uniform System library [58] in order to port it to Psyche.2 We fear that other programs and pro-
gramming environments (e.g. Lisp interpreters that use address bits for tags) may also insist on
the ability to overload addresses. It is tempting to argue that all such programs are poorly
designed, but we are hesitant to do so.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 The Uniform System provides a set of worker processes, one per processor, that share a central

work queue. It specifies that static variables for each process lie at the same virtual address, so that when a
pointer to a local data structure is passed to another processor, it will point to the corresponding data
structure there. We were forced to place the data structures at different addresses in Psyche, and had to
modify programs that expected the addresses to be the same.

13

3.3. Shared Code
The above discussion of fork raises an interesting issue: under what circumstances should

code be considered to be shared? In traditional systems, the distinction between copying and
sharing is irrelevant for read-only objects. The real issue for most programmers is whether static
data and global variables referenced in a high-level language are private or shared. As in Psyche,
we adopt the philosophy that code should be considered shared precisely when its static data is
shared. Under this philosophy, the various implementations of ‘‘shared’’ libraries in Unix are in
fact space-saving implementations of logically private libraries. There is no philosophical differ-
ence between these implementations and the much older notion of ‘‘shared text;’’ one is imple-
mented in the kernel and the other in the linkers, but both serve to conserve physical page frames
while allowing the programmer to ignore the existence of other processes.

A different philosophical position is taken in systems such as Multics [44], Hydra [65], and
Opal [13], which clearly separate code from data and speak explicitly of processes executing in
shared code but using private (static) data. Multics employs an elaborate hardware/software
mechanism in which references to static data are made indirectly through a base register and
process-private link segment. Hydra employs a capability-based mechanism implemented by
going through the kernel on cross-segment subroutine calls. Opal postulates compilers that gen-
erate code to support the equivalent of Multics base registers in an unsegmented 64-bit address
space.

With most existing Unix compilers, processes executing the same code at the same address
will access the same static data, unless the data addresses are overloaded. This behavior is con-
sistent with our philosophy. Code in the private portion of the address space is private; if it hap-
pens to lie at the same physical address as similar-looking code in another address space (as in
the case of Unix shared text), the overloading of private addresses still allows it to access its own
copy of the static data. Code in the public portion of the address space is shared iff more than
one process chooses to execute it, in which case all processes access the same static data.

In practice, we can still share physical pages of code between instances of the same module
by using position-independent code (PIC). In the basic sense of the term, PIC is code that
embeds no assumptions (even after linking) about the address at which it executes. For our pur-
poses, we also insist that PIC embed no assumptions about the addresses of static data or external
code or data. Instead, references and calls to these objects are made indirectly through linkage
tables (generally placed in adjacent pages and accessed via pc-relative addressing), so that dif-
ferent processes can place their data at different addresses, and can resolve external symbols dif-
ferently. Compilers that generate this sort of PIC are already used for shared libraries in SunOS
and SVR4, and will soon be available under IRIX. PIC can be used in either the private or public
portions of our address space to share the physical code pages of module instances at different
addresses.3

The alternative approach to compiler construction — using base registers to access static
data — has the advantage that it leads trivially to the sharing of physical pages of code among
logically-private instances of a module. It has the disadvantage (from our point of view) that it
places logically distinguishable objects (code fragments that use different static data) at a single
public address. We prefer to place these objects at different addresses. This preference is essen-
tially a matter of taste; we have adopted the Unix philosophy, as opposed to the Multics philoso-
phy.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 We should emphasize that our system does not require PIC. In fact, the SGI compilers don’t

produce it yet. When it becomes available we will obtain no new functionality, but we will use less space.

14

Base registers allow processes to share physical pages of code while accessing different
static data, even if they are executing the code at the same virtual address. If we place logically
distinguishable instances of a module at different addresses, however, then the linkage tables of
PIC will also allow the processes to access different static data, without overloading addresses.
(Base registers are likely to be faster, but the difference is not large, and would be offset in part
by the overhead of base register maintenance in the procedure calling sequence.) Moreover if
references to external code and data are to be resolved differently in different processes, then
linkage tables will be necessary for this purpose anyway. The tables can be reached via base
registers or, again, if module instances lie at different virtual addresses, via pc-relative address-
ing. In summary, assuming that public addresses are never overloaded, base registers are manda-
tory if processes executing the same code at the same address are to access different static data or
resolve their external references differently; base registers are optional if processes executing the
same code at the same address always use the same static data and resolve their external refer-
ences the same way.

In code that is logically shared (with static data that is shared), programmers can still dif-
ferentiate between processes on the basis of

g parameters passed into the code in registers, or in an argument record accessed through a
register (frame pointer),

g return values from system calls that behave differently for different processes (possible only
if processes are managed by the kernel),

g explicit, programmer-specified overloading of (a limited number of) addresses, or

g programming environment facilities (e.g. environment variables) implemented in terms of
one of the above.

3.4. Naming
Naming is a central issue in the design of almost any system. In our work there are three

main categories of names: file names, addresses, and symbols. File names are symbolic names
for segments. Addresses are low-level names both for segments and for the objects they contain.
Symbols are high-level names for objects. The relationship between file names and addresses is
one of the principal issues in the design of our single-level store. The binding of symbols to
addresses is the central task of the linkers.

3.4.1. Naming in the Single-Level Store
A primary concern when proposing methods of sharing between programs is that they should

be easy. Given appropriate rights, programs should be able to access a shared object or segment
simply by using its name. But different kinds of names are useful for different purposes. For
human beings, ease of use generally implies symbolic names, both for objects and for segments:
the linkers therefore accept file system names for segments, and support symbolic names for
objects. For running programs, on the other hand, ease of use generally implies addresses: pro-
grams need to be able to follow pointers, even if they cross segment boundaries. It is easy to
envision applications in which both types of names are useful. Any program that shares data
structures and also manipulates segments as a whole may need both sets of names.

Our system unifies file names and addresses, allowing both to be ‘‘first class.’’ The single-
level store associates an address with a file at file creation time. Programs using our linkers are
guaranteed that these addresses are the ones at which modules will be mapped and linked. Furth-
ermore, programs are guaranteed that they can follow pointers into segments even when they con-
tain no symbols, and have not been linked. Our signal handler catches segmentation faults in
executing programs; if the faulting address exists in the single level store, and the process has

15

appropriate permissions, the segment is brought in to the user’s address space and the faulting
instruction is restarted.

Introducing a strong connection between file names and addresses has its complications.
Traditional Unix file systems support aliases in the form of extra ‘‘hard’’ links and ‘‘soft’’ (sym-
bolic) links. In order to map from addresses to file names, we must identify one alias as canoni-
cal. Several approaches are possible; in our 32-bit prototype, we allow only one hard link per
file, and map the file’s address to that link’s full path name.4 When fielding an access fault, our
signal handler calculates the closest common ancestor of a target file and the current directory. It
then checks access permissions from the current directory and from the root, and maps the file if
either path works.

Traditional file systems support a huge name space for files — much larger than can be
represented in 64 bits. As a result, the mapping between file names and addresses cannot be
static; we have to assign addresses to file names on the fly. We need to be careful, however. If a
file is deleted by accident, and then restored from tape, we would like to put it back at its previous
address. We would also like to put it back at its previous address if it is deleted temporarily in
the process of being updated (this happens, for example, when checking files in and out of rcs
[59]). Our solution is to remember the addresses of deleted files, and to be careful about when we
re-use addresses.

When a file is removed, the kernel remembers its name and address. At file creation time it
checks to see whether the name of the new file matches the name of a file that was recently
deleted. If so, it places the new file at the same place as the old one. It attempts to hold off
assigning new names to old addresses by allocating addresses in a circular fashion. Addresses
associated with deleted files are put at the end of the loop.

In our prototype system, 1M byte address ranges correspond one-to-one with Unix inodes.
Creation of a new inode is the same as allocation of space out of our single level store (see sec-
tion 4.4). Since we have a limit of 1024 shared files, we can afford to remember associations
between addresses and deleted files forever. In a full single-level store, we would need to place a
time limit on this memory. We plan to exclude /tmp and /proc; files created in these directories
are meant to be transient. As a result, associations can probably be guaranteed to last for days or
weeks: Ousterhout et al.’s (admittedly dated) study of file access patterns [45] reports a rate of
only about 500 file creations and 500 deletions per hour, even including /tmp.

A related problem occurs when renaming files. Given that the address of a file is closely
associated with its name, should a ‘‘move’’ operation place the file at a new address, or should it
just change the name and leave the address the same? Our prototype currently leaves the address
the same, but this is simply an artifact of our association between addresses and inodes. We plan
to overload the arguments to the rename system call to make both options available, and are
currently debating which should be the backward-compatible default (it may not matter much, so
long as we re-write the mv command to support both options, since existing programs do not rely
on the single-level store). Leaving the address the same is certainly cheaper, particularly for
directories; changing the address of everything under a given directory would require time pro-
portional to the size of the file system subtree. Of course, leaving the address the same interferes
with the ability to re-create files at the same address, but this can be handled in the same ways
that Unix currently deals with attempts to create a file with the same name as an existing file.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 We also considered giving every hard link its own address. A segment with more than one hard link

could be accessed at more than one address. This would be easy to implement, but we’re not sure we like
its semantics.

16

3.4.2. Naming in the Linkers
Naming is also important with regard to how the linkers work. Traditional linking systems,

both static and dynamic, deal only with private symbols. They bind all external references to a
given name to the same object in all linked modules. If more than one module exports an object
with a given name, the linker either picks one (e.g. the first) and resolves all references to it, or
else reports an error. Our system of dynamic linking, with shared symbols and recursive, lazy
inclusion of modules, presents cases where either behavior is undesirable.

Specifying that a module is to be included in a program starts a link in a potentially long
chain. Our linkers allow modules to have their own search path and list of modules, which in
turn may have their own lists, recursively. Linking a single module may cause a chain reaction
that ends up incorporating modules that the original programmer knew nothing about. These
modules may have external symbols that the original program knew nothing about. Some of
these external symbols may have the same name as external symbols exported by the main pro-
gram, even though they are actually unrelated. This possibility introduces a potentially serious
naming conflict.

The problem is that linkers map from a rich hierarchy of abstractions to a flat address space.
Various programming languages (e.g. Modula-2 and Common Lisp) that use the idea of a module
for abstraction already deal with this problem. They typically preface variable and function
names with module names, thereby greatly reducing the chance of naming conflicts. One of our
goals, however, has been to avoid the need to depend on any particular programming language or
paradigm. Our system should allow recursive, dynamic linking no matter what the language. We
achieve this goal by adopting a convention that removes the ambiguity present in the static link-
ers. When a module M is brought in, its undefined references are first resolved against the exter-
nal symbols of modules found on M’s own module list and search path. If this step is not com-
pletely successful, consideration moves up to the module that caused M to be loaded in — M’s
‘‘parent,’’ so to speak: remaining undefined references are resolved against the external symbols
of modules found on the parent’s module list and search path. If unresolved references still
remain, they are then resolved using the module list and search path of M’s grandparent, and so
on.

The linking structure of a program can be viewed as a DAG (figure 2, page 8), in which chil-
dren can search up from their current position to the root, but never down. Modules wishing to
have control over their symbols must specify appropriate modules and directories on their module
list and search path. Modules wishing to rely on a symbol being resolved by the parent can sim-
ply neglect to provide this information. References that remain undefined at the root of the DAG
are left unresolved in the running program. If encountered during execution they result in seg-
mentation faults that are caught by the signal handler, and could be used (at the programmer’s
discretion) to trigger application-specific recovery.5

3.5. Caveats
Sharing and addressing are not without cost. Although we firmly believe that increased use

of addressable shared memory can make Unix more convenient, efficient, and productive, we
must also acknowledge that sharing places certain responsibilities on the programmer, and intro-
duces problems.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5 Some Lisp environments respond to this sort of fault by prompting the user interactively for the

location of a missing function; we could easily do the same.

17

3.5.1. Synchronization
Files are seldom write-shared, and message passing subsumes synchronization. When

accessing shared memory, however, processes must synchronize explicitly. Unix already
includes kernel-supported semaphores. For lighter-weight synchronization, blocking mechanisms
can be implemented in user space by providing standard interfaces to thread schedulers [37], and
several researchers have demonstrated that spin locks can be used successfully in user space as
well, by preventing, avoiding, or recovering from preemption during critical sections [2, 18, 37],
or by relinquishing the processor when a lock is unavailable [8, 29].

3.5.2. Garbage Collection
When a Unix process finishes execution or terminates abnormally, its private segments can

be reclaimed. The same cannot be said of segments shared between processes. Sharing intro-
duces (or at least exacerbates) the problem of garbage collection. Good solutions require com-
piler support, and are inconsistent with the anarchistic philosophy of Unix. We see no alternative
in the general case but to rely on manual cleanup. Fortunately, our single-level store provides a
facility crucial for manual cleanup: the ability to peruse all of the segments in existence. Our
hope is that the manual cleanup of general shared-memory segments will prove little harder than
the manual cleanup of files, to which programmers are already accustomed. We do not believe
that manual cleanup would be viable without a perusal mechanism.

3.5.3. Position-Dependent Files
Addresses for files are both a blessing and a curse. They introduce the problems with file

restoration and renaming discussed in section 3.4.1. More important, they inherently lead to
position dependence. As soon as we allow a segment to contain absolute internal pointers, we
cannot change its address without changing its data as well. Files with internal pointers cannot be
copied with cp, mailed over the Internet, or archived with tar and then restored in different
places.

In many cases, we expect that position dependence will not be a problem. Many files never
need to move. In other cases, however, the choice between being able to use pointers and being
able to move and copy files may not be an easy one to make. In section 5.4, for example, we con-
sider the use of pointers in files that represent graphical figures. By storing figures in their linked
internal format, we can eliminate substantial amounts of code devoted to translation when read-
ing and writing. At the same time, we lose the ability to treat a figure file as a self-contained,
position-independent object.

Those who wish to retain position independence can of course choose not to exploit the
addressability of files. As in the past, they can translate their data structures to and from a linear
external form, or use relative pointers (offsets) rather than absolute addresses. In a language with
good abstraction mechanisms (C++ for example), relative pointers can be as convenient as regu-
lar pointers, though certainly not as fast.

Alternatively, programmers can write application-specific routines to move and copy seg-
ments containing pointers. If one were to create descriptors that identify the locations of pointers,
a general-purpose routine might also be able to perform appropriate translations when moving or
copying a segment. Many Unix compilers produce .o files (templates) containing information of
this sort when invoked with a debugging flag (usually ‘−g’); we plan to investigate the extent to
which this information suffices to move and copy segments created from the template.

3.5.4. Dynamic Storage Management
In section 2.1 we suggested that dynamic linking might encourage widespread re-use of func-

tional interfaces to pre-existing utilities. It is likely that the interfaces to many useful functions

18

will require variable-size data structures. If the text editor is a function, for example, it will be
much more useful if it is able to change the size of the text it is asked to edit. This suggests an
interface based on, say, a linked list of dynamically-allocated lines, rather than a fixed array of
bytes. We will almost certainly need conventions for allocating space from heaps associated with
individual segments, instead of a heap associated with the calling program.

3.5.5. Loss of Commonality
The ubiquity of byte streams and text files is a major strength of Unix. As shared-memory

utilities proliferate, there is a danger that programmers will develop large numbers of incompati-
ble data formats, and that the ‘‘standard Unix tools’’ will be able to operate on a smaller and
smaller fraction of the typical user’s data.

Many of the most useful tools in Unix are designed to work on text files. Examples include
awk, sed, tr, diff, grep, sort, more, tail, lex, yacc, and the various editors. To the extent that per-
sistent data structures are kept in a non-linear, non-text format, these tools become unusable. In
section 5.1, we consider such files as /etc/passwd, /etc/hosts, and /etc/termcap. Each of these files
is edited by hand. There are good arguments for storing them in something other than ascii text,
but doing so means abandoning the ability to make modifications with an ordinary text editor.

It is not entirely clear, of course, that most data structures should be modified with a text edi-
tor that knows nothing about their semantics. Unix provides a special locking editor (vipw) for
use on /etc/passwd, together with a syntax checker (ckpw) to verify the validity of changes. Sys-
tem V employs a non-linear alternative to /etc/termcap (the terminfo database), and provides util-
ity routines that translate to and from (with checking) equivalent ascii text.

Similar pros and cons apply to the design of programs as filters. The ability to pipe the out-
put of one process into the input of another is a powerful structuring tool. Byte streams work in
pipes precisely because they can be produced and consumed incrementally, and are naturally
suited to flow control. Complex, non-linear data structures are unlikely to work as nicely. At the
same time, a quick perusal of Unix directories confirms that many of the file formats currently in
use have a rich, non-byte stream structure: a.out files, ar archives, core files, tar files, TeX dvi
files, compressed files, inverted indices, the SunView defaults database, bitmap and image for-
mats, and so forth.

In the long run, one might consider new conventions for self-descriptive data structures,
polymorphic utilities, or mechanisms to support incremental creation and consumption of com-
plex data structures. In the short run, it seems unlikely that the ability to more easily manipulate
complicated data structures will compromise the elegance of Unix. Our intent is not to argue that
non-linear data structures are bad; clearly we believe that their benefits often outweight their
costs. We simply point out that the functionality we provide has limitations, and should be
adopted with care.

3.6. Related Work

3.6.1. Open Operating Systems
Much of the motivation for our work stems from the literature on open operating systems.

Open operating systems can be characterized by compiler provided protection, and a highly
modular organization allowing easy customization. They provide a very simple and comprehen-
sive mechanism for sharing. A variable or function may be used regardless of the module in
which it was defined simply by prefixing its name with that of the associated module. For a
single-user system, openness offers two compelling advantages: flexibility and efficiency. Flexi-
bility stems from the opportunity to modify, invoke, or build upon existing pieces of code.
Efficiency stems from the lack of heavyweight context switches, data movement across narrow

19

interfaces, or unnecessary layers of abstraction. The incredible productivity of Lisp environments
such as Genera [60], and of the Pilot [48] and Cedar [57] projects at Xerox PARC, testify to the
usefulness of open systems. Clark’s experience with Swift [15] testifies to their efficiency. Open
systems have attracted the attention of language designers as well [9, 64], and are an important
part of the commercial market for personal computers.

Unfortunately, the flexibility and efficiency of open operating systems is obtained at a seri-
ous price. Protection is available only to the extent that it is provided by high-level language
compilers. With multiple compilers (as on a commercial PC) there is no protection whatsoever.
With a single available compiler there is little opportunity to use much pre-existing software.
There is also no opportunity to employ programming styles or paradigms unsupported by the pro-
gramming language. For example, one is generally unable to program simultaneously in Cedar,
Smalltalk, and Lisp within a single open system. Our work is an attempt to provide some of the
benefits gained in an open operating system while still providing a standard means of protection.

3.6.2. Shared Memory Operating Systems
Several other projects have attempted to encourage sharing in multi-user systems. Multics

[44] and Hydra [65] are probably the best-known examples. Both provide a single-level store,
but were implemented on narrow-address machines. Multics employs a segmented address space
and relies on elaborate hardware addressing modes and procedure calling sequences to maintain
segment registers and tables. Hydra employs capabilities that are interpreted by the kernel.
Because of hardware limitations, neither is able to provide machine-readable pointers that are
globally meaningful.

More recently, researchers at the University of Washington have designed a system called
Opal that provides a single-level store on 64-bit machines [13] and supports a user-level object
system [12]. By adopting a single, global virtual-to-physical mapping, Opal is able to realize all
the advantages of cross-address-space sharing. As discussed in section 3.3, there are at least two
approaches to the sharing of code that appear to be compatible with both our kernel and Opal’s;
at the moment, the two projects are pursuing different approaches. The projects also differ in that
we are attempting to maintain compatibility with Unix, while Opal is free to start fresh. Among
other things, our interest in backward compatibility has prompted us to permit the overloading of
virtual addresses in a limited portion of the 64-bit space, and to provide our memory segments
with symbolic names in the Unix file system hierarchy. This latter decision provides us with a
rich set of ready-made tools for perusal and management of long-lived segments.

3.6.3. Software Implementation of Large Address Spaces
Many distributed systems provide large name spaces with software interpretation. Some pro-

vide names for heavyweight objects [1, 16]; others for communication ports [14, 42]; still others
for mappable segments [33]. In any case, objects in the distributed name space cannot be
accessed via hardware addressing modes (except perhaps with a temporary mapping), and must
generally be treated differently from addressable local objects.

In a few systems, compiler support has been integrated with a sophisticated run-time
environment to provide the appearance of uniform naming in a very large name space. The
LOOM system [28] implements a 32-bit Smalltalk environment on a 16-bit machine. The
Emerald system [27] provides a uniform object model on a distributed network of machines.

The term pointer swizzling is used to describe systems that transparently manage two distinct
sets of addresses for objects: long addresses on secondary storage, and short addresses in main
memory. Wilson [63] has observed that by implementing swizzling in the kernel’s virtual
memory system, it is possible to maintain consistent short addresses for all processes on the
machine with a high degree of efficiency. When bringing a page into memory, Wilson’s system

20

assigns virtual addresses to all pages referenced by pointers in the new page, but does not make
these additional pages accessible until the pointers are actually followed. This technique was the
inspiration for our lazy linking mechanism. Unfortunately, Wilson’s full system requires com-
piler support to identify all pointers, and requires that all pages in memory be marked invalid
before any of them can be ‘‘unswizzled’’ back to secondary store.

3.6.4. Use of Shared Memory to Improve Performance
Several previous projects have explored the use of shared memory to improve the perform-

ance of cross-address-space process interactions. Bershad [6] uses buffers mapped into sending
and receiving address spaces to speed the implementation of intra-machine remote procedure
calls. The implementation of the Lynx distributed programming language for the BBN Butterfly
employs a similar optimization [50]. Mach [66] uses copy-on-write page sharing to optimize
intra-computer data transfers, and its external pagers can be used to facilitate data sharing
between processes.

3.6.5. Generalization of the Unix File System Interface
Our assignment of names to shared segments is one in a long series of new uses for the file

system naming hierarchy. Pseudo-terminals and Unix domain sockets are now commonplace, but
were missing in early versions of Unix. Bershad and Pinkerton [4] describe a general-purpose
mechanism for installing a user-provided process that intercepts operations on a specified file.
Gifford et al. [22] describe a similar mechanism that allows the user to simulate files that are
created on demand.

Our plans (section 2.2) for a directory containing images of running programs were directly
inspired by Killian [30]. In his system, the address space of each process appears in the file sys-
tem as /proc/nnnnn, where nnnnn is the process id number. These files can be inspected and
modified with the usual file access functions, lseek, read and write. In addition, some ioctl calls
allow commands such as stop/go and signal interception. Currently we have no plans for process
control via ioctl calls, but nothing we have specified so far prohibits the possibility of implement-
ing them. Like Killian’s /proc, our version provides a place in the file system for previously
unnamed memory objects (such as the process heap and stack). Unlike Killian’s flat name space,
our structure is likely to be hierarchical, with directories for processes and separate file system
names for a process’s loaded public modules.

3.6.6. Dynamic Linking
Dynamic linking is already a part of several Unix systems. It is used to save space in the file

system and in physical memory, and to permit updating of libraries without recompiling all the
programs that employ them. Under SunOS, for example, ld will arrange by default for load-time
linking of library routines. Position-independent code (PIC) permits the text to be physically
shared, but this is only an optimization; each process has a private copy of any static variables.
The PIC produced by the Sun compilers uses jump tables that allow functions to be linked lazily,
but references to data objects are all resolved at load time. Ld also insists that all dynamically-
linked libraries exist at static link time, in order to verify the names of their entry points.

Our system uses dynamic linking for both private and shared data, and does not insist on
knowing at static link time which symbols will be found in which dynamically-linked modules.
This latter point may delay the reporting of errors, and can increase the cost of run-time linking,
but increases flexibility. Lds requires only that the user specify the names of all modules contain-
ing symbols accessed directly from the main load image. It then accepts arguments that allow the
user to specify a search path on which to look for those modules at run time. Any module found
may in turn specify a search path on which to look for modules containing symbols that it refer-
ences.

21

Our fault-driven lazy linking mechanism is slower than the jump table mechanism of SunOS,
but works for both functions and data objects, and does not require compiler support. We do not
currently share the text of private modules, but will do so when PIC-generating compilers
become available. Given the opportunity, we will adopt the SunOS jump-table-based lazy link-
ing mechanism as an optimization: modules first accessed by calling a (named) function will be
linked without fault-handling overhead.

Both SunOS and dld [25] provide library routines that allow the user to link object modules
into a running program. Dld will resolve undefined references in the modules it brings in, allow-
ing them to point into the main program or into other dynamically-loaded modules. The Sun rou-
tines (dlopen and dlsym) do not provide this capability; they require that the newly-loaded
module be self-contained. Neither dld nor the explicitly-invoked Sun routines will resolve
undefined references in the main program; they simply return pointers to the newly-available
symbols.

Our use of dynamic linking is reminiscent of several other systems. Dynamic linking is an
integral part of single-user open operating systems such as Cedar [57], and has been implemented
under Unix as part of such self-contained environments as Emerald [27] and the Portable Com-
mon Runtime [61]. The CLAM user interface system [10] and SOS distributed object system
[21] load C++ classes dynamically; the latter is based on the Andrew project’s Camphor dynamic
linker. Our work differs from these projects in its use of dynamic linking to share potentially
writable objects transparently, between ordinary Unix programs.

4. Implementation Details

4.1. Static Linker
Our dynamic linker requires more information than the standard IRIX static linker, ld, pro-

vides. Lds is a wrapper for ld which provides this information. Therefore, in addition to the
options specific to lds, the programmer should pass to cc the desired arguments for ld. Lds
processes the options directly related to its functionality and passes the others to ld. Lds-specific
options allow for the association of sharing classes with modules (−Fsharing class) and the
specification of search paths to be used when locating modules (−Qsearch path). In addition, lds
provides ldl with relocation information about static modules and warns the user if the dynamic
modules do not yet exist. The following paragraphs explain in greater detail the functionality
provided by lds.

The four sharing classes implemented by lds are static private, dynamic private, static public,
and dynamic public (see table 1). Modules specified as static are linked together during the static
link phase. Modules specified as dynamic are lazily linked at run time. Public modules are per-
sistent; that is, them continue to exist after the program has terminated.

new instance default location in
sharing class when linked created/destroyed portion of single-level

for each process address space store

static private static link time
dynamic private run time

yes private /proc

static public static link time same directory
dynamic public run time

no public
as template

Table 1: Sharing Classes

22

Lds verifies the existence of modules. Different search rules are used at static link time and
at run time. At static link time, lds searches for modules in (1) the current directory, (2) the path
specified by the −Q option, (3) the path specified by the LD_LIBRARY_PATH environment
variable, and (4) the default library directories. If there is more than one static module with the
same name, lds uses the first one it finds. Lds aborts linking if it cannot find a given static
module. It issues a warning message and continues linking if it cannot find a given dynamic
module. At execution time, ldl searches for dynamic modules in (1) the path specified by the
LD_LIBRARY_PATH environment variable, and (2) the directories in which lds searched for
static modules: the directory in which static linking occurred, the directories specified by the −Q
option at static link time, the directories specified by the LD_LIBRARY_PATH variable at static
link time, and the default directories. Users can therefore arrange to use new versions of dynamic
modules (e.g. for debugging) by changing the LD_LIBRARY_PATH environment variable
immediately prior to execution. (This search algorithm was inspired by the analogous algorithm
in the SunOS dynamic linker.)

The IRIX ld linker does not retain relocation information when statically linking an execut-
able program. Lds must therefore take additional steps to provide ldl with relocation information
for static modules. Lds extracts this information from the individual object files and creates a
data structure that is passed to the lazy linker by depositing it in a new C file, compiling this file,
and including it in the list of arguments to ld. Lds also uses this C file to inform ldl of the names
of the dynamic modules and the search path.

When a module is linked using the static public sharing class, lds needs to provide some of
the functionality of ldl. Public modules have a fixed address for each symbol. Since the linker
provided by IRIX was not designed to handle fixed addresses, lds must handle them itself.
Before passing a private module on to ld, lds resolves each reference to a static public symbol
with an absolute address. In addition, lds must create any static public modules that do not yet
exist, and must initialize those objects from their templates.

4.2. Dynamic Linker
Our early work used Ho’s [25] dynamic linker dld on the Sun Sparcstation. After moving to

the SGI it became apparent that many of the features we were planning to implement would
require a major restructuring of dld. This restructuring, together with differences in object file
format and relocation classes, prompted us to design our own lazy dynamic linker (ldl) for the
SGI.

A small change to crt0 ensures that ldl runs prior to the start of any program written in C.
Automatic invocation of ldl in languages other then C would require similar modifications to the
corresponding start-up file. Ldl maintains a dynamic data structure for each dynamically-linked
private or public module. This data structure contains relocation information and information on
symbols exported by the module. As described in section 2.1, these modules are brought into the
executing program on demand.

The most readily apparent difference between ldl and dld is that ldl resolves undefined exter-
nal references in its host program while dld does not. Ldl is also more transparent then dld,
although a dld-like interface for the advanced programmer is also provided (see the ldl man page
in the appendix for more details).

Several difficulties in the implementation of ldl arose from inadequate documentation on the
internal workings of the SGI compiler/linker system. SGI uses an object file format based on the
System V standard Common Object File Format (COFF), but with modifications for SGI-specific
relocation structures. We made guesses in several cases about the use of these structures, based
on an examination of C compiler output. As a result, ldl turned out to be dependent on the
behavior of the C compiler, and stopped working after installation of a new release of IRIX. We

23

have now re-written ldl to reduce the number of assumptions it makes about the compiler; we
expect that our current version will be much more resistant to future changes.

Two incompatibilities between ldl and the SGI relocation system still exist at present. SGI
uses indirection through a global pointer to reach objects in a special section of memory (.sdata
and .sbss in figure 4, page 24) in a single machine instruction. By default SGI compilers try to
put static data of 8 bytes or less into this special section. Ldl makes accessing information
through this pointer impossible; dynamic linking fragments the address space, so initialized data
is not contiguous. Luckily SGI compilers provide a flag to disable the global pointer. Ldl cannot
dynamically link old objects compiled without the flag.

A second incompatibility is potentially more serious. The primary jump instruction used on
the SGI uses a 28 bit offset from the current program counter. Address space fragmentation again
makes it likely that some jumps will be resolved to locations more than 28 bits away. Even in
our 32-bit prototype, such jumps occasionally occur. When ldl detects one, it currently prints an
error message and halts execution. We have devised but not yet implemented a solution based on
patching in branches to 32-bit jumps.

The only unusual kernel support required by ldl is a mechanism to control lazy linking by
protecting and unprotecting pages. The mprotect system call provides this capability on the Sun,
but is not yet available on the SGI. As a temporary measure, we have modified IRIX to leave the
text segment of the main program writable. We unmap and remap entire dynamic segments for
lazy linking. Given adequate documentation, it should be possible to port ldl to other versions of
Unix with relative ease.

4.3. Signal Handler
When ldl maps a segment that contains undefined references, it maps the segment without

access permissions. When (and if) such a segment is first accessed, a SIGSEGV signal (segmen-
tation fault) occurs. We have implemented a handler that catches such signals, calls ldl to resolve
any undefined references in the segment, and then restarts the faulting instruction. This handler is
the runtime interface to ldl that makes lazy linking work. It is installed by our alternate version
of crt0, using the BSD reliable signal interface, and exists for the lifetime of the process.

One complication with this implementation is that programs that employ our tools may wish
to define their own SIGSEGV handlers. We would like to ensure that our handler catches all and
only the SIGSEGV signals that occur in the process of lazy linking.

For programs using our tools, lds links in a wrapper for the BSD signal routine. Calls to
install handlers for all signals other than SIGSEGV pass directly through to the old routine, which
calls into the kernel as always. Calls to install handlers for SIGSEGV are redirected, and never
make it to the kernel; the wrapper simply records them and returns. When a SIGSEGV signal
occurs, the handler installed by crt0 checks to see if the signal resulted from an attempt to access
a segment that ldl mapped in without permissions. If so, it calls ldl to resolve any undefined
references in the segment, remaps it with permissions, and then restarts the faulting instruction.
Otherwise, it invokes a user-defined handler, if any, or performs the default action (terminate the
process and generate a core file) if the program has not defined its own handler.

It is possible that a programming error will cause a program to make an invalid reference to
an address that happens to lie in a segment to which the user has access rights. Our signal
handler will then erroneously map this segment into the running program and allow the invalid
reference to proceed. We see no way to eliminate this possibility without severely curtailing the
usefulness of our tools. The probability of trouble is small; the 64-bit address space is sparse.

It is also possible that a program will circumvent our signal wrapper, execute a kernel call
directly, and replace our signal handler. Since use of our tools is optional, we do not regard this
as a problem; we assume that a program that uses our tools will use only the normal interface.

24

4.4. Shared File System
When moving to a wide-address microprocessor it becomes feasible to give unique addresses

to disk locations, allowing memory to be treated as a fast cache for the file system. This scheme
allows files to contain pointers to other files, extending the programming paradigm in a number
of useful ways (see section 5).

As mentioned in section 2.2, our 32-bit prototype system uses a dedicated disk partition as a
‘‘shared file system,’’ which the kernel associates with a 1G byte region lying between the bss
and stack segments of a typical IRIX process (see figure 4). For the sake of simplicity, 30-bit
addresses in the shared file system (obtained by subtracting 0x30000000 from the virtual address)
are interpreted as a 10-bit inode number and 20-bit offset. The file system is configured to have
exactly 1024 inodes, and the tail of any file longer than 1M bytes is not addressable.

All of the normal Unix file operations work in the shared file system. The only thing that
sets it apart is the association between file names and addresses. Mapping from file names to
addresses is easy: the stat system call already returns an inode number. We provide a new system
call that returns the filename for a given inode. Again for the sake of simplicity, this call employs
a linear lookup table. We initialize the table at boot time by scanning the entire shared file

0x0

0x400000

0x10000000

0x30000000

0x7FFF0000

0x80000000

0x70000000

0xFFFFFFFF

32 bit address space

(1GB)

.bss
.sbss
.sdata
.data
.rdata

Reserved for
Shared Libraries

Program Text

Reserved (4MB)

Shared File System

User area (4KB)

Reserved for Kernel

Stack

Heap

(2GB)

Figure 4: Layout of the 32-bit Address Space (not to scale)

25

system, and update it as appropriate when files are created and destroyed. To simplify the
recovery of addresses when a deleted file is restored, we plan to pre-allocate all inodes to dummy
files, circumventing the normal disk space management routines. For an experimental prototype,
these measures have the desirable property of allowing the filename/address mapping to survive
system crashes without requiring modifications to on-disk data structures or to utilities like fsck
that understand those structures.

In the 64-bit version of our system, we expect to abandon the linear lookup table and the
direct association between inode numbers and addresses. Instead, we will add an address field to
the on-disk version of each inode, and will link these inodes into a lookup structure — most likely
a B-tree — whose presence on the disk allows it to survive across re-boots.

4.5. Summary of Kernel Modifications
Our 32-bit prototype system currently includes the following kernel changes:

g The boot-up procedure scans the shared file system to construct the address-to-file-name
lookup table.

g The various file creation and destruction system calls are special-cased to use our inode
allocation algorithm on the shared file system, to maintain the address-to-file-name table,
and to remember and re-use the addresses of recently-deleted shared files. These calls
include creat, unlink, mknod, mkdir, rmdir, rename, and symlink.

g The link system call refuses to work on the shared file system.

g A new system call, iname, translates an address to a path name.

We are in the process of adding the following changes to our prototype:

g The arguments to open will be overloaded to allow the user to open a file by address. Doing
so will be equivalent to, but faster than, calling iname followed by open.

g The arguments to rename will be overloaded to allow the user to specify whether or not the
file should retain its address.

g The arguments to creat will be overloaded to allow the user to request file creation at a par-
ticular address (e.g. for restoration from backups after the kernel has forgotten the file’s
address).

Both an address-retaining rename and creation at a specified address will conflict with the
guaranteed recovery of addresses when re-creating a deleted file. We will probably specify that a
file with a new name can be placed at a remembered address only if the user would have been
able to overwrite the deleted file.

Serendipitously, fork already creates a new copy of every private mmaped segment, and
shares all public mmaped segments. We expect that the mprotect system call will appear in a
future release of IRIX, and that the SGI compilers will be able to generate PIC.

We plan to add the following to the 64-bit version of our system:

g /proc file system (see section 2.2).

g Addresses for all files, embedded in on-disk structures.

5. Example Applications
In this section we consider several examples of the usefulness of cross-application shared

memory. We examine, in turn, the various Unix administrative files, utility programs that might
be re-cast as functions, parallel applications, and programs with complicated persistent data struc-
tures. One of these examples was implemented under the early version of our tools under SunOS;
some of the others are currently under construction on the SGI; the rest are hypothetical.

26

5.1. Administrative Files
Unix maintains a wealth of small administrative files. Examples include much of the con-

tents of /etc, the score files under /usr/games, the many ‘‘dot’’ files in users’ home directories,
bitmaps, fonts, and so on. Most of these files have a rigid format that constitutes either a binary
linearization or a parsable ascii description of a special-purpose data structure. Most are accessed
via utility routines that read and write these on-disk formats, converting them to and from the
linked data structures that programs really use.

For the designer of a new structure, the avoidance of translation may not be overwhelming,
but it is certainly attractive. As an example of the possible savings in complexity and cost, con-
sider the rwhod daemon. Running on each machine, rwhod periodically broadcasts local status
information (load average, current users, etc.) to other machines, and receives analogous informa-
tion from its peers. As originally conceived, it maintains a collection of local files, one per
remote machine, that contain the most recent information received from those machines. Every
time it receives a message from a peer it rewrites the corresponding file. Utility programs read
these files and generate terminal output. Standard utilities include rwho and ruptime, and many
institutions have developed local variants.6 Using the early prototype of our tools under SunOS,
we re-implemented rwhod to keep its database in shared memory, rather than in files, and
modified the various lookup utilities to access this database directly. The result was both simpler
and faster. We are currently porting the new server and utilities to our SGI-based system.

Our modified version of the Sun rwho saves about 30 lines of code (not a huge amount, but
about 17% of the total length). The modified version of rwhod is about the same size as the origi-
nal, mainly because it has to duplicate the associative naming performed ‘‘automatically’’ by the
file system directory mechanism. Set-up time for rwho expands from about 90 ms to about 250
ms on a Sparcstation 1 (this comparison is a bit unfair to the shared memory approach, because
SunOS performs dynamic linking of ‘‘shared’’ libraries prior to giving us a timing hook). At the
same time, approximately 20 ms per machine on the network is saved by reading information
directly from shared memory, rather than a file. Similarly, in rwhod, about 10 ms is saved in the
processing of every broadcast packet. On our local network of 65 rwho-equipped machines, the
new version of rwhod saves about 2.1 seconds per hour on each Sparcstation 1. Rwho saves over
a second each time it is called. Many members of our department run a variant of rwho automati-
cally every 60 seconds, so this time may be significant.

5.2. Utility Programs and Servers
Traditionally, UNIX has been a fertile environment for the creation and use of small tools

that can be connected in different ways. One of the great attractions of UNIX is the way in which
shell users can employ pipes to create powerful combinations of these building blocks on the fly.
These combinations can be viewed as a kind of functionality sharing at the level of program exe-
cutables. Our system encourages sharing at the level of functions as well as executables.

Calling a utility routine as a function has several potential advantages over execing it as a
program. It is certainly going to be faster in the cases where protection is not required, since the
overhead of process creation is avoided. Calling a function also has the advantage of allowing
arguments to be passed as genuine data structures, rather than as character strings, which is also
good for speed. With start-up overhead eliminated, one could imagine putting the power of
emacs behind every fill-in blank in a pop-up widget. Instances of the editor located behind dif-
ferent windows could share per-user data structures, allowing key bindings, macros and other
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6 At the University of Rochester, utilities have been written to correlate the data in rwhod’s files with
information on host types and locations, phone numbers, etc., and to filter or threshold the information for
individual users, hosts, load averages, etc.

27

customizations established in one window to be used in another. Alternatively, one could con-
struct the editor as an explicitly parallel program, into which multiple processes would make con-
current calls. In contrast to the ‘‘shared’’ libraries of SunOS, our tools use the same .o file format
for both static and dynamic linking, and make it easy for programmers to mix the use of private
and shared data.

The simplest way to use a function that someone else has written is to include its header files
in the new source, call it by name, and count on the dynamic linker to incorporate it into the run-
ning program. Our lazy linking and hierarchical search mechanisms support an arbitrary chain of
such incorporations, without fear of naming conflicts. One could also imagine writing a shell that
calls programs as functions; it would use the programmable, non-automatic interface to ldl. For
backward compatibility or additional flexibility, one could construct a driver for each utility func-
tion that would allow it to be executed as a stand-alone program.

As instances of utility routines begin to share data structures or to be realized as concurrent
code, the distinction between utilities and servers blurs. Just as function calls provide a faster and
richer interface than exec for the invocation of utilities, so too are they attractive in comparison to
message passing as an interface to servers. Clearly there will be circumstances in which a call to
a server requires a change of protection domain, but there are also likely to be circumstances in
which calls to servers can execute completely in the domain of the caller, with no overhead for
parameter copying or context switching. Calls of this sort are reminiscent of semi-model opera-
tions in Psyche [38, 40]; the interface to a Psyche server consists of subroutines that transfer into
the server’s domain only when one of a well-defined set of conditions makes such a transfer
essential.

Even when a call into a server requires a change of protection domain, sharing between the
client and server can make the call much faster. In their work on lightweight and user-level
remote procedure calls, Bershad et al. argue that the speed of optimized interfaces permits a much
more modular style of system construction than has been the norm to date [6, 7]. The growing
interest in microkernels [67] suggests that this philosophy is catching on. In effect, the microker-
nel argument is that the proliferation of boundaries becomes acceptable when crossing these
boundaries is cheap. We believe that it is even more likely to become acceptable when the boun-
daries are blurred by sharing, and processes can interact without necessarily crossing anything.

5.3. Parallel Applications
A parallel program can be thought of as a collection of sequential processes cooperating to

accomplish the same task. Threads in a parallel application need to communicate with their peers
for synchronization and data exchange. On a shared memory multiprocessor this communication
occurs via shared variables. In most parallel environments global variables are considered to be
shared between the the threads of an application while local variables are private to a thread. In
systems like Presto [5], however, both shared and private global variables are permitted. Presto
was originally designed to run on a Sequent multiprocessor under the Dynix operating system.
The Dynix compilers provide language extensions that allow the programmer to distinguish
explicitly between shared and private variables. The SGI compilers, on the other hand, provide
no such support.

When we set out to port Presto to IRIX in the fall of 1991, the lack of compiler-supported
language extensions became a major problem. The solution we eventually adopted was to expli-
citly place shared variables in memory segments that were shared between the processes running
the application. Placement had to be done by editing the assembly code, and was extremely tedi-
ous when attempted by hand. We created a post-processor to automate this procedure; it is 432
lines long (including 105 lines of lex source), and consumes roughly one quarter to one third of
total compilation time. It also embeds some compiler dependencies; we were forced to re-write it
when a new version of the C compiler was released.

28

We are currently modifying our Presto implementation to use our dynamic linking tools.
Selective sharing can be specified with ease. Shared variables must still be grouped together in a
separate file, but editing of the assembly code is no longer required. The parent process of the
application, which exists solely for set-up purposes, and does none of the application’s work,
does not link the shared data file. Rather, it creates a temporary directory, puts a symbolic link to
the shared data template into this directory, and then adds the name of the directory to the
LD_LIBRARY_PATH environment variable. At static link time, the child processes of the
parallel application specify that the shared data structures should be linked as a dynamic public
module. When the parent starts the children, they all find the newly-created symlink in the tem-
porary directory. The first one to call ldl creates and initializes the shared data from the template,
and all of them link it in.7 When the computation terminates the parent process performs the
necessary cleanup, deleting the shared segment, template symlink, and temporary directory.

5.4. Programs with Non-Linear Data Structures
Even when data structures are not accessed concurrently by more than one process, they may

be shared sequentially over time. Compiler symbol tables are a canonical example. In a multi-
pass compiler, pointer-rich symbol table information is often linearized and saved to secondary
store, only to be reconstructed in its original form by a subsequent pass. The complexity of this
saving and restoring is a perennial complaint of compiler writers, and much research has been
devoted to automating the process [32, 41].8 Similar work has occurred in the message-passing
community [24].

With pointers permitted in files, and with a global consensus on the location of every seg-
ment, pointer-rich data structures can be left in their original form when saved across program
executions. Segments thus saved are position-dependent, but for the compiler writer this is not a
problem; the idea is simply to transfer the data between passes.

In a related case study, we have examined our compiler for the Lynx distributed program-
ming language [54, 56], designed around scanner and parser generators developed at the Univer-
sity of Wisconsin [19]. The Wisconsin tools produce numeric tables for separately-developed
drivers. They come with drivers written in Pascal. At startup, these drivers read the tables from
files. They translate them into appropriate data structures, and then begin to parse the user’s pro-
gram.

The cost of this initialization (during every compile run) prompted us to modify the drivers
used in the Lynx compiler. Two auxiliary programs, makescan and makeparse, translate the
scanner and parser tables into initialized C data structures that mirror the Pascal data structures
that the drivers formerly built at start-up time. The compiler’s makefile runs the output of makes-
can and makeparse through the C compiler and links it into the Lynx compiler via separate com-
pilation.

Unfortunately, since Pascal lacks initialized static variables, the separate compilation trick
depends on a non-portable, unsupported, and undocumented correspondence in data structure lay-
outs between C and Pascal. Moreover, since makescan and makeparse are written in Pascal, they
create exactly the data structures the Lynx compiler ought to contain; dumping those structures in
C and then re-compiling the dump is a complete waste of time.

With the toolkit described in this paper, makescan and makeparse would share a persistent
module (the tables) with the Lynx compiler. Makescan and makeparse would initialize the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7 Ldl uses file locking to synchronize the creation of shared segments.
8 Some of this this research is devoted to issues of machine and language independence, but much of

it is simply a matter of coping with pointers.

29

tables; the compiler would link them in and use them. These changes would eliminate about a
fifth of the code in makescan and quarter of the code in makeparse, both of which are about 400
lines long. They would also save a significant amount of time: the C version of the tables is over
5400 lines, and takes 18 seconds to compile on a Sparcstation 1.

An additional example can be found in the xfig graphical editor. While editing, xfig main-
tains a set of linked lists that represent the objects comprising a figure. When saving figures to a
file, it generates a pointer-free representation in ascii. About 1000 lines of code are dedicated to
flattening the linked lists (when writing figures to disk) and to unflattening files back to linked
lists (when reading figures from disk). We plan to adapt xfig to our system. It already includes
code to copy the internal linked-list version of a figure. Once a segment has been mapped into
xfig’s address space, this same code can be used to read and write the figure in long-term storage,
allowing the current input/output routines to be eliminated.

Storage of figures in long-lived segments will require that each segment contain a local heap.
In addition, as noted in section 3.5.3, segments containing list-based figures will be position
dependent. With the current version of xfig, users sometimes copy a file in order to initialize a
new, similar figure. This will no longer be possible. Xfig itself, of course, can be used to make
copies of figures.

6. Conclusion
We have proposed a set of extensions to the Unix programming environment that facilitate

sharing of memory segments across application boundaries. We use dynamic linking to allow
programs to access shared objects using the same syntax that they use for private objects. We
exploit the availability of 64-bit architectures to assign a unique address to every byte of storage
in primary and secondary memory, allowing processes to share pointer-based linked data struc-
tures without worrying that addresses will be interpreted differently in different protection
domains. Our tools increase the convenience and speed of shared data management, client/server
interaction, parallel program construction, and long-term storage of pointer-rich data structures.

As of April 1992, we have a 32-bit version of our tools running on an SGI 4D/480 multipro-
cessor. These tools consist of (1) extensions to the Unix static linker, to support shared segments;
(2) a dynamic linker that finds and maps such segments (and any segments that they in turn
require, recursively) on demand; (3) modifications to the file system, including kernel calls that
map back and forth between addresses and path name/offset pairs in a dedicated shared file sys-
tem, and (4) a fault handler that adds segments to a process’s address space on demand, triggering
the dynamic linker when appropriate. Our SGI machine is scheduled to be upgraded to 64-bit
R4000 processors in the fall of 1992, at which point we will extend our system to include all of
secondary store.

Our tools maintain backward compatibility with Unix, not only because we wish to retain the
huge array of Unix tools, but also because we believe that the Unix interface is for the most part a
good one, with a proven track record. We do not believe that backward compatibility has cost us
anything of importance, and has gained us a great deal. In particular, we believe that retention of
the Unix file system interface, and use of the hierarchical file system name space for segments,
provides valuable functionality. It allows us to use the traditional file read/write interface for seg-
ments when appropriate. It allows us to apply existing tools to segments. It provides a means of
perusing the space of existing segments for manual garbage collection.

Questions for our ongoing work include:

(1) What is ultimately the best organization for /proc?

(2) How important is the ability to overload virtual addresses? Is it purely a matter of back-
ward compatibility?

30

(3) How best can our experience with Psyche (specifically, multi-model parallel programming
and first-class user-level threads) be transferred to the Unix environment?

(4) To what extent can in-memory data structures supplant the use of files in traditional Unix
utilities?

(5) In general, how much of the power and flexibility of open operating systems can be
extended to an environment with multiple users and languages?

Many of the issues involved in this last question are under investigation at Xerox PARC (see [62]
in particular). The multiple languages of Unix, and the reliance on kernel protection, pose serious
obstacles to the construction of integrated programming environments. It is not clear whether all
of these obstacles can be overcome, but there is certainly much room for improvement. We
believe that shared memory is the key.

References
[1] G. T. Almes, A. P. Black, E. D. Lazowska and J. D. Noe, ‘‘The Eden System: A Technical

Review,’’ IEEE Transactions on Software Engineering SE-11:1 (January 1985), pp. 43-59.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska and H. M. Levy, ‘‘Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism,’’ ACM Transac-
tions on Computer Systems 10:1 (February 1992), pp. 53-79. Originally presented at the
Thirteenth ACM Symposium on Operating Systems Principles, 13-16 October 1991.

[3] B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo and M. Schwartz, ‘‘A Remote Pro-
cedure Call Facility for Interconnecting Heterogeneous Computer Systems,’’ IEEE Tran-
sactions on Software Engineering SE-13:8 (August 1987), pp. 880-894.

[4] B. N. Bershad and C. B. Pinkerton, ‘‘Watchdogs — Extending the UNIX File System,’’
Computing Systems, Spring 1988. Also Technical Report 87-12-06, Department of Com-
puter Science, University of Washington, December 1987.

[5] B. N. Bershad, E. D. Lazowska, H. M. Levy and D. B. Wagner, ‘‘An Open Environment
for Building Parallel Programming Systems,’’ Proceedings of the First ACM Conference
on Parallel Programming: Experience with Applications, Languages and Systems, 19-21
July 1988, pp. 1-9. In ACM SIGPLAN Notices 23:9.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska and H. M. Levy, ‘‘Lightweight Remote
Procedure Call,’’ ACM Transactions on Computer Systems 8:1 (February 1990), pp. 37-55.
Originally presented at the Twelfth ACM Symposium on Operating Systems Principles, 3-6
December 1989.

[7] B. N. Bershad, T. E. Anderson, E. D. Lazowska and H. M. Levy, ‘‘User-Level Interprocess
Communication for Shared Memory Multiprocessors,’’ ACM Transactions on Computer
Systems 9:2 (May 1991), pp. 175-198.

[8] D. L. Black, ‘‘Scheduling Support for Concurrency and Parallelism in the Mach Operating
System,’’ Computer 23:5 (May 1990), pp. 35-43.

[9] P. Brinch Hansen, Programming a Personal Computer, Prentice-Hall, Englewood Cliffs,
NJ, 1982.

[10] L. A. Call, D. L. Cohrs and B. P. Miller, ‘‘CLAM — an Open System for Graphical User
Interfaces,’’ OOPSLA’87 Conference Proceedings, 4-8 October 1987, pp. 277-286. In
ACM SIGPLAN Notices 22:12 (December 1987).

31

[11] J. B. Carter, J. K. Bennett and W. Zwaenepoel, ‘‘Implementation and Performance of
Munin,’’ Proceedings of the Thirteenth ACM Symposium on Operating Systems Princi-
ples, 14-16 October 1991, pp. 152-164. In ACM SIGOPS Operating Systems Review 25:5.

[12] J. S. Chase, H. M. Levy, E. D. Lazowska and M. Baker-Harvey, ‘‘Lightweight Shared
Objects in a 64-Bit Operating System,’’ Technical Report 92-03-09, Department of Com-
puter Science and Engineering, University of Washington, March 1992.

[13] J. S. Chase, H. M. Levy, M. Baker-Harvey and E. D. Lazowska, ‘‘How to Use a 64-Bit
Virtual Address Space,’’ Technical Report 92-03-02, Department of Computer Science
and Engineering, University of Washington, March 1992.

[14] D. Cheriton, ‘‘The V Kernel — A Software Base for Distributed Systems,’’ IEEE
Software 1:2 (April 1984), pp. 19-42.

[15] D. Clark, ‘‘The Structuring of Systems Using Upcalls,’’ Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, 1-4 December 1985, pp. 171-180. In ACM
SIGOPS Operating Systems Review 19:5.

[16] P. Dasgupta, R. J. LeBlanc, Jr. and W. F. Appelbe, ‘‘The Clouds Distributed Operating
System: Functional Description, Implementation Details and Related Work,’’ Proceedings
of the Eighth International Conference on Distributed Computing Systems, 13-17 June
1988, pp. 2-9.

[17] Dobberpuhl and others, ‘‘A 200mhz 64 Bit Dual Issue CMOS Microprocessor,’’ Proceed-
ings of the International Solid-State Circuits Conference, February 1992.

[18] J. Edler, J. Lipkis and E. Schonberg, ‘‘Process Management for Highly Parallel UNIX
Systems,’’ Ultracomputer Note #136, Courant Institute, N. Y. U., April 1988.

[19] C. N. Fischer and R. J. LeBlanc, Jr., Crafting a Compiler, Benjamin/Cummings, Menlo
Park, CA, 1988.

[20] B. Fleisch and G. Popek, ‘‘Mirage: A Coherent Distributed Shared Memory Design,’’
Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, 3-6
December 1989, pp. 211-223. In ACM SIGOPS Operating Systems Review 23:5.

[21] P. Gautron and M. Shapiro, ‘‘Two Extensions to C++: A Dynamic Link Editor and Inner
Data,’’ Proceedings of the USENIX C++ Workshop, November 1987, pp. 23-32.

[22] D. Gifford, P. Jouvelot, M. Sheldon and J. W. O’Toole, Jr., ‘‘Semantic File Systems,’’
Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, 13-16
October 1991, pp. 16-25. In ACM SIGOPS Operating Systems Review 25:5.

[23] R. A. Gingell, J. P. Moran and W. A. Shannon, ‘‘Virtual Memory Architecture in
SunOS,’’ USENIX Association Conference Proceedings, June 1987, pp. 81-94.

[24] M. Herlihy and B. Liskov, ‘‘A Value Transmission Method for Abstract Data Types,’’
ACM Transactions on Programming Languages and Systems 4:4 (October 1982), pp.
527-551.

[25] W. W. Ho and R. A. Olsson, ‘‘An Approach to Genuine Dynamic Linking,’’ Software —
Practice and Experience 21:4 (April 1991), pp. 375-390.

[26] M. B. Jones, R. F. Rashid and M. R. Thompson, ‘‘Matchmaker: An Interface Specification
Language for Distributed Processing,’’ Conference Record of the Twelfth ACM Sympo-
sium on Principles of Programming Languages, January 1985, pp. 225-235.

32

[27] E. Jul, H. Levy, N. Hutchinson and A. Black, ‘‘Fine-Grained Mobility in the Emerald Sys-
tem,’’ ACM Transactions on Computer Systems 6:1 (February 1988), pp. 109-133. Origi-
nally presented at the Eleventh ACM Symposium on Operating Systems Principles, Austin,
TX, 8-11 November 1987.

[28] T. Kaehler, ‘‘Virtual Memory on a Narrow Machine for an Object-Oriented Language,’’
OOPSLA’86 Conference Proceedings, 29 September - 2 October 1986, pp. 87-106. In
ACM SIGPLAN Notices 21:11.

[29] A. R. Karlin, K. Li, M. S. Manasse and S. Owicki, ‘‘Empirical Studies of Competitive
Spinning for a Shared-Memory Multiprocessor,’’ Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, 13-16 October 1991, pp. 41-55. In ACM
SIGOPS Operating Systems Review 25:5.

[30] T. J. Killian, ‘‘Processes as Files,’’ Proceedings of the Usenix Software Tools Users Group
Summer Conference, 12-15 June 1984, pp. 203-207.

[31] E. J. Koldinger, H. M. Levy, J. S. Chase and S. J. Eggers, ‘‘The Protection Lookaside
Buffer: Efficient Protection for Single Address-Space Computers,’’ Technical Report 91-
11-05, Department of Computer Science and Engineering, University of Washington,
November 1991.

[32] D. A. Lamb, ‘‘IDL: Sharing Intermediate Representations,’’ ACM Transactions on Pro-
gramming Languages and Systems 9:3 (July 1987), pp. 297-318.

[33] P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson and B. L. Stumpf,
‘‘The Architecture of an Integrated Local Network,’’ IEEE Journal on Selected Areas in
Communications 5 (November 1983), pp. 842-857.

[34] S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman, The Design and Imple-
mentation of the 4.3BSD UNIX Operating System, The Addison-Wesley Publishing Com-
pany, Reading, MA, 1989.

[35] K. Li and P. Hudak, ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ ACM
Transactions on Computer Systems 7:4 (November 1989), pp. 321-359. Originally
presented at the Fifth Annual ACM Symposium on Principles of Distributed Computing,
11-13 August 1986.

[36] K. Li and R. Schaefer, ‘‘A Hypercube Shared Virtual Memory System,’’ Proceedings of
the 1989 International Conference on Parallel Processing, August 1989.

[37] B. D. Marsh, M. L. Scott, T. J. LeBlanc and E. P. Markatos, ‘‘First-Class User-Level
Threads,’’ Proceedings of the Thirteenth ACM Symposium on Operating Systems Princi-
ples, 14-16 October 1991, pp. 110-121. In ACM SIGOPS Operating Systems Review 25:5.

[38] B. D. Marsh, ‘‘Multi-Model Parallel Programming,’’ Ph. D. Thesis, TR 413, Computer
Science Department, University of Rochester, July 1991.

[39] B. D. Marsh, C. M. Brown, T. J. LeBlanc, M. L. Scott, T. G. Becker, P. Das, J. Karlsson
and C. A. Quiroz, ‘‘The Rochester Checkers Player: Multi-Model Parallel Programming
for Animate Vision,’’ Computer 25:2 (February 1992), pp. 12-19.

[40] B. D. Marsh, C. M. Brown, T. J. LeBlanc, M. L. Scott, T. G. Becker, P. Das, J. Karlsson
and C. A. Quiroz, ‘‘Operating System Support for Animate Vision,’’ Journal of Parallel
and Distributed Computing, to appear. Earlier version published as TR 374, Computer
Science Department, University of Rochester, June 1991.

33

[41] C. R. Morgan, ‘‘Special Issue on the Interface Description Language IDL,’’ ACM SIG-
PLAN Notices 22:11 (November 1987).

[42] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse and H. van Staveren,
‘‘Amoeba: A Distributed Operating System for the 1990s,’’ Computer 23:5 (May 1990),
pp. 44-53.

[43] B. Nitzberg and V. Lo, ‘‘Distributed Shared Memory: A Survey of Issues and Algo-
rithms,’’ Computer 24:8 (August 1991), pp. 52-60.

[44] E. I. Organick, The Multics System: An Examination of Its Structure, MIT Press, Cam-
bridge, MA, 1972.

[45] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer and J. Thompson, ‘‘A
Trace-Driven Analysis of the UNIX 4.2 BSD File System,’’ Proceedings of the Tenth
ACM Symposium on Operating Systems Principles, 1-4 December 1985, pp. 15-24. In
ACM SIGOPS Operating Systems Review 19:5.

[46] J. Ousterhout, ‘‘Push Technology, Not Abstractions,’’ ACM SIGOPS Operating Systems
Review 26:1 (January 1992), pp. 7-11. Overhead slides from a panel presentation at the
Thirteenth ACM Symposium on Operating Systems Principles.

[47] U. Ramachandran and M. Y. A. Khalidi, ‘‘An Implementation of Distributed Shared
Memory,’’ Proceedings of the First USENIX Workshop on Experiences Building Distrib-
uted and Multiprocessor Systems, 5-6 October, 1989, pp. 21-38.

[48] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R. McJones, H. G.
Murray and S. C. Purcell, ‘‘Pilot: An Operating System for a Personal Computer,’’ Com-
munications of the ACM 23:2 (February 1980), pp. 81-92.

[49] M. Rozier and others, ‘‘Chorus Distributed Operating Systems,’’ Computing Systems 1:4
(Fall 1988), pp. 305-370.

[50] M. L. Scott and A. L. Cox, ‘‘An Empirical Study of Message-Passing Overhead,’’
Proceedings of the Seventh International Conference on Distributed Computing Systems,
21-25 September 1987, pp. 536-543.

[51] M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘Design Rationale for Psyche, a General-
Purpose Multiprocessor Operating System,’’ Proceedings of the 1988 International
Conference on Parallel Processing, V. II − Software, 15-19 August 1988, pp. 255-262.

[52] M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘Evolution of an Operating System for
Large-Scale Shared-Memory Multiprocessors,’’ TR 309, Computer Science Department,
University of Rochester, March 1989.

[53] M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘Multi-Model Parallel Programming in
Psyche,’’ Proceedings of the Second ACM Symposium on Principles and Practice of
Parallel Programming, 14-16 March, 1990, pp. 70-78. In ACM SIGPLAN Notices 25:3.

[54] M. L. Scott, ‘‘The Lynx Distributed Programming Language: Motivation, Design, and
Experience,’’ Computer Languages 16:3/4 (1991), pp. 209-233. Earlier version published
as TR 308, ‘‘An Overview of Lynx,’’ Computer Science Department, University of
Rochester, August 1989.

[55] M. L. Scott and W. Garrett, ‘‘Shared Memory Ought to be Commonplace,’’ Proceedings
of the Third Workshop on Workstation Operating Systems, 23-24 April 1992.

[56] M. L. Scott, ‘‘LYNX Reference Manual,’’ BPR 7, Computer Science Department, Univer-
sity of Rochester, August 1986 (revised).

34

[57] D. Swinehart, P. Zellweger, R. Beach and R. Hagmann, ‘‘A Structural View of the Cedar
Programming Environment,’’ ACM Transactions on Programming Languages and Sys-
tems 8:4 (October 1986), pp. 419-490.

[58] R. H. Thomas and W. Crowther, ‘‘The Uniform System: An Approach to Runtime Support
for Large Scale Shared Memory Parallel Processors,’’ Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, V. II − Software, 15-19 August 1988, pp. 245-
254.

[59] W. F. Tichy, ‘‘Design, Implementation, and Evaluation of a Revision Control System,’’
Proceedings of the Sixth International Conference on Software Engineering, September
1982.

[60] J. H. Walker, D. A. Moon, D. L. Weinreb and M. McMahon, ‘‘The Symbolics Genera Pro-
gramming Environment,’’ IEEE Software 4:6 (November 1987), pp. 36-45.

[61] M. Weiser, A. Demers and C. Hauser, ‘‘The Portable Common Runtime Approach to
Interoperability,’’ Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, 3-6 December 1989, pp. 114-122. In ACM SIGOPS Operating Systems Review
23:5.

[62] M. Weiser, L. P. Deutsch and P. B. Kessler, ‘‘UNIX Needs a True Integrated Environ-
ment: CASE Closed,’’ Technical Report CSL-89-4, Xerox PARC, 1989. Earlier version
published as ‘‘Toward a Single Milieu,’’ UNIX Review 6:11.

[63] P. R. Wilson, ‘‘Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge
Address Spaces on Standard Hardware,’’ ACM SIGARCH Computer Architecture News
19:4 (June 1991), pp. 6-13.

[64] N. Wirth, ‘‘From Programming Language Design to Computer Construction,’’ Communi-
cations of the ACM 28:2 (February 1985), pp. 159-164. The 1984 Turing Award Lecture.

[65] W. A. Wulf, R. Levin and S. P. Harbison, Hydra/C.mmp: An Experimental Computer Sys-
tem, McGraw-Hill, New York, 1981.

[66] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black
and R. Baron, ‘‘The Duality of Memory and Communication in the Implementation of a
Multiprocessor Operating System,’’ Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, 8-11 November 1987, pp. 63-76. In ACM SIGOPS Operat-
ing Systems Review 21:5.

[67] Usenix Workshop on MicroKernels and other Kernel Architectures, Seattle, WA, 27-28
April 1992.

Appendix
The rest of this document consists of manual pages for lds, ldl, /proc, and the single-level

store.

2

CONTENTS

1. Introduction .. 3
2. Overview ... 5

2.1. Dynamic Linking .. 5
2.2. Single-Level Store .. 9

3. Discussion and Rationale .. 10
3.1. Backward Compatibility .. 10
3.2. Address Space Organization ... 11
3.3. Shared Code .. 13
3.4. Naming ... 14

3.4.1. Naming in the Single-Level Store .. 14
3.4.2. Naming in the Linkers .. 16

3.5. Caveats ... 16
3.5.1. Synchronization .. 17
3.5.2. Garbage Collection ... 17
3.5.3. Position-Dependent Files ... 17
3.5.4. Dynamic Storage Management .. 17
3.5.5. Loss of Commonality ... 18

3.6. Related Work .. 18
3.6.1. Open Operating Systems .. 18
3.6.2. Shared Memory Operating Systems ... 19
3.6.3. Software Implementation of Large Address Spaces 19
3.6.4. Use of Shared Memory to Improve Performance 20
3.6.5. Generalization of the Unix File System Interface 20
3.6.6. Dynamic Linking ... 20

4. Implementation Details .. 21
4.1. Static Linker ... 21
4.2. Dynamic Linker .. 22
4.3. Signal Handler .. 23
4.4. Shared File System ... 24
4.5. Summary of Kernel Modifications ... 25

5. Example Applications ... 25
5.1. Administrative Files ... 26
5.2. Utility Programs and Servers ... 26
5.3. Parallel Applications .. 27
5.4. Programs with Non-Linear Data Structures ... 28

6. Conclusion .. 29
References ... 30
Appendix ... 34

lds(1) USER COMMANDS lds(1)

NAME
lds - static portion of a dynamic link editing system

SYNOPSIS
lds [-Q pathname] [-F sharing class] [ld options]

DESCRIPTION
lds is a front end for ld that provides the ability to classify modules
into one of four sharing classes. It may be called from cc by specifying
-tl -h/usr/grads/bin -Bs. lds combines the object modules specified on
the command line into an executable a.out file. It allows individual
classification of the object modules into one of the following classes:
static private, dynamic private, static public, and dynamic public.
Options other than -F and -Q are passed on to ld. Additionally lds
processes -L arguments. Search paths specified with the -Q option apply
to all object modules. Path names specified with the -L option apply
strictly to those modules starting with -l that follow the option.

lds verifies the existence of modules. Different search rules are used
at static link time and at run time. At static link time, lds searches
for modules in: 1) the current directory, 2) the path specified by the -Q
option, 3) the path specified by the LD_LIBRARY_PATH environment vari-
able, and 4) the default library directories
(/lib:/usr/lib:/usr/local/lib). If there are multiple static modules
with the same name, the one that will be used is the first one found by
the above rules. If a static module cannot be found, lds aborts execu-
tion. If a dynamic module cannot be located, a warning is given and
linking continues. Lds passes the list of directories in which it
searched to ldl, which prepends the then-current value of LD_LIBRARY_PATH
to the list.

OPTIONS
-F_c_l_a_s_s

Static private, dynamic private, static public, and dynamic public
sharing classes are specified by spr, dpr, spu, and dpu respec-
tively. Modules specified as static are linked together during the
static link phase. The dynamic class indicates that the module is
to be lazily linked at run time. Public further specifies that the
module will be persistent, that is, it will continue to exist after
the program has terminated.

-L_d_i_r
As in ld, allows a search path to be specified for all modules
starting with -l. This option applies to only -l modules following
the specification by -L and is appended to the end of the search
path specified by -Q.

-L _d_i_r
Same as -L_d_i_r.

-Q_p_a_t_h
Specifies a search path to be used for finding modules given on the

Univ. of Rochester Last change: April 1992 1

lds(1) USER COMMANDS lds(1)

command line of lds, as described above.

EXAMPLE
lds -Fdpu f1.o -L/u/dir -lm -Fspr f2.o -Q/u/dir:/u/dir/dir f3.o -Fshared
f4.o

DIAGNOSTICS
lds issues a warning for unlocated dynamic modules and an error for unlo-
cated static modules.

AUTHOR
Ricardo Bianchini and Robert Wisniewski (University of Rochester, April
1992)
ricardo@cs.rochester.edu and bob@cs.rochester.edu

SEE ALSO
cc(1), ld(1), ldl(1)

Univ. of Rochester Last change: April 1992 2

ldl(1) USER COMMANDS ldl(1)

NAME
ldl - lazy dynamic link editor

DESCRIPTION
ldl provides a dynamic linking facility to running executables. Programs
may specify modules to be dynamically included, and directories where
those modules are searched for, by using lds at static link time. At run
time, ldl searches for the specified modules in: 1) the path specified by
the LD_LIBRARY_PATH environment variable, 2) the directory in which lds
was run at static link time, 3) the path specified by the -Q option to
lds at static link time, 4) the path that the LD_LIBRARY_PATH environment
variable held at static link time, and 5) the default library directories
(/lib:/usr/lib:/usr/local/lib). Once these modules are found ldl links
them into the address space. The type of linking done depends on the
sharing class specified to lds at static link time. Modules declared
public are linked into the address space at the address corresponding to
the file in the single level store, and any changes made to the module
are seen by others having mapped the file in as public. Modules declared
private are linked into the private address space at a location deter-
mined by ldl, and all changes are local.

The modules linked in using the search rules above are used to resolve
undefined references in the parent module. If these modules have any
undefined references they are marked as untouchable by ldl. When the
running program actually attempts to touch one of these modules, a signal
handler catches the segmentation violation that results and activates
ldl, which then repeats the above process of bringing in modules and
resolving references.

When a module is brought in, its internal symbols are first resolved
against the symbols defined in the modules from its own module and search
path (these modules are searched for and brought in using the rules
detailed above). If unresolved references still exist, the module’s sym-
bols are then resolved using the module and search path of the module
that caused it to be loaded in (its parent). If unresolved references
remain, the module is resolved using the module and search path of its
parent’s parent, and so on, until either all symbols have been resolved
or ldl runs out of ancestors. If there are still unresolved references
ldl leaves them untouched. User defined signal handlers may handle these
references later.

The signal handler installed by ldl also catches references to unlinked
objects in the systems single level store (see sls(5)). Attempting to
access any of these objects by its address causes that object to be
automatically linked into the calling program’s address space.

AUTHOR
Bill Garrett and Jeff Thomas (University of Rochester, April 1992)
garrett@cs.rochester.edu and thomas@cs.rochester.edu

SEE ALSO
lds(1), sls(5), ld(1)

Univ. of Rochester Last change: April 1992 1

iname(2) SYSTEM CALLS iname(2)

NAME
iname - inode to filename translation

SYNOPSIS
#include <sys/types.h>
#include <sys/iname.h>

int iname(inum,buf)
int inum;
char *buf;

DESCRIPTION
iname() returns the file name in the single level store that corresponds
to the inode number specified by inum. Read, write, or execute permis-
sions on the file are not required.

The parameters passed to iname are the inode number of the file whose
name is needed and a character buffer where the result will be returned.

RETURN VALUES
iname() returns:

0 on success.

-1 on failure and sets errno to indicate the error.

ERRORS
iname() will fail if one or more of the following is true:

EFAULT _b_u_f points to an invalid address.

ENOENT The file referred to by _i_n_u_m does not exist in the
single level store, or _i_n_u_m is outside the inode
number range.

BUGS
iname() is an unsupported interface, and will change in future versions
of the kernel. Programmers should use the addr2path() library routine.

AUTHOR
Leonidas Kontothanassis (University of Rochester, April 1992)
kthanasi@cs.rochester.edu

SEE ALSO
path2addr(1), addr2path(1), stat(2), sls(5)

Univ. of Rochester Last change: April 1992 1

sls(5) FILE FORMATS sls(5)

NAME
sls - single level store

SYNOPSIS
#include <sys/iname.h>

DESCRIPTION
The single level store is a special file system type known to the Unix
_m_o_u_n_t system call. For a single level store file system the kernel main-
tains a mapping between file names and their corresponding inode numbers.
This mapping makes it possible to retrieve the filename given the inode
number, in contrast to normal filesystems in which the conversion is pos-
sible only in the other direction.

Single level store filesystems support the iname system call. They also
support modified versions of the creat, open, link, symlink, mkdir,
mknod, rmdir, rename, unlink and smount system calls that maintain the
inode-filename correspondence.

To mount a file system as a single level store one needs to use the mount
command with the special _s_l_s flag.

EXAMPLES
Mounting a file system as a single level store:

example% mount -t sls device directory

Unmounting a single level store file system:

example% umount directory

BUGS
Currently only one filesystem can be mounted as a single level store flag
at any time. Also, the kernel tables are big enough for only 1024 files.
Creation of more files will result in failure to maintain the
inode-filename mapping and inconsistent behavior.

AUTHOR
Leonidas Kontothanassis (University of Rochester, April 1992)
kthanasi@cs.rochester.edu

SEE ALSO
iname(2), stat(2)

Univ. of Rochester Last change: April 1992 1

addr2path(3) C LIBRARY FUNCTIONS addr2path(3)

NAME
addr2path - translate from an address to a filename

SYNOPSIS
#include <sys/types.h>
#include <sys/pathaddr.h>

int addr2path(addr,buf)
int addr;
char *buf;

DESCRIPTION
addr2path finds the filename of the file whose address is _a_d_d_r and
returns it in the buffer _b_u_f_f. Read write or execute permissions on the
file are not required.

addr2path calculates the inode number that corresponds to _a_d_d_r and calls
iname with the inode number and the user supplied buffer.

RETURN VALUES
addr2path() returns:

The offset in the file as specified by addr

-1 on failure and sets errno to indicate the error.

ERRORS
path2addr() will fail if one or more of the following is true:

EFAULT _b_u_f points to an invalid address.

ENOENT No file in the single level store corresponds to
address _a_d_d_r or _a_d_d_r is out of the range of addresses
allocated for the single level store

AUTHOR
Leonidas Kontothanassis (University of Rochester, April 1992)
kthanasi@cs.rochester.edu

SEE ALSO
iname(2), path2addr(3), sls(5)

Univ. of Rochester Last change: April 1992 1

path2addr(3) C LIBRARY FUNCTIONS path2addr(3)

NAME
path2addr - translate from a filename to an address

SYNOPSIS
#include <sys/types.h>
#include <sys/pathaddr.h>

int path2addr(path)
char *path;

DESCRIPTION
path2addr returns the starting address in the single level store of the
file _p_a_t_h Read write or execute permissions on the file are not required,
but all directories listed in the path name leading to the file must be
searchable.

path2addr calls stat with _p_a_t_h and then uses the inode number of the file
to calculate the address. path2addr and addr2path are the approved
interface for translating back and forth between path names and
addresses. The association between inodes and addresses will be aban-
doned in future versions of the kernel.

RETURN VALUES
path2addr() returns:

The address of the file on success

-1 on failure and sets errno to indicate the error.

ERRORS
path2addr() will fail if one or more of the following is true:

EFAULT _p_a_t_h points to an invalid address.

ENOENT The file referred to by _p_a_t_h does not exist or its
address clearly indicates that it is out of the sin-
gle level store.

BUGS
path2addr will return an address for a file even when the file is not
part of the single level store if its inode number is less than or equal
to 1024.

AUTHOR
Leonidas Kontothanassis (University of Rochester, April 1992)
kthanasi@cs.rochester.edu

SEE ALSO
stat(2), sls(5)

Univ. of Rochester Last change: 20 April 1992 1

