
Position Paper:
Shared Memory Ought to be Commonplace

Michael L. Scott
William Garrett

University of Rochester
Computer Science Department

Rochester, NY 14627-0226
{scott,garrett}@cs.rochester.edu

Shared memory as a programming abstraction is widely used within parallel applications. It
is not widely used between applications, but we argue that it should be. Specifically, we suggest
that shared memory is both faster and more intuitive than the principal alternatives in many cases,
and that the general disuse of shared memory facilities in systems such as Unix is due in large
part to a lack of appropriate tools.

We are pursuing a series of measures to make shared memory more convenient. We use
dynamic linking to allow programs to access shared or persistent data the same way they access
ordinary variables and functions. We also unify memory and files into a single-level store that
facilitates the sharing of pointers and capitalizes on emerging 64-bit architectures. We exploit
existing interfaces and tools wherever possible, to remain backward-compatible with Unix.

1. Shared Memory is Good
After a decade of focusing on message passing and RPC in distributed systems, the OS com-

munity has in recent years returned to an interest in shared memory. The growing popularity of
distributed shared memory systems [5], for example, represents a realization that many program-
mers and system designers find shared memory attractive as a conceptual model for inter-process
interaction even when the underlying hardware provides no direct support.

Memory sharing between arbitrary processes is at least as old as Multics [6]. It suffered
something of a hiatus in the 1970s, but has now been incorporated in most variants of Unix. The
Berkeley mmap facility was designed, though never actually included, as part of the 4.2 and 4.3
BSD releases [3]; it appears in several commercial systems, including SunOS. AT&T’s shm
facility became available in Unix System V and its derivatives. More recently, memory sharing
via inheritance has been incorporated in the versions of Unix for several commercial multiproces-
sors, and the external pager mechanisms of Mach [13] and Chorus can be used to establish data
sharing between arbitrary processes.

Shared memory has several important advantages over interaction via files or message pass-
ing. It is generally more efficient than either of the other alternatives, since operating system
overhead and copying costs can often be avoided. Many programmers find it more conceptually
appealing than message passing, at least for certain applications. It facilitates transparent, asyn-
chronous interaction between processes, and shares with files the advantage of not requiring that
the interacting processes be active concurrently. Finally, it provides a means of transferring
information from one process to another without translating it to and from a (linear) intermediate
form. This last advantage is particularly compelling: the code required to save and restore
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This work was supported in part by NSF grants CDA-8822724 and CCR-9005633.

mls
WWOS (now HotOS), 1992



2

information in files and message buffers is a major contributor to software complexity, and much
research has been aimed at reducing this burden (e.g. through data description languages and
RPC stub generators), with only partial success.

Both files and message passing have applications for which they are highly appropriate.
Files are ideal for data that have little internal structure, or that are frequently modified with a text
editor. Messages are ideal for RPC and certain other common patterns of process interaction. At
the same time, we believe that many interactions currently achieved through files or message
passing could better be expressed as operations on shared data. Many of the files described in
section 5 of the Unix manual, for example, are really long-lived data structures. It seems highly
inefficient, both computationally and in terms of programmer effort, to employ access routines
for each of these objects whose sole purpose is to translate what are logically shared data struc-
ture operations into file system reads and writes. In a similar vein, we see numerous opportuni-
ties for servers to communicate with clients through shared data rather than messages, with sav-
ings again in both cycles and programmer effort. Put another way, we believe it is time for the
advantages of memory sharing, long understood in the open operating systems community
[7, 10, 11], to be extended into environments with multiple users and hardware-enforced protec-
tion domains.

2. Shared Memory Is a Pain
Anecdotal evidence suggests that user-level programmers employ shared memory mainly for

special-purpose management of memory-mapped devices, and for inter-process interaction within
self-contained parallel applications, generally on shared-memory multiprocessors. They do not
use it much for interaction among applications, or between applications and servers. Why is this?

Much of the explanation, we believe, stems from a lack of convenience. Consider the Sys-
tem V shm facility, the most widely available set of shared memory library calls. Processes wish-
ing to share a segment must agree on a 32-bit key. Using the key, each process calls shmget to
create or locate the segment, and to obtain its segment id, a positive integer. Each process then
calls shmat to map the segment into its address space. The name space for keys is small, and
there is no system-provided way to allocate them without conflict. Shmget and shmat take argu-
ments that determine how large the segment is, which process creates it, where it is mapped in
each address space, and with what permissions. The user must be aware of these options in order
to specify a valid set of arguments. Finally, since shmat returns a pointer, references to shared
variables and functions must in most languages (including C) be made indirectly through a
pointer. There is no performance cost for this indirection on most machines, but there is a loss in
both transparency and type safety — static names are not available, explicit initialization is
required, and any sub-structure for the shared memory is imposed by convention only.

Less immediate, but equally important, is the issue of long-term shared data management.
Segments created by shmget exist until explicitly deleted. Though they can be listed (via the ipcs
command), the simple flat name space is ill-suited to manual perusal of a significant number of
segments, and precludes the sort of cleanup that users typically perform in file systems. The shm
facility makes it too easy to generate garbage segments, and too difficult to name, protect, and
account for useful segments.

The Berkeley mmap facility is somewhat more convenient. By using the file system naming
hierarchy, mmap avoids the problems with shm keys, and facilitates manual maintenance and
cleanup of segments. Mmap’s arguments, however, are at least as numerous as those of the shm
calls. Programmers must still determine who creates a segment. They must open and map seg-
ments explicitly, and must be aware of their size, location, protection, and level of sharing. Most
important, they must access shared objects indirectly, without the assistance of the language-level
naming and type systems.



3

Linked data structures pose additional problems for cross-application shared memory, since
pointers may be interpreted differently by different processes. Any object accessed through
shared pointers must appear at the same location in the address space of every process that uses it.
If processes map objects into their address spaces dynamically (e.g. as a result of following
pointers), the only way to preclude address conflicts is to assign every sharable object a unique,
global virtual address. While such an assignment may be possible (if a bit cramped on 32-bit
machines), it requires a consensus mechanism that is not a standard part of existing systems.

3. What Can We Do About It?
Our emphasis on shared memory has its roots in the Psyche project [4, 8, 9]. Our focus in

Psyche was on mechanisms and conventions that allow processes from dissimilar programming
models (e.g. Lynx threads and Multilisp futures) to share data abstractions, and to synchronize
correctly. Fundamental to this work was the assumption that sharing would occur both within
and among applications. Our current work can be considered an attempt to make that sharing
commonplace in the context of traditional operating systems. We use dynamic linking to allow
processes to access shared or persistent code and data with the same syntax employed for private
code and data. In addition, we unify memory and files into a single-level store that facilitates the
sharing of pointers, and capitalizes on emerging 64-bit architectures.

Our dynamic linking system associates each shared memory segment with a Unix .o file,
making it appear to the programmer as if that file had been incorporated into the program via
separate compilation. Objects (variables and functions) to be shared are generally declared in a
separate .h file, and defined in a separate .c file (or in corresponding files of the programmer’s
language of choice). They appear to the rest of the program as ordinary external objects. The
only thing the programmer needs to worry about (aside from algorithmic concerns such as syn-
chronization) is a few additional arguments to the linker; no library or system calls for set-up or
shared-memory access appear in the program source.

Our implementation runs on a Silicon Graphics multiprocessor. An extended version of the
Unix ld linker allows programmers to specify which program modules are to be private and
which shared. For private modules, it supports both static and dynamic linking. For shared
modules, it supports both persistent and temporary data (the latter is reinitialized when no longer
accessed by any running process). A dynamic linker (inspired by Ho’s dld[1]) takes control at
process start-up time, to find and link in shared (and private dynamic) modules. Shared segments
appear in the file system, and have names that are derived from the name of the .o template. Each
dynamically-linked module may in turn require additional modules to be found and linked.
These additional modules are brought in on demand, when first referenced.

To facilitate the use of pointers from and into shared segments, we employ a single-level
store in which every sharable object (whether dynamically linked or not) has a unique, globally-
agreed-upon virtual address. We retain the traditional Unix file system and shared memory inter-
faces, both for the sake of backward compatibility and because we believe that these interfaces
are appropriate for many applications. We treat the interfaces as alternative views of a single
underlying abstraction. This is in some sense the philosophy behind the Berkeley mmap call; we
take it a step further by providing names for ‘‘unnamed’’ memory objects (in a manner inspired
by Killian’s /proc directory [2]), and by providing every byte of secondary storage with a unique
virtual address. To some extent, we return to the philosophy of Multics, but with true global
pointers, a flat address space, and Unix-style naming, protection, and sharing.

In our 32-bit prototype, we have reserved a 1 Gbyte region between the Unix bss and stack
segments, and have associated this region with a dedicated ‘‘shared file system.’’ With 64-bit
addresses, we plan to extend the shared file system to include all of secondary store. A user-level
handler for the SIGSEGV signal catches references to symbols in segments that have not yet been
linked, or to pointers into segments that have not yet been mapped. The handler uses new kernel



4

calls to translate the faulting address into a path name, and to open and map the file. It invokes
the dynamic linker if necessary, and then restarts the faulting instruction.

Example
To illustrate the utility of cross-application shared memory, consider the Unix rwhod dae-

mon. Running on each machine, rwhod periodically broadcasts local status information (load
average, current users, etc.) to other machines, and receives analogous information from its peers.
As originally conceived, it maintains a collection of local files, one per remote machine, that con-
tain the most recent information received from those machines. Every time it receives a message
from a peer it rewrites the corresponding file. Utility programs read these files and generate ter-
minal output. Standard utilities include rwho and ruptime, and many institutions have developed
local variants. Using an earlier prototype of our tools under SunOS, we re-implemented rwhod to
keep its database in shared memory, rather than in files, and modified the various lookup utilities
to access this database directly. The result is both simpler and faster.

Our modified version of rwho saves about 30 lines of code (not a huge amount, but about
17% of the total length). The modified version of rwhod is about the same size as the original,
mainly because it has to duplicate the associative naming performed ‘‘automatically’’ by the file
system directory mechanism. Set-up time for rwho expands from about 90 ms to about 250 ms
on a Sparcstation 1 (this comparison is a bit unfair to the shared memory approach, because
SunOS performs dynamic linking of ‘‘shared’’ libraries prior to giving us a timing hook). At the
same time, approximately 20 ms per machine on the network is saved by reading information
directly from shared memory, rather than a file. Similarly, in rwhod, about 10 ms is saved in the
processing of every broadcast packet. On our local network of 65 rwho-equipped machines, the
new version of rwhod saves about 2.1 seconds of compute time per hour on each Sparcstation 1.

4. Status and Plans
As of March 1992, we have a 32-bit version of our tools running on an SGI 4D/480 multipro-

cessor. These tools consist of (1) extensions to the Unix static linker, to support shared segments;
(2) a dynamic linker that finds and maps such segments (and any segments that they in turn
require, recursively) on demand; (3) modifications to the file system, including kernel calls that
map back and forth between addresses and path name/offset pairs, and (4) a fault handler that
adds segments to a process’s address space on demand, triggering the dynamic linker when
appropriate. Our SGI machine is scheduled to be upgraded to 64-bit R4000 processors in the fall,
at which point we will extend our system to include all of secondary store. Questions for our
ongoing work include:

(1) In what form should currently unnamed memory objects (e.g. private text, data, and stack
segments) appear in the file system?

(2) Do processes need to be able to overload virtual addresses, or will a single virtual-to-
physical translation suffice for the whole machine?

(3) How best can our experience with Psyche (specifically, multi-model parallel programming
and first-class user-level threads) be transferred to the Unix environment?

(4) To what extent can in-memory data structures supplant the use of files in traditional Unix
utilities?

(5) In general, how much of the power and flexibility of open operating systems can be
extended to an environment with multiple users and languages?

Many of the issues involved in this last question are under investigation at Xerox PARC (see [12]
in particular). The multiple languages of Unix, and the reliance on kernel protection, pose serious
obstacles to the construction of integrated programming environments. It is not clear whether all



5

of these obstacles can be overcome, but there is certainly much room for improvement. We
believe that shared memory is the key.

Acknowledgment
Our ongoing work is the subject of a spring 1992 graduate seminar at Rochester, and is a col-

laborative effort with Ricardo Bianchini, Leonidas Kontothanassis, Andrew McCallum, Jeff Tho-
mas, and Bob Wisniewski. Details on our prototype tools and future plans can be found in a
technical report, now in preparation.

References
[1] W. W. Ho and R. A. Olsson, ‘‘An Approach to Genuine Dynamic Linking,’’ Software —

Practice and Experience 21:4 (April 1991), pp. 375-390.

[2] T. J. Killian, ‘‘Processes as Files,’’ Proceedings of the Usenix Software Tools Users Group
Summer Conference, 12-15 June 1984, pp. 203-207.

[3] S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman, The Design and Imple-
mentation of the 4.3BSD UNIX Operating System, The Addison-Wesley Publishing Com-
pany, Reading, MA, 1989.

[4] B. D. Marsh, M. L. Scott, T. J. LeBlanc and E. P. Markatos, ‘‘First-Class User-Level
Threads,’’ Proceedings of the Thirteenth ACM Symposium on Operating Systems Princi-
ples, 14-16 October 1991, pp. 110-121. In ACM SIGOPS Operating Systems Review 25:5.

[5] B. Nitzberg and V. Lo, ‘‘Distributed Shared Memory: A Survey of Issues and Algo-
rithms,’’ Computer 24:8 (August 1991), pp. 52-60.

[6] E. I. Organick, The Multics System: An Examination of Its Structure, MIT Press, Cam-
bridge, MA, 1972.

[7] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R. McJones, H. G.
Murray and S. C. Purcell, ‘‘Pilot: An Operating System for a Personal Computer,’’ Com-
munications of the ACM 23:2 (February 1980), pp. 81-92.

[8] M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘A Multi-User, Multi-Language Open
Operating System,’’ Proceedings of the Second Workshop on Workstation Operating Sys-
tems, 27-29 September 1989, pp. 125-129.

[9] M. L. Scott, T. J. LeBlanc and B. D. Marsh, ‘‘Multi-Model Parallel Programming in
Psyche,’’ Proceedings of the Second ACM Symposium on Principles and Practice of
Parallel Programming, 14-16 March, 1990, pp. 70-78. In ACM SIGPLAN Notices 25:3.

[10] D. Swinehart, P. Zellweger, R. Beach and R. Hagmann, ‘‘A Structural View of the Cedar
Programming Environment,’’ ACM Transactions on Programming Languages and Sys-
tems 8:4 (October 1986), pp. 419-490.

[11] J. H. Walker, D. A. Moon, D. L. Weinreb and M. McMahon, ‘‘The Symbolics Genera Pro-
gramming Environment,’’ IEEE Software 4:6 (November 1987), pp. 36-45.

[12] M. Weiser, L. P. Deutsch and P. B. Kessler, ‘‘UNIX Needs a True Integrated Environ-
ment: CASE Closed,’’ Technical Report CSL-89-4, Xerox PARC, 1989. Earlier version
published as ‘‘Toward a Single Milieu,’’ UNIX Review 6:11.

[13] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black
and R. Baron, ‘‘The Duality of Memory and Communication in the Implementation of a
Multiprocessor Operating System,’’ Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, 8-11 November 1987, pp. 63-76. In ACM SIGOPS Operat-
ing Systems Review 21:5.




