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Parallel Computers have recently become powerful enough to outperform conventional
vector based supercomputers. Several parallel languages are currently under development for
exploiting the data and/or task parallelism available in the applications. In this report, we
propose the development of a basic public domain infrastructure to provide runtime support
for high level parallel languages. This would support several projects developing different
compilers for a given language such as C++, ADA, or Fortran but also give a unified support
for compilers of different languages. There are two particularly important motivations for
this common runtime support system.

Firstly, it will accelerate the development of new compiler projects investigating particular
modules or concepts by providing a public domain infrastructure which can be built on and
not replicated.

Secondly there is currently no universally “best” language; each excels in different aspects
of the performance, expressivity, reliability, user familiarity and other metrics. This fact
is corroborated by the findings of the recent multiagency workshop on HPCC and grand
challenge applications at Pittsburgh. A typical example of software development involved
using C+4 as a high level language to achieve modularity, Fortran as a high performance
assembly language for coding the computationally intensive fragments, and using AVS for
visualization. Thus integrated support of different languages appears an essential pragmatic
feature of high performance computing environment.

The above issues were discussed by several researchers which led to a workshop at Syracuse
University on common runtime support for compilers and formation of the Parallel Compiler
Runtime Support Consortium. Three central and relatively orthogonal topics were identified

for common runtime support:

1. Common Runtime Support for Data parallelism
2. Common Runtime Support for Task parallelism
3. Performance and Debugging Infrastructure for Compiler Runtime Systems

Data parallelism and Task parallelism are two important kinds of exploitable parallelism
available in most applications. The need for debuggers and performance estimation is of
utmost importance for any software environment.

The parallel runtime compiler consortium was originally put together on the initiative of
Gil Weigand. The current members of the consortium represent many of the major compiler
groups supported by ARPA.

The purpose of this report is to present the important issues in providing a common
framework for runtime support of compilers. The report is organized into three general parts,

corresponding to the above three topics. Each part represents the discussions of a working



group and provides a detailed analysis of the issues, implications and organization required
for a common runtime support.

This is the first major public report produced by the consortium and will be circulated
broadly for comments. We expect other groups will join the consortium. We have an electronic

repository of working material which is described in the next section.

Documents and Organization

This document (PCRC-001) is available via anonymous ftp at minerva.npac.syr.edu under
the pcre directory. Electronic mail can be addressed to pcrc@npac.syr.edu. Please mail to
pcre-request@npac.syr.edu for adding your name to the pere list. Geoffrey Fox is currently
the Chair and Sanjay Ranka is the Deputy Chair of the Consortium. The subgroups are

coordinated by the following individuals:
1. Runtime Support for Data Parallelism - Sanjay Ranka (ranka@top.cis.syr.edu)
2. Runtime Support for Task Parallelism - Michael Scott (scott@cs.rochester.edu)
3. Performance and Debugging Infrastructure - Allen Malony (malony@cs.uoregon.edu)

For any questions/comments please contact Sanjay Ranka at 315-443-4457 or ranka@top.cis.syr.edu.



Common Runtime Support for Data Parallelism

Parallel Compiler Runtime Consortium: IP1 Subgroup

Marina Chen, James Cowie, Alok Choudhary, Amr Fahmy, Geoffrey Fox,
Dennis Gannon, Chris Goldthrope, Tom Haupt, Chuck Koelbel, Wei Li,

Sanjay Ranka, Joel Saltz, Alan Sussman

1.1 Research Summary

Recently there have been major efforts in developing programming language and compiler
support for parallel machines. For example, High Performance Fortran has been standardized.
A similar effort is currently in progress for HPC++4. We use the term High Performance
Language (HPL), to refer to HPF, HPC++, an extended (data parallel) form of ADA, or
some other relevant language.

At a recent multiagency workshop on HPCC and grand challenge applications at Pitts-
burgh, the application scientists were asked for the software requirements for solving their
applications. There was a consensus that no one particular language was sufficient for the
parallelization of their applications. A typical example of software development involved using
C++ as a high level language to achieve modularity, Fortran as a high performance assembly
language for coding the computationally intensive fragments, and using AVS for visualization.
The codes involved a mixture of data parallelism as well as task parallelism. Many of the
applications required parallelization of irregular and unstructured problems which could not
be easily or efficiently represented with the current features provided by High Performance
Fortran. Thus, for these applications, the most natural programming language for every
user/application may be any of HPF, HPC++, an extended form of ADA, etc.

There is ongoing work on developing libraries with specialized capabilities for parallel
machines. Some examples include SCALAPACK [11] for linear algebra, P++ and G++ [12],
PTREE [4, 5] for distributed data structures, etc. An application scientist would like to take

advantage of these specialized libraries to solve their applications and develop new libraries



which could be useful for others.

A system that would allow different components, perhaps written in various HPLs, to
operate with each other and execute in an integrated fashion is sorely needed for the following
reasons: (1) different pieces of an application program in one HPL may be best handled
by different runtime components (e.g. program segments with regular data access patterns
versus irregular access patterns); (2) different components may be best written in one or
more HPLs due to the nature of the components and the particular types of language support
(e.g. Ada/HPF combination); (3) building components that are reusable across different
applications, perhaps written in different HPLs; (4) sharing of infrastructure (data structures,
intermediate forms, etc.) across systems.

We believe that there is a great deal of commonality in the support for parallelism in
these languages, since parallelism is inherent in the problem and not in the problem’s rep-
resentation in a particular HPL. We would develop a unified framework for integrating and
accommodating different program transformation and runtime components for supporting
data parallelism. The runtime components developed will be available in the public domain.
This will allow groups to build and test compiler subsystems and will accelerate research and
development in this area.

The following is a summary of important research issues and innovations that would result

from designing such a unified framework:

o Portable and Scalable Multi-platform Runtime Support

Runtime support must efficiently support the address translations and data movements
that occur when one embeds a globally indexed program onto a multiple processor
architecture. Compilers and runtime support for HPLs can be built in a way that
assumes the availability of multiple independent processors and an interface to a message
passing system (such as PVM, Express, proprietary vendor message passing systems,
MPI, etc.). Alternately compilers and runtime support can assume the existence of
hardware supported address translation and data migration mechanisms, such as those
found on Kendall Square KSR-1 machines. The issue there will be purely figuring out
how data should be migrated.

We expect that all HPL compilers will make use of at least some optimizations for reduc-
ing communication costs such as message blocking, collective communication, message
coalescing, aggregation and latency hiding. Prototype runtime support has been de-
veloped to carry out these optimizations in the contexts of structured, adaptive, block
structured and tree structured problems. We will develop an integrated runtime sup-
port system that carries out address translation and communication optimizations, this

runtime support will be built on top of a message passing interface.



We will also develop versions of common runtime support to take advantage of hardware
supported distributed shared memory mechanisms. HPL data structure decompositions
and processor mappings will make it necessary to carry out rather complex mappings
between logical program addresses and locations in the machine’s distributed mem-
ory. Given these complex mappings, we do not expect hardware supported distributed
shared memory alone to be able to efficiently handle data migration and address trans-
lation. Instead, we will develop runtime support capable of leveraging the capabilities

of hardware supported distributed shared memory.

o Methodology for Integrated Multilanguage Support

We would design and develop common code and data descriptors, and libraries and
routines which operate on them for supporting data parallelism in HPLs. This would
allow different programming languages to share data structures that are distributed

across the memory hierarchy of scalable parallel systems and operate upon them.

We would design a common compiler data movement interface specification that will
provide a set of communication standards that compilers can link into the runtime
system for applications. Unlike the user level message passing interface standard, the
compiler interface can be more extensive in its capabilities, ranging from very low level
primitives that exploit special hardware properties to very high level primitives directly
coupled to the common array and data structure formats. The interface standard will
make it possible to write compilers that achieve a much greater efficiency on a wider
variety of machines than we can with current user level message passing mechanisms.
In addition, a common runtime interface will allow a compiler to be easily adapted to
a new machine, and still allow customization in the library implementation to improve

performance.

o Methodology for structuring code and data representations to support extensibility

We will develop a methodology for the engineering aspect of the described runtime
support to allow ease of use, modification, specialization, and extension. The kind
of extension we consider includes support for new distributed data structures, new
language features, new runtime system mechanisms and algorithms, and new message

passing or distributed shared memory interfaces.

1.2 Research Issues and Work Statement

Our work would be focused on developing a portable and scalable Common Integrated Multi-

platform Runtime Support system. A high level description of the important tasks is given
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Figure 1.1: Overview of the Common Runtime System

in Figure 1.1. In the following subsections, we describe the important issues and the corre-

sponding work required for each of the tasks.

1.2.1 Common Code and Data Descriptors

Because of the scale and complexity of grand challenge applications that will be ported to
high performance machines, HPC programs written in Fortran 90, C++, Ada, and other
relevant languages will need to work together. This implies that an HPF program may
need to call routines and libraries written in HPC++4 and vice versa. The challenge for the
compiler implementer is to make certain that array and structure data types have a run-time
representation that is consistent between languages and, if possible, across machines. In the
case of HPF this is a non-trivial problem. Array alignment and distribution information
passed from the programmer to the compiler by HPF annotations must be encoded into
the runtime structure of the array so that a software module written in another language
can understand the data placement. Consequently, data access protocols as well as access
functions should be shared.

The most challenging problem to be solved is how to build the data access descriptors and
functions in a “platform neutral” manner. Some vendors can be expected to have complete
and near optimal solutions to this problem at the time of machine introduction. However,
experience dictates that most will only have partial solutions. A platform-neutral solution
is one that supplies only access policy mechanisms and not specific bit-by-bit data layout
rules and operations. Consequently, it will be possible to define an implementation for each

machine that best exploits the hardware of that machines but still provides one coherent view



of the data to the different language implementations.

1.2.2 Address Translation Mechanisms

Given the descriptors for distributed arrays, the runtime system must still have standardized
methods of using them to produce address translations. In essence, this defines a semantics
for the syntax of the descriptors. An important subproject will therefore be to develop a
standard interface for address translation that will be closely tied to the distributed array

descriptors. This interface will include:

e Formulas and procedures for finding the processor storing a particular global index (i.e.

an array reference made relative to the full array).

e Formulas and procedures for translating global indexes into local indices (i.e. an offset

relative to the section of an array stored on a particular processor).
e Formulas and procedures for translating a local index to a global index.

o Procedures for querying attributes of a global or local index, such as whether that array

element is replicated on other processors.

This will form a common basis for compilers to represent array references, thus allowing
higher-level operations to be defined. It is important to note that compilers may optimize
the formulas in the actual implementation, and thus may not appear to use them directly.
However, these address translation mechanisms will ensure that there is agreement on data
layout and addressing conventions, thus avoiding integration problems that may exist today.

Additional runtime support is required for irregular data distributions. For distributed
memory machines, we will work on table based address translation schemes, such as the
paged translation tables used in the Parti routines for irregular problems citedas93c. Also,
we will investigate techniques for handling address translation for hybrid regular/irregular
distributions. For example, we will look at the issues that arise in translating addresses for a
multi-dimensional array that is irregularly distributed in one dimension and block distributed
in another dimension.

For machines that provide hardware support for distributed shared memory address trans-
lation, we will look at the usefulness of techniques for addressing irregularly distributed data
that have already been developed for distributed memory machines [19]. However, such tech-
niques should improve the performance of the hardware address translation mechanisms, by

improving locality (i.e. making more data accesses local, rather than requiring data located



elsewhere). For example, on a KSR machine, address translation optimization should be per-
formed with the KSR subpage and page structure in mind, and data migration should take

advantage of the KSR hardware support.

1.2.3 Common Computational Functions

Several basic computational operations are very valuable in parallel algorithm design for
massively parallel machines. HPF adds several classes of parallel operations to those in
Fortran 90, either as intrinsics or as standard library functions. We have developed a library
of routines for a subset of HPF intrinsic functions for different data distributions [2].

We would develop a library of common computational functions that uses the common

code and data descriptors described above.

1.2.4 Common Data Movement Routines

Efficient parallelization of data parallel constructs on distributed memory machines requires
the use of collective communication to access non-local data. This communication could be
structured (like shift, broadcast, all-to-all communication) or unstructured.

We have developed routines which remap data between regularly and irregularly dis-
tributed arrays [15]; converting arrays from one data layout to another [8]; carry out structured
collective communication patterns such as shift, transpose, spread, scans, etc. [6]; scheduling
and carrying out unstructured collective communication [17, 18]; carry out the communi-
cation needed to fill in overlap regions or ghost cells [1, 6]; carry out the communication
associated with moving regular sections within a particular distributed array or between two
conforming or non-conforming distributed arrays [1]; carry out the dynamic data partitioning
and communication patterns associated with many tree structured problems [4, 5].

We will develop a common library of collective structured and unstructured data move-
ment routines. Experimentation and experience gained from development of these routines

would be useful in the development of the Common Compiler Data Movement Interface (to
be described later).

1.2.5 Common Data Movement deriving and optimizing routines

We will develop a common set of routines that optimize the data movement required by
various data distribution schemes at runtime. These routines will help provide efficient im-
plementations of the data movement primitives for different communication patterns required
by the routines in the common data movement library (see the previous subsection). Such

routines would use runtime techniques to optimize communication for regular, irregular, block



structured, tree structured and other types of problems. Since the common runtime interface
is targeted at multiple machines, the runtime techniques may include both machine indepen-
dent and dependent optimizations, and provide efficient implementations for both message
passing and distributed shared memory machines. The routines for regular and block struc-
tured problems would be based on existing work at Syracuse and Yale for the Fortran90D
compiler [6, 13, 7] and Maryland for the multiblock Parti library [1, 20]. The routines for
problems with completely irregular data distributions would be derived from the Parti rou-
tines [3, 9]. Routines for tree structured communication distributions would be drawn from
work carried out at Yale [4, 5].

We will also use the results of ongoing research to develop runtime support that imple-
ments optimizations that target communication patterns characterized by runtime dependen-
cies patterns. In runtime dependent communication patterns, communication cannot occur
concurrently as dependency conditions constrain the order in which communication can be
carried out. Development of efficient communication optimizations for runtime dependent
communication patterns is an active area of current research. A joint project [14] by Yale
and IBM tackling the problem of deriving such runtime dependent parallelization and com-
munication optimizations by new compile-time analysis techniques and a compiler-generated
runtime “scheduler generator”. Optimizations targeted at tree structured problems have been
carried out at Yale [4, 5]. Also, a joint Maryland, Rutgers, and IBM project has investigated
scheduling of runtime dependent communication patterns in the context of sparse factoriza-
tion methods [21].

We will develop a common interface for the partitioning (and repartitioning) of irregularly
distributed data structures. The partitioners will use a (distributed) representation of infor-
mation that is commonly used to generate irregular data structure partitions. In general, data
structures for irregularly distributed data are defined in the form of a graph. The information
contained in such graphs that can be used for partitioning can be limited to one or more of
the following: 1) the connectivity of the graph representing dynamic dependence information,
2) the weights of the nodes of the graph representing the computational load, and 3) a static
graph representing the physical geometry of the computation. Our interface will also be de-
fined in a way that makes possible encoding of runtime data dependency information. An
interface will be developed both for the partitioning algorithms (to define both the input and
output data for a partitioner), and for the support routines for moving data associated with
partitioned graphs. Also, the data structures required for a common interface will be defined.
This definition will draw on work associated with the generic GeoCoL graph (which allows
the use of Geometry, Connectivity and Load information) for the Parti routines [15], the

IDG (iteration dependency graph) representation for the scheduler generator [14], and on the
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results of ongoing work by the Yale, Maryland, Syracuse and Rice groups on data structures
which encode runtime dependency information [4, 5, 19].

Tree structures are useful in supporting many applications such as N-body simulations.
Runtime support for tree operations can be divided into two interacting subsystems, link
traversal and per-node computation. A tree traversal begins as a single-link traversal to the
logical root, following which control alternate between single-link traversal and per-node eval-
uation until the traverse is complete. A third subsystem, the mailbox module, supports the
sending of raw or typed data between any two tree nodes, using some application-supplied
global addressing methods. These primitive operations can be used for developing more
complex application-specific protocols (e.g. PUT and GET [5]) which may involve multi-
ple synchronization and communication phases. A fourth subsystem, distribution module,
provides key services to the other three, resolving logical link traversals and global mailbox
addresses to either local pointers or remote processor/pointer pairs. Data distribution, adap-
tive load balancing and optimization of physical communication are the responsibility of the
distribution module.

More concretely, the work to be done consists of:

¢ Runtime support for communication optimizations targeted at block structured prob-
lems and regular problems in which the number of processors and array dimensions are
not bound until runtime—carry this out for one distributed memory architecture (e.g.
Paragon, CM-5, SP-1) and one distributed shared memory architecture (e.g. KSR-1,
T3D)

e Optimizations for concurrent irregular communication patterns, including implemen-
tation of software caching methods that recognize when multiple copies of the same
off-processor data item are being requested. Carry this out for one distributed memory

and one distributed shared memory architecture.

¢ Optimizations for communication characterized by runtime determined dependency pat-
terns. Draw information from ongoing research projects in this area, evaluate and com-
pare different approaches to scheduling runtime dependent information. Develop a small
set of primitives capable of covering different communication graph characteristics (e.g.
tree, grid shaped directed acyclic graph). Implement for one distributed memory and

one distributed shared memory architecture.

e Standardization of common interface for runtime support employed in partitioning ir-
regular data structures used in concurrent irregular problems. Implementation using

standard interface in distributed memory and distributed shared memory architecture.
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e Standardization of common interface for runtime support employed in partitioning data
structures described by runtime data dependencies. Implementation using standard

interface in distributed memory and distributed shared memory architecture.

1.2.6 Common Compiler Data Movement Interface Specifications

Application programs must be portable across all HPCC platforms. Consequently it is impor-
tant that users have a message passing interface for distributed memory systems that hides
architectural details. A number of standard user level communication libraries exist. These
include the MPI standard, Express, PVM and the BLACS. All are well designed for human
use: they have special error and type checking and their features are limited for portability
reasons.

Compilers, on the other hand, are tuned to exploit the characteristics of individual ma-
chines. Compilers do global optimizations that exploit knowledge of hardware details and they
generate code that is tied to specific architectures and low level data structure descriptors that
humans never see. Consequently, the compiler can generate code for a wide spectrum of data
movement operators that optimize performance at the expense of object code portability.

This subproject will organize an on-going effort to define and document communication
library primitives for use at the compiler level. We will consider a spectrum of data movement
functions. At the lowest level will be specific classes of primitives that can be shown to work
well on a subclass of machines, but perhaps not all. For example, support is needed for
small, "active message” style communication which can exploit very low latency networks.
Similarly, there are the special functions that move blocks of data, like pages in a virtual
shared memory environment, that must co-operate with the operating systems. A working
group will be established to define these functions to make sure they are well documented
and they can be used in the same environment without interfering with each other.

A broader topic that requires more work is the definition of the common data movement
functions that operate on the internal data descriptors of HPF, HPC+4 and ADA arrays and
other data structures. These functions are key to the performance of all HPCC languages and
they include not only data movement but communication based reduction and parallel prefix
operations. Because they are intimately connected to the common data descriptor definition
project, the working groups that define them will probably overlap. These functions also form
the lowest layer in the Basic Linear Algebra Communication Subroutines (BLACS) defined
by Oak Ridge. Consequently they are essential to the HPC Library community and they

must be included in the specification and design effort.
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1.2.7 Engineering the Runtime System for Reuse and Extensibility

To achieve the objective of a large degree of sharing and reuse of the common runtime system
modules, the modules must be well-engineered to allow ease of use, modification, special-
ization, and extension. The kind of extension we consider includes the support for new
distributed data structures, new language features, new runtime system mechanisms and
algorithms, and new back-ends.

The first requirement is a modular design of the runtime system, separating the system
into well-defined subsystems with clean and well-documented interfaces. The internal data
structures and algorithms of a module also need to be well-documented to allow modification.
The data structures themselves need to be specified in an interface language for ease of
modification and extension. Modularity needs to be maintained at all levels, from top level
system design to the internal structure of a particular algorithm.

The second requirement is a collection of mechanisms to deal with the complexity of
modification, specialization, and extension. New modules will be added with special attention
to reusing existing modules; modification or specialization of existing code should preserve
both internal and external modularity. A new module can be added without the researcher
learning the details of the entire system. Replacing a functionally equivalent module should
not disturb the rest of the system. It seems that object-oriented methodology should be
employed here to take advantage of the highest degree of sharing and reuse and the least
amount of duplicated effort. Version control and facilities for browsing the system should also
be there to aid the users.

The engineering aspect of the common runtime system effort will be an on-going process
while we perform the integration and reorganization based on an existing repertoire of run-
time modules. Development of new modules should follow the design principles and system
organization.

We can consider various different implementation languages for the well-engineered, ease-
to-use system. Since most existing system are written in C or C++, it seems reasonable to

choose C++ as the implementation language.

1.2.8 Retargeting Current Compilers and Developing New Compiler based
on the Runtime Support

We would integrate the above runtime support into our existing compiler work at Indiana,
Maryland, Rice, Syracuse and Yale. Harvard would utilize the above runtime support for the

development of their new compiler.
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Tasks Indiana Maryland Rice Syracuse Harvard Yale Rochester

I I N, N, N, N,

2 N, N, L N, N,

3 L

4 v v v L v

5 L Vv Vv

6 L v v v v

7 v v v v L

8 E E E L N E E

Table 1.1: Distribution of work: The Description of each of these tasks can be found in

Section refriws-section

/-Member; L - Leader
E- Existing Compilers; N - New Compilers

1.3 Organization

Table 1.1 gives a description of the involvement of different groups in different tasks. Fach task
is related to the corresponding subsection in Section refriws-section. The leader is expected

to coordinate the activities within the group.

1.4 Timelines

We envision a three year effort for the development of this common runtime support. The
timelines described in this section are relative to the time of inception of the effort.

Because of the central nature to much of the run time system of the common code and
data descriptors, Task 1 must be completed in the first year of the project. Initial candidate
proposals for the common model will be collected in the first month. A working group
of the compiler implementors will need to meet (by video conference) weekly until a draft
plan is adopted. Initial implementations on each of the base platforms will be designed and
implemented by the end of year 1. In the following years, the working group will meet
as needed to discuss extensions to structures other than arrays and to provide additional
functionality required by other aspects of the runtime system.

Task 2, 3, 4, and 5 would be based on prototype runtime support developed for the

14



Tasks

Common Code and Data Descriptors

1I 111
0.5 0.5

Address Translation Mechanisms

Common Computational Functions

Common Data Movement Routines

Common Data Movement deriving and optimizing routines
Common Compiler Data Movement Interface Specification

Engineering the Runtime System for Reuse and Fxtensibility

0 ~1 O Ot B~ W N =
= =N AN W N =

Retargeting Current Compilers and Developing New Compilers
Total

Dlw H =R W NN

o
[S—
Gl = = & o NN

—_
D
—_

Table 1.2: Relative units of work required

compiler projects at Indiana, Maryland, Rice, Syracuse and Yale. These runtime support
prototypes exist in several disjoint libraries; these libraries would be expanded, merged, and
designed so that they share the same data access descriptors.

Task 6 will organize an on-going effort to define and document communication library
primitives for use at the compiler level. A working group will be established to define these
functions to make sure they are well documented and they can be used in the same environ-
ment without interfering with each other.

The engineering aspect (Task 7) of the common runtime system effort will be an on-going
process while we perform the integration and reorganization based on an existing repertoire
of runtime modules. Development of new modules should follow the design principles and
system organization.

All of the above would be incorporated at different stages in the compiler efforts at Har-
vard, Indiana, Maryland, Rice, Syracuse and Yale. Figure 1.4 gives the relationship between
different tasks.

1.5 Amount of Effort

Table 1.2 gives an assessment of the relative amount of work required for the different tasks

during the different phases of the project.
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Solid Arrow refers to a direct dependency
Dashed Arrow refers to feedback
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Common Runtime Support for Task Parallelism

Parallel Compiler Runtime Consortium: P2 Subgroup

Rudolf Figenmann, Tan Foster, Carl Kesselman, Monica Lam,
Tom LeBlanc, Wei Li, David Padua, Constantine Polychronopoulos,
Michael Scott, and Kathy Yelick

2.1 Motivation

We define task parallelism as parallelism not dictated by the distribution of data structures. It
includes the execution of different functions in parallel, as well as the parallelization of loops
via mechanisms other than (or in addition to) the “owner computes” rule of HPF, pC++, etc.
Task parallelism is common in many existing systems. It is particularly useful for irregular
applications. Recent research also suggests that there are important classes of applications
that require both task and data parallelism in order to obtain good performance [CCL93,
Pra92, SSO93].

The requirements of a runtime system for task-level parallelism are different from those for
data parallelism. First, there is a need for dynamic creation of tasks or processes. Dynamic
load balance is necessary since these tasks generally have very different execution times.
Second, the interactions between different tasks can be very complex and need the support of
sophisticated synchronization primitives. Finally, to take advantage of locality of reference,
it is important to dynamically cache and replicate data. The runtime system must provide
support for processes to locate data in the distributed address space and to manage the local
memory.

We recommend that research efforts in task-parallel runtime systems be combined to build
common runtime infrastructure. The infrastructure would be built in layers, and all layers
would be accessible to top-level clients. The infrastructure should run on a variety of high
performance parallel machines, including cache-coherent multiprocessors like DASH or the
KSR-1, NUMA machines like the Cray T3D, and distributed-memory multicomputers like
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the Intel Paragon or the Thinking Machines CM-5. It should support high level parallel
languages such as CC++ [ChK92], Jade [RS1.93], and Fortran M [FoC92], as well as par-
allelizing compilers that generate multithreaded or task parallel code [EHJ91, Poo89, 1i92,
AmL93, Anl.93, PaE93]. Prototypes of many of the layers we envision already exist, so the
implementation effort should be manageable.

A common runtime infrastructure for task parallelism would have the following benefits:

e Provide a machine-independent layer for portability across machines. This will leverage

the lower level system construction currently being done by individual groups.

o Enable shared efforts, both within the group of developers and for external groups that

currently lack the resources to build portable runtime systems.

¢ Encourage better software design through the definition of interfaces between pieces of

software.

e Provide validation of results by facilitating comparisons between different approaches

on a common software architecture.

o Allow for inter-operability between different runtime systems. With an open layered ar-
chitecture, compiler writers would be able to access whichever level provides appropriate

functionality.

e Enable the comparative study of multiple programming paradigms and multiple ma-
chine architectures. Because top-level clients will run on a common substrate, which in
turn runs on many machines, “apples and apples” comparisons between languages and

compilers will be considerably easier, as will comparisons between machines.

e Provide a framework for identifying commonality in runtime systems built for ostensibly
different environments (e.g. on different hardware, or for different languages). Beyond
the common facilities described in this report, it is likely that additional opportunities
for standardization will be found as research progresses, e.g. in the area of scheduling

policies.

2.2 Technical Framework

There are currently a number of efforts to develop task-parallel runtime systems for a variety of
high-level programming languages, such as CC++ [ChK92], Jade [RSL93], Natasha [CrL92],
and Fortran M [FoC92]. In addition, several groups are developing parallelizing compilers that

recognize implicit task parallelism in sequential programs [Am1.93, Anl.93, Poo89, EHJI1,
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Li92, PaE93]. These efforts have resulted in runtime software for a large set of machines, but
because the systems were developed independently, each typically runs on only one or two
machines. We recommend the initiation of a project to develop a common runtime system to
facilitate the implementation of high-level programming languages and compilers that exploit
task-level parallelism.

To manage the complexity of such a system, we recommend development of a runtime
system architecture consisting of well-defined layers of abstraction. Each layer will be exposed
to the user—some compilers may be built only on lower layers whereas others may use a
mixture of all layers. In addition, multiple instances of a single layer may exist to permit
efficient implementations on different architectures, or to provide a different set of abstractions
to higher layers. For example, locality may be achieved by a shared object system, a virtual
shared memory layer, or hardware shared memory.

We envision a runtime system with sufficient flexibility to span a wide range of machine
architectures, including cache-coherent multiprocessors like DASH or the KSR-1, NUMA
machines like the Cray T3D, and distributed-memory multicomputers like the Intel Paragon
and the Thinking Machines CM-5.

In describing our system architecture, we separate functions into control and data hierar-
chies. The control hierarchy provides threads, scheduling, synchronization, and load balancing
facilities, while the data hierarchy contains names (addresses), data objects, and object re-
location facilities. In practice, of course, control and data management facilities are seldom
independent; a single software module is likely to provide a combination of both. Interactions
between them include reduction operations, aligning data and control (i.e. scheduling for
locality), associating synchronization objects with data objects (to facilitate relaxed consis-
tency) and waiting for prefetch/poststore operations to complete.

We expect there to be substantial commonality in both the control and data hierarchies
across the spectrum of architectures and programming paradigms. At the same time, alterna-
tive module implementations, and even alternative interfaces, will be needed in certain layers
in order to accommodate major architectural differences, or to provide the performance and
functionality required by dissimilar programming paradigms. Protocol hierarchies for com-
munication networks provide an instructive analogy. The ISO hierarchy [Tan81] provides
a conceptual framework for layered protocols, and Arizona’s a-kernel project [PHO90] pro-
vides an excellent example of the identification and exploitation of commonality in different

protocol stacks.

2.2.1 Control Hierarchy

The control hierarchy contains the following layers, presented from the bottom to the top:
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e Cl: A fixed set of kernel-supported processes (typically one per processor), and basic
interprocessor communication mechanisms. Depending on hardware architecture, the
latter may include load and store instructions, interprocessor interrupts, message pass-

ing primitives, or active message handlers [vCG92]. Facilities at this level are provided,
for example, by Split-C [DGK93].

o (C2: Lightweight local threads, with mechanisms for thread creation, blocking and dele-
tion. Threads need not be preemptable. They may or may not have priorities. Facilities
at this level are provided, for example, by Nexus (a common runtime system for CC++
and Fortran M, under development at Argonne and CalTech), and by the low-level parts
of Mercury [Kon92].

e (C3: Global threads, with mechanisms for scalable synchronization [MeS91] and for
moving a thread’s state between processors. Migration mechanisms may be implemented
on top of an object system like SAM [Sc.93], or on a cache-coherent architecture like
that of DASH or the KSR-1. Facilities at this level are provided by the high-level parts
of Mercury.

e C4: Dynamic load balancing, with thread migration policies. Interactions with the data
hierarchy are likely to be required in order to maximize the co-location of threads and
the data they use [Mal92].

e Ch: Loop scheduling mechanisms, such as those employed by compiler projects at Illi-
nois [EHJ91, PoK87], and Rochester [Mal.93].

2.2.2 Data Hierarchy

The data hierarchy contains the following layers, presented from the bottom to the top:

e D1: Hardware-specific distributed address space layer, with interfaces to all pertinent
hardware features, including interprocessor communication (significant overlap with
layer C1), cache and TLB control, VM fault reflection, fences for weakly consistent

memory, etc.

e D2: Static, shared address space layer, as provided by the Split-C and Nexus systems,
and the CRAY T3D hardware. Provides load (get) and store (put) primitives, as well
as atomic operations, overlapped prefetch/poststore, etc. Compilers may generate code
for this layer, and thereby gain portability between machines like the T3D, CM5, and
Paragon, as well as simulation testbeds such as Mint [Vee93] or Tango [DGHO91].
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e D3: Dynamically replicated and cached data layer. May be designed around logical
objects, as in SAM [ScL.93], or around physical blocks, as in machines with hardware
cache coherence or virtual memory-based software coherence [BFS89, CoF89, LaFE91,
Nil.91]. Objects or blocks can be relocated, replicated, and kept consistent using a
variety of protocols. Dynamic memory allocation and garbage collection are also at this

level.

e D4: Distributed data structure layer such as the Multipol library, which is being de-
veloped to support irregular applications [ChY93, WeY93]. Distributed data structures
include queues, trees, hash tables, etc. that are spread across a machine using replication

or partitioning.

Languages such as Jade, CC++4, and Fortran M would make use of the top two levels
of the data hierarchy, with object-based coherence and distributed data structures. Compil-
ers such as Parafrase-2 [Poo89], Pnuma [Li92], Polaris [PaE93], and SUIF [AmL93, Anl.93]
would build on top of the lower, static layers of the data hierarchy. These static layers pro-
vide an abstraction that is similar to a shared address space multiprocessor. Recent work
suggests [DGK93, vCG92] that this abstraction can be implemented on distributed-memory
machines with performance rivaling that of explicit message passing. By employing a global
“address” space interface instead of a message-passing interface, we gain the advantage of eas-
ier portability to NUMA machines and even cache-coherent machines. This approach stands
in contrast to that of the IP2 section of the current report, which is primarily based upon a
message-passing interface.

NB: a top-level client based solely on layers D3 and D4 is unlikely to make the best
possible use of cache-coherent hardware, and may not make the best possible use of NUMA
hardware (in which the cost of fine-grain remote references is lower than on distributed-
memory machines). Such a client may wish to use the upper layers for part of its work,

however; our open architecture allows it to see through those layers when appropriate.

2.3 Suggested Research Plan

The design of appropriate runtime mechanisms and policies for large-scale parallel systems—
especially task-parallel systems—is an active topic of research. The field has not yet reached
the point where standardization on a single set of runtime interfaces is either feasible or appro-
priate. Nonetheless, there is much obvious potential commonality among the many systems
under development, and serious efforts to reduce duplication of effort and promote portability
and interoperability appear to be very much worthwhile. We therefore recommend a three-

phase research and development plan designed to produce a common runtime system. In the
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first phase, existing software systems are integrated into our hierarchical system architecture
and made to work together. In the second phase, the resulting runtime system software is
used in demonstration/evaluation projects and disseminated within the community. The re-
sulting experience and feedback is used to guide a redesign of the software, hopefully with
greater commonality. In the third phase, the runtime system is reengineered and packaged

for broad distribution.

2.3.1 Integrate existing runtime systems

Most existing runtime system components have been designed for a specific programming
paradigm and/or machine architecture. While several layers of our control and data hierar-
chies (e.g. C2) are likely to be more-or-less universally applicable, many of the high-leverage
opportunities to integrate existing components are likely to occur among closely-related pro-
gramming paradigms and architectural classes. As a practical matter, we recommend that

researchers
1. identify sets of client compilers and target machines with similar characteristics,

2. implement complete interoperability among members of the same set, so that every

client compiler runs on every machine, with common instances of the layers in the

middle, and

3. identify individual modules of more widespread utility, for use with dissimilar clients or

machines.

This effort would emphasize the use of code from existing runtime systems, many of which
have been used extensively and can guide the integration process. Likely sets of clients and

machines include:

e Programming paradigms based on logical objects (e.g. Jade, CC++, and Fortran M)
on distributed memory machines. Languages such as these are ideally suited to exploit
the object-based facilities of the D3 and D4 data layers, which in turn admit an efficient

implementation on distributed memory machines.

e Programming paradigms based on parallel loops (e.g. High-Performance Fortran and its
dialects, PCF Fortran (ANSI X3h5), and Cedar Fortran [Hoe91, EHJ92]) on machines
with a global physical address space. Such machines admit a wide range of paralleliza-
tions (more general than owner computes), with hardware remote reference facilities
allowing a potentially finer granularity of sharing than is feasible on distributed-memory

machines.
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2.3.2 Experiment, export, and refine

Once the prototype common runtime libraries have been developed, experiments should be
conducted to evaluate their utility and efficiency and to identify their limitations. With this

goal in mind, we recommend that researchers

e develop, in collaboration with the team developing performance evaluation tools, in-
strumentation techniques for the runtime libraries that permit automatic and manual

collection of performance data,

o evaluate performance achieved using the common runtime for different compilers and on
different real and simulated architectures, and compare with that achieved using native

runtime systems where available, and

o attempt to integrate various programming systems, for example task-parallel program-
ming languages and loop-based compilers, so as to identify areas of commonality across

programming paradigms and architectures.

It is also important to document the runtime system software and disseminate it within
the community, so as to obtain feedback from other users.

Based on the experimentation and feedback, we anticipate researchers designing a re-
fined runtime system that further integrates existing components where commonality has
been identified, provides additional functionality where this has been found necessary, and
addresses performance issues identified in experimentation.

An important goal of experimentation during this phase of the research should be to
study portability issues between distributed-address-space and global-address-space machines.
This report envisions common runtime support for cache-coherent machines like the KSR-1,
NUMA machines like the T3D, and distributed-memory multicomputers like the CM-5 and
the Paragon. The extent to which this commonality can be achieved without compromising
performance requires careful study.

On a distributed-memory multicomputer, a compiler must generate messages (or D2-
level copy operations implemented via messages) to effect statically-determined data-access
patterns, and must generate run-time checks to identify patterns that cannot be recognized at
compile time. On a cache-coherent multiprocessor, the messages and checks are unnecessary;
the hardware moves things automatically. A NUMA machine falls in-between. Its global
address space eliminates the need for messages, though processors must self-invalidate lines
in their caches at appropriate times. (Optionally, they can create copies of multi-cache-line

data in local memory, to amortize block-movement costs and reduce the cache-miss penalty.)
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Likewise, data with statically undetermined access patterns can be accessed remotely (with
caching off ), though at a loss in performance.

Distributed-memory multicomputers can emulate NUMA machines if provided with a run-
time system like Split-C that uses messages to perform the equivalent of loads and stores.
Similarly, both distributed-memory multicomputers and NUMA machines can emulate cache-
coherent machines if provided with VM-driven software coherence systems. We envision
investigating the effectiveness of emulating global addresses on distributed-memory machines
by targeting compilers intended for global-address-space machines at the D2 (Split-C) level of
the data hierarchy. The compilers would generate puts and gets instead of loads and stores for
any simple or compound data not known to be local. The effectiveness of this approach can
be evaluated by comparing HPF compilers for the CM-5 and Paragon with a global-address-
space HPF compiler. Similarly, given sufficient resources, we would envision investigating
the effectiveness of software cache coherence by running code intended for machines like the

KSR-1 or DASH on top of a virtual shared memory system.

2.3.3 Reengineer and distribute

The goal of the final phase of the project should be to reengineer software produced in
Phase I so as to satisfy the revised design produced in Phase II. This software should be
well documented and broadly disseminated. In addition, both the various compilers targeted
to the original common runtime and the interoperability experiments conducted in Phase II
should be retargeted to this common runtime.

Over time, we believe it is likely that previously-unrecognized areas of commonality across
programming paradigms and architectures will emerge. This is particularly likely in areas or
runtime functionality that are currently the subject of research. Examples include application-
specific scheduling and coherence policies, e.g. to exploit known patterns of synchronization
or relaxed consistency requirements.

It is too early to tell exactly how much diversity of runtime functionality will eventually
be required. The development of common runtime infrastructure must be an iterative pro-
cess. As refinements are made, the increasing uniformity of runtime support will facilitate
interoperability among application modules written in different programming languages. This
interoperability would be possible first among languages with similar programming paradigms.
With appropriate interface mechanisms [MSL91], it should be possible among languages with

dissimilar paradigms as well.
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Performance and Debugging Infrastructure for Compiler
Runtime Systems

Parallel Compiler Runtime Consortium: [P3 Working Group

Allen Malony, Dan Reed, Rudolf Eigenmann, Alok Choudhary, Jan Cuny

3.1 Research Summary

The rapidly evolving state of system, run-time, and application software demands perfor-
mance evaluation and debugging technology that is portable across diverse implementation
platforms, and that can be readily extended to include the results of emerging research.
Creating a common performance evaluation and debugging infrastructure that meets these
requirements for current application and run-time software implies a research effort with two

specific foci:

1. integration of application and run-time software with both extant and proposed per-
formance and debugging analysis systems through the specification and development
of software interfaces that isolate the implementation of specific instrumentation and
analysis techniques behind software “firewalls,” ensuring that instrumented software

can be ported to systems with different instrumentation implementations; and

2. application of performance evaluation and debugging techniques during run-time soft-
ware execution through new, dynamic performance and debugging instrumentation,
query, and presentation techniques, enabling the development of adaptive application

and run-time software.

No single performance analysis or debugging tool provides all the functionality needed
to debug and optimize all software, nor should it; experience has shown that a collection of
simpler tools is preferable to a single, complex tool. However, software developers should be
able to easily integrate, combine, and analyze data from multiple instrumentation and data

analysis tools. At present, this is not possible. The goal of the software integration focus

32



is to provide run-time system software developers a set of standard, high-level interfaces to
performance and debugging tools. Without these standard interfaces, individual run-time
system projects would likely design and develop performance and debugging software specific
to their problem area, rather than deal with the nuances of each tool’s use. Not only would
these systems be incompatible, they would be unable to exploit cross-domain information
(e.g., run-time library and compiler information) in a uniform way. A common platform can
be achieved only through the standardization of software interfaces that isolate the imple-
mentation of specific performance/debugging instrumentation and analysis techniques behind
software boundaries. These interfaces provide an integration veneer which ensures that ap-
plication and run-time software can be ported to systems with differing performance and
debugging implementations. For tool developers, the standard interfaces will provide broad
access to performance and debugging software that is compliant with the interface definitions.

Although standard software interfaces support a portable, reusable performance evalu-
ation and debugging infrastructure, the requirements posed by emerging software systems
challenge existing performance and debugging technology. Run-time systems for high-level
languages (e.g., for HPF and HPC++); environments for creating and accessing parallel,
distributed data structures; and software for adaptive application execution and run-time
decision analysis will all require new performance and debugging techniques, particularly for
dynamic instrumentation, run-time queries, dynamic guidance, and execution state access.
The present opportunity to develop new performance and debugging techniques in concert
with run-time software is unique. Fxploiting this opportunity will maximize the likelihood
that the resulting software will be well-targeted, quickly applied, and reused by future run-
time system development efforts.

The Performance Evaluation and DebuggInG softwaRE infrastructurE (PEDIGREE)!
research project will create a portable, extensible performance evaluation and debugging
infrastructure, based on the research foci above, that is broadly applicable to both run-time
libraries and application software. In particular, the PEDIGREE infrastructure will include

the following key components:
o standard software interfaces for performance and debugging tools;

e dynamically activated performance instrumentation, application-initiated performance
queries, performance-directed decision procedures, and data presentation techniques

that allow software developers to guide computations; and

!The PEDIGREE acronym is intended to imply a common basis for performance and debugging support

that will be applicable to all run-time system software.

33



e run-time debugging infrastructure that utilizes techniques for dynamic breakpointing to
uniformly support run-time breakpoint management, state and event-based query, and

dynamic visualization.

We believe that by delivering these three PEDIGREE components, current and future runtime
system and application software developments will more likely utilize common performance
evaluation and debugging tools rather than develop specialized software, leading to a sorely
needed integration and uniformity of technology in the two areas. In the research plan below,

we briefly describe each of these three PEDIGREE infrastructure components.

3.2 Research Plan

3.2.1 Standard Software Interfaces

The primary motivations for developing standard performance and debugging software inter-
faces are portability and interoperability, both for run-time systems and for performance and
debugging tools. Standard interfaces will allow both instrumented run-time systems and ap-
plications to be moved to different parallel systems without porting a particular performance
or debugging implementation; any performance or debugging implementation that satisfies
the interface constraints can be used. In addition, standard interfaces will encourage the
development of “meta-tools” that combine data from multiple performance and debugging
systems (e.g., one might combine performance data from task scheduling and data distribution
to study the interactions of task scheduling and compiler run-time data distribution).

To provide both interoperability and portability via standard tool interfaces, the PEDI-
GREE project will necessarily build on the foundation of existing performance instrumenta-
tion and data analysis efforts, notably the Pablo [3], HPC++ [2], Fortran-D [7], and PTOPP
projects [5], to develop a library of external and internal performance and debugging in-
terfaces. The external interface library will provide the “glue” that connects the run-time
software systems and PEDIGREE’s implementation of performance and debugging support.
Similarly, the internal interface library will provide standard access methods for interaction

among performance analysis and debugging tools.

3.2.2 Dynamic Performance Infrastructure and Analysis

Adaptability is a key aspect of an increasingly large fraction of parallel applications (e.g.,
adaptive meshing and particle methods) [1] as well as an integral component of run-time
systems (e.g., dynamic task scheduling, multi-version code execution, and scatter/gather

operations for remote memory access on machines with physically distributed memory) [4].

34



Although dynamic decision procedures, the heart of any adaptive system, require real-time
access to dynamic performance data by either the application code or by a controlling user,
current performance analysis systems provide little support for on-line performance queries.

Developing support for real-time performance queries will make possible the efficient im-
plementation of a broad range of adaptive application and run-time decision procedures. For
example, with efficient access to dynamic data, compiler run-time systems could adaptively
select the most efficient of several, compiler-generated code variants. Similarly, with immer-
sive data presentation techniques and real-time performance data, users could interactively
steer the assignment of tasks to processors, the mapping of data to distributed memories, or
the placement of files on storage devices.

The four keys to adaptive control are dynamic instrumentation, data reduction, queries,
and data presentation. To make dynamic queries efficient and practical, it must be possible
to dynamically enable and disable instrumentation points in response to program or user
requests. Moreover, the time needed to enable instrumentation points must be small and
their cost when active must be low. If the hysteresis is too great or the overhead is too
high, decision procedures will be driven by data that is neither timely or accurate. Hence,
developing low-overhead query and instrumentation mechanisms is of critical importance.

Real-time data reduction is the complement to low-overhead instrumentation. It is not
feasible to analyze captured data only at the time a query is issued — the data volume is
too great and the computation time too high. Because an adaptive decision procedure will
repeatedly issue similar queries (e.g., to guide dynamic data distribution), the instrumentation
system must both adapt to query patterns by precomputing the answers to expected queries
and identify anomalous performance behavior (e.g., via dynamic statistical clustering).

Choosing appropriate instrumentation and data reduction depends strongly on the char-
acter of the expected dynamic queries. We must work closely with the run-time system devel-
opers to design the query interfaces needed to support adaptive decisions including dynamic
task scheduling [6], multi-version code execution, and dynamic data partitioning.

Finally, real-time, adaptive control requires not only access to dynamic performance data
but also effective decision procedures. Techniques for controlling dynamic parallel systems and
their hardware and software resources remain an active research area. Data immersion (e.g.,
via virtual reality techniques) would permit closed-loop, human control of dynamic resource
resource allocation for testing and tuning new resource control polices and for aggregate

system control (e.g., as an operator).
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3.2.3 Dynamic Debugging Infrastructure

Debugging itself is an adaptive process. Because it is neither possible to examine all aspects
of a computation in detail nor to know a priori which aspects to view, users abstract program
behavior in a variety of ways and change those abstractions as the focus of their attention
shifts. Dynamic debugging, then, has the same basic requirements as dynamic performance
analysis: dynamic instrumentation, data reduction, queries, and data presentation. In ad-
dition, it requires reproducibility and access to logically meaningful global states. Existing
replay techniques address the issues of reproducibility, thus we focus here on global state
access.

We will develop the infrastructure for parallel breakpoint debugging (PBD) software that
utilizes run-time software semantics to support coherent, local and global breakpointing in a
replay environment. For breakpoint debugging, it is not sufficient to halt processes; they must
be halted in globally consistent states that are meaningful to the programmer. This is difficult
to do with current debuggers targeted at the machine level; PBD software, however, is targeted
at the run-time system. Using run-time semantics, coherent states could be defined between
operations in data parallel code, statements in SPMD programs, or at phase transitions,
for example. Our infrastructure will provide common mechanisms for instrumenting run-
time software for breakpoint management. In addition, it will provide a “parallel breakpoint
executive” that supports an external user interface for eliciting information about program
state, using queries appropriate to the run-time software abstractions. We will work with
run-time system developers in designing these query mechanisms.

To facilitate the application of different debugging strategies, the PBD software will utilize
both static (via compiler) and dynamic instrumentation, existing tools for event-based de-
bugging analysis [8], and techniques for parallel program visualization [9]. The user interacts
with the PBD software to define global states and state queries of interest. These states and
queries form the instrumentation requirements for assertion monitoring and event generation.
(With respect to instrumentation, dynamic performance and debugging infrastructure share
similar needs. We intend to leverage common instrastructure development where possible and
appropriate.) The PBD software will extend event-based behavioral debugging techniques to
operate in a higher-level debugging environment where run-time semantics form the basis
for event definition and behavioral abstraction. In addition, access to run-time semantics
wil make it possible to use standard animation systems in supporting dynamic, high-level
visualizations of parallel, distributed data and control structures.

The common PBD infrastructure will be used to build breakpoint debugger tools for the
run-time software development efforts. In particular, we intend to demonstrate the efficacy
of our approach by implementing initially a PBD for HPC++. HPC++4 utilizes a SPMD
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programming style with barrier synchronizations after collection operations and thus it is
a good candidate for breakpointing. Our present work developing performance tools for
HPC++ and HPF will facilitate PBD implementation efforts and provide a direct source
of user feedback. Because of the SPMD programming and run-time similarities between
the HPC+4++4 and HPF languages, we will consider migrating our PBD software to an HPF

environment.

3.3 Work Statement

The PEDIGREE project will deliver performance evaluation and debugging software infras-
tructure to meet the needs of current and future generations of run-time software. The pro-
posed infrastructure has two emphases, integration and dynamic analysis, though the primary
focus is the latter.

We will define standard interfaces to existing performance and debugging infrastructure,
including measurement (e.g., profiling and tracing), data analysis, and visualization software.
The interfaces will hide the details of specific tool implementation idiosyncrasies, ensuring
the portability of instrumented run-time software.? The interface definitions will also pro-
vide a standard foundation for extending interface capabilities as new tools are developed
or existing tools are extended. The interface development will take two forms, external and
internal. The external interface library will provide the “glue” that connects the run-time
software systems and PEDIGREE’s implementation of performance and debugging support.
Similarly, the internal interface library will provide standard access methods for interaction
among performance analysis and debugging tools; members of the internal interface library
are not intended for use by run-time system or application software developers, but will permit
integration of current tools.

A standard software interface, though invaluable, is not sufficient. Run-time systems
are constantly evolving, creating new performance and debugging requirements. With the
explosion of interest in heterogeneous environments and in adaptive solution techniques for
irregular and adaptive problems, run-time software is increasingly dependent on dynamic
adaptability to achieve high performance. Furthermore, the size and diversity of the execution
state space for adaptive software systems requires higher level interfaces (i.e., interfaces with
larger semantic content) for state reduction and correctness debugging. We will develop a
software infrastructure that supports dynamic instrumentation, queries and data presentation

(i.e., activation of instrumentation points, assertion monitoring, and queries by an executing

2Though support for run-time systems is our primary focus, the resulting interface will be more broadly

applicable.
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application or run-time system). This will make possible the efficient implementation of a
broad range of adaptive decision procedures (under both application and human control) and
as well as execution-time correctness debugging.

The primary focus of existing tools is user-level performance analysis and debugging; the
new infrastructure will enable run-time systems to access performance and debugging data
during their execution and to use this data as input to dynamic decision procedures. We will
implement real-time performance queries for a set of common run-time issues, including dy-
namic task scheduling, multi-version code execution, and dynamic data partitioning, together
with new data presentation techniques that will allow software developers to interact with and
guide the decision procedures. For debugging, we will implement an execution breakpointing
mechanism that uniformly supports high-level, run-time state access, assertion handling, and
execution time debugging facilities.

The majority of the PEDIGREE project resources will be devoted to support for dynamic
adaptability; it will require significant, new development effort. The creation of standard
software interfaces to existing performance and debugging tools is an extension to current
work (notably the Pablo, HPC++, Fortran-D and PTOPP projects) and principally involves

identifying and implementing the functionality required by run-time software developers.

3.4 Organization and Level of Effort

The PEDIGREE project represents a three year research effort, organized according to the
three activities described above: 1) standard interfaces, 2) performance evaluation, and 3)
debugging. The first activity, to be completed during the first two years, will require coor-
dination (by video conference) between group members, principally Illinois and Oregon, for
interface definition and implementation. The other two activites will last the entire project
period. Although they will be led separately (the performance evaluation work will be led
by Reed, Illinois; Malony/Cuny, Oregon, will lead the debugging activity), interaction be-
tween group members will continue to be important; Eigenmann (Illinois) and Choudhary
(Syracuse) will be active in various aspects across these two main project activities.

The level of effort required for the PEDIGREE project per year is approximately three
full-time equivalents (one FTE represents the total support for the IP1 group members) and

six research assistants.
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