
Cache Performance in Vector SupercomputersL. I. Kontothanassisy R. A. SugumarzG. J. Faanesz J. E. Smithx M. L. Scottyy Computer Science Dept. z Cray Research Inc. x Dept. of Electrical & Computer Engg.University of Rochester 900 Lowater Rd. University of Wisconsin-MadisonRochester, NY 14627-0226 Chippewa Falls, WI 54729 Madison, WI 53706fkthanasi,scottg@cs.rochester.edu frabin,gjfg@romulus.cray.com jes@ece.wisc.eduIn Proceedings of Supercomputing 1994AbstractTraditional supercomputers use a at multi-bankSRAM memory organization to supply high bandwidthat low latency. Most other computers use a hierarchi-cal organization with a small SRAM cache and slower,cheaper DRAM for main memory. Such systems relyheavily on data locality for achieving optimum perfor-mance. This paper evaluates cache-based memory sys-tems for vector supercomputers. We develop a sim-ulation model for a cache-based version of the CrayResearch C90 and use the NAS parallel benchmarks toprovide a large scale workload. We show that whilecaches reduce memory tra�c and improve the perfor-mance of plain DRAM memory, they still lag behindcacheless SRAM. We identify the performance bottle-necks in DRAM-based memory systems and quantifytheir contribution to program performance degrada-tion. We �nd the data fetch strategy to be a signi�cantparameter a�ecting performance, evaluate the perfor-mance of several fetch policies, and show that smallfetch sizes improve performance by maximizing the useof available memory bandwidth.1 IntroductionTime-to-solution has traditionally been the metricthat vector supercomputer designs have tried to opti-mize. As a result they often use high performancememory systems constructed of SRAM and multi-stage interconnection networks that can deal with thehigh data rate demands of the applications they aretargeted for. Such memory systems provide high per-1This work was supported in part by NSF Institutional In-frastructure grant no. CDA-8822724 and ONR research grantno. N00014-92-J-1801 (in conjunction with the DARPA Re-search in Information Science and Technology|High Perfor-mance Computing, Software Science and Technology program,ARPA Order no. 8930).

formance regardless of data size and memory referenc-ing patterns, but are also a signi�cant portion (oftenmore than half) of the cost of the machine.Most other types of computer systems are based onhierarchical memory organizations with a high-speedcache, backed by slower DRAM-based main memory.Using DRAM decreases main memory costs, and datacaches reduce both memory access latency and mainmemory bandwidth requirements [6, 10]. The suitabil-ity of data caches for vector supercomputers has beenthe subject of controversy for many years. This con-troversy revolves around a variety of largely untestedclaims. For example:1. Vector workloads do not exhibit enough spatialand temporal locality to make good use of thecache.2. Caches do not have su�cient bandwidth to matchthe load bandwidth of the processor.3. The low latency property of the cache is not asdesirable as in scalar processors, because vec-tor code usually has prefetching properties, andtherefore can tolerate higher latencies.There may be some advantages to using a hi-erarchical memory system in vector supercomput-ers. Such systems have potential for improvingcost/performance and/or for increasing main mem-ory size due to the higher density of DRAMs. In-deed, DRAM-only supercomputers like the Cray M-90 already have a place in the market for applicationswhere performance gains from larger memory sizes o�-set performance losses due to lower bandwidth andhigher latency. Furthermore, vector architectures maybe suitable in lower cost, non-supercomputer systemsand, in that environment, e�ective cache/DRAM sys-tems are likely to be essential for achieving lower cost.1

Trace generator
a.out

memory trace

branch trace

Simulator

Performance
performance

 data

Figure 1: Simulation modelIn this paper we examine the e�ectiveness of cachesin (highly-detailed simulations of) vector machines,using medium and large scale vector applications asthe experimental workload. We use runtime as themain metric of our studies, because the latency tol-erance of vector codes may render cache miss ratiosmisleading. We focus our study on uniprocessor sys-tem performance. We show that a simple cache or-ganization only improves performance marginally (oris worse) over a no-cache DRAM-based system andis much worse than an SRAM-based system. We thenshow that reducing the fetch size to eliminate memorytra�c ampli�cation makes caches a worthwhile addi-tion to a DRAM memory system and in many casescompetitive to SRAM memory systems as well.The rest of the paper is organized as follows. Sec-tion 2 describes our experimental methodology andapplication suite. Section 3 presents our results whilesection 4 compares our results to those of related work.Section 5 summarizes our conclusions.2 Experimental methodologyWe use trace driven simulation to study the per-formance of a variety of memory systems includingSRAM main memory without a cache, DRAM mainmemory without a cache, and DRAM main memoryaugmented with three di�erent cache organizations.The simulation environment is based on theCrystal1 tool for generating and interpreting memoryreference traces of vector programs and its structureis shown in Figure 1.The trace generator takes an executable producedby the Cray Fortran Compiler. Because we trace theexecution of hundreds of millions of memory referencesand want complete execution timing information, re-ducing trace �le length is a very important consider-ation. To do this, the trace generator produces two1Crystal stands for CRaY processors SimulaTor and memoryAnaLyzer.

�les: one contains only conditional branch outcomes;the second contains memory references. The vectormodel allows compaction of the memory reference �lebecause most vector references can be characterizedwith a base address, a vector length, and a stride.The performance simulator takes as input the exe-cutable and the two trace �les. Instruction timing ismodeled in detail but the actual instruction computa-tions are not done. This is possible because the C-90'sinstruction execution times are data-independent, ex-cept for memory references and conditional branches,for which we have traces. The performance simula-tor uses the executable �le as a trace for straight-linepieces of code and when it encounters a conditionalbranch instruction it consults the \branch direction"�le to ensure control ow correctness. On memory ref-erence instructions, the addresses accessed are takenfrom the \memory reference" �le.The CPU component is an accurate (cycle by cy-cle) simulator of the Cray C-90 processor. The cachecomponent simulates the behavior of a direct-mappedcache with 16 banks and 8 cycles of access latency (Afew of our studies consider 2- or 4-way set-associativecaches). We have used 128-byte cache-lines (16 64-bit words) and have simulated three di�erent cachesizes: 512Kbytes, 2Mbytes, and 8Mbytes. Dependingon the organization under study, it may or may notbe possible for individual words within a cache line tobe marked invalid. For each memory reference, thecache tag store is �rst checked. On a hit, the refer-ence goes to the appropriate cache bank. Missing onan absent line forces a line to be allocated for the ref-erence. If a dirty line has to be evicted from the cacheto accommodate the new line, all the valid words inthe line are written back to memory. The tag storeis updated, and all words in the portion of the blockbeing fetched are marked valid and outstanding (intransit from memory to cache). References to wordsthat are not present in the cache (due to misses or un-set valid bits) enter a special bu�er called the waitingstore where they wait for the data to return. When adata word returns from memory, the waiting store ischecked for references that are waiting, and referencesmatching the fetched word are returned to the CPU.Returning a word to the CPU clears the reservation ofthe register that was the target of the load instructionwhich caused the word retrieval. Subsequent instruc-tions that use that register will then be able to proceedwithout stalling. The CPU continues processing on amiss and does not wait for the miss to be serviced. Itstalls only when a subsequent operation tries to usethe register that is the target of an uncompleted load.There is no limit on the number of outstanding misses2

cache interconnect

processor

cache banks

.

memory interconnect

. memory queues

memory banks.

data streams

Figure 2: Memory system overviewfor a cache bank, however we have a limit on the to-tal number of outstanding misses for the processor sothat we can place a limit on the size of the waitingstore. Figure 2 illustrates the generic memory systemthat we use for simulations.For vector processors, memory bandwidth is a cru-cial performance parameter. Consequently, we modela supercomputer-style highly interleaved main mem-ory. Main memory is interleaved on word boundaries,and the number of banks is varied from 16 to 256.Memory bank conicts are modeled, but conicts inthe processor-to-memory interconnection network arenot. Each bank has an unbounded queue where mem-ory requests to it are sent.For DRAM memory systems the bank access timeis 35 processor cycles and the cycle time is 70. ForSRAMmemories the corresponding numbers are 5 and8 processor cycles respectively. Those numbers are inagreement with the speeds of commercial RAM chipsand the clock speed of the C-90. Note that the C-90 processor can make up to 6 memory references perclock period (4 reads and 2 writes). This implies that420 DRAM banks or 30 SRAM banks (512 and 32respectively when rounded to a power of two) are re-quired to satisfy the peak request rate, assuming nobank conicts.For the performance simulations, we selected sevenof the eight NAS parallel benchmarks [2]: CG, SP,LU, MG, FFT, IS, and BT. The EP (embarrassinglyparallel) benchmark has a very small data set and was

considered uninteresting for a memory system study.Of the benchmarks, BT, LU, and SP are full-sizedcomputational uid dynamics applications; they useiterative techniques to solve partial di�erential equa-tions. The rest of the applications are best describedas kernels. MG is a simple multigrid kernel; CG usesa conjugate gradient method to compute the smallesteigenvalue of a large, sparse, symmetric positive de�-nite matrix; FFT is a 3-D partial di�erential equationsolver using FFT's; and IS is an integer sort programusing the \counting sort" algorithm[8]. The bench-mark characteristics are summarized in Table 1. Thebenchmarks range in size from 72 to 448M bytes andcontain hundreds of millions to over a billion memoryreferences. We feel that it is necessary to study bench-marks of this size to achieve a realistic characteriza-tion of a supercomputer workload. This is one of themajor features that di�erentiates our work from otherresearch on vector data caches. We traced one intera-tion or one call to the main solution routine from thecomputationally intensive, predominately vector partof each application. Cache hits are therefore solely dueto intra-iteration use. Considering the size of the datasets for these programs and the size of the caches wesimulate we do not expect to see much inter-iterationreuse.3 Results3.1 Performance on a standard cache ar-chitectureWe performed an initial set of simulations for allthe benchmarks with the following memory systems.1. Perfect: all memory references take one cycle.2. In�nite: this is a cacheless system with in�nitebandwidth. The latency for all references is 59 cy-cles (network round-trip plus DRAM access) andthere are no memory bank conicts. Both perfectand in�nite provide standards for comparison.3. SRAM: a cacheless memory system with SRAMmain memory.4. DRAM: a cacheless memory system with DRAMmain memory.5. 64K, 256K, 1M: cache-based systems with cachesizes of 64K words, 256K words, and 1M words(512K bytes, 2M bytes and 8M bytes) and aDRAM main memory.3

0

50

100

150

200

250

300

350

400

450

500

16 32 64 128 256

R
un

ti
m

e
(M

il
li

on
s

of
 c

ps
)

Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 3: CG execution times for di�erent mem-ory systems 0

100

200

300

400

500

600

700

800

16 32 64 128 256
Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 4: SP execution times for di�erent mem-ory systems

0

200

400

600

800

1000

16 32 64 128 256

R
un

ti
m

e
(M

il
li

on
s

of
 c

ps
)

Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 5: LU execution times for di�erent mem-ory systems 0

200

400

600

800

1000

1200

1400

16 32 64 128 256
Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 6: MG execution times for di�erent mem-ory systemsBench- Size Refs Reads Writes Vector Scalar Unit N-Unit Rndmark Mbytes �106 �106 �106 �106 �106 �106 �106 �106CG 80 182.49 164.58 17.91 169.13 0.44 134.23 0 47.82SP 72 335.68 242.40 93.28 335.56 0.12 248.31 87.25 0LU 256 393.75 282.34 111.41 392.83 0.92 70.71 322.12 0MG 448 304.89 236.74 68.15 304.49 0.40 304.23 0.26 0FFT 344 532.17 314.55 217.62 531.36 0.81 483.54 47.82 0IS 248 316.65 199.74 116.91 293.62 1.58 231.19 0 83.88BT 344 1056.25 778.30 277.95 1055.13 1.12 823.0 232.13 0Table 1: Application Characteristics when compiled with the Cray Research Parallelizing-Vectorizing Compiler.4

0

200

400

600

800

1000

1200

1400

16 32 64 128 256
Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 7: IS execution times for di�erent memory sys-temsApplication VL Miss rate64Kw .25Mw 1MwCG 109.8 4.01% 3.57% 3.37%SP 85.8 2.71% 1.89% 1.66%LU 48.0 4.53% 3.73% 3.21%MG 106.4 10.52% 3.05% 1.21%IS 124.2 23.96% 21.28% 9.12%FFT 126.7 10.29% 2.00% 0.79%BT 69.3 8.80% 6.42% 1.88%Table 2: Average Vector Lengths and Miss rates for theNAS parallel benchmarksFigures 3 to 82 show the execution times of thebenchmarks for the di�erent memory systems as afunction of the number of main memory banks. Thegraphs lead to the following observations.1. The two at lines, indicating performance for theperfect memory system and the in�nite band-width system are close together in several cases.Their closeness indicates the relative importanceof latency for a particular benchmark. Both linesrepresent unlimited bandwidth systems, but per-fect has single cycle latency and in�nite has 59cycle latency. The performance extremes occurin FFT and MG, where in�nite and perfect per-formance are almost identical and LU where in�-nite is about 50% slower than perfect. The di�er-ent behavior among applications can be explainedby looking at the average vector length for each2We have omitted the graph for FFT due to lack of spaceand since it is very similar to that for MG

0

500

1000

1500

2000

16 32 64 128 256

R
un

ti
m

e
(M

il
li

on
s

of
 c

ps
)

Mem Banks

64K
.25M

1M
DRAM
SRAM

inf
Perfect

Figure 8: BT execution times for di�erent memory sys-tems
16words
4words

 CG SP LU MG IS FFT

0.0
0.5

1.0
1.5

2.0
2.5

Me
mo

ry
Tra

ffic
 Ra

tio
~5 ~3

Figure 9: Tra�c ratio for 16 and 4 word lines on a 64Kwcachebenchmark (Table 2). Applications with shortvectors are more sensitive to latency because theycannot amortize the vector start-up cost over alarge number of references. IS deviates from theabove generalization. It is relatively sensitive tolatency, despite its long vector lengths. Its be-havior can be attributed to the relatively highnumber of scalar references compared to the otherbenchmarks and the large number of random vec-tor accesses.2. SRAM performance tends to be bracketed byperformance for the in�nite and perfect systems.With 32 banks, SRAM has adequate bandwidthto support the observed memory reference rate.Hence, its performance is similar to the two sys-5

tems with in�nite bandwidth, but its performancefalls in between the two because its latency falls inbetween. For 16 bank systems, bandwidth is anissue for some of the benchmarks and the SRAMperformance is a little worse than the in�nite case.3. DRAM performance is very sensitive to the num-ber of banks. This is due to restricted bandwidth.It takes 420 banks of DRAM to support the max-imum demand of the processor. With only 32banks, performance is typically about 5 to 10times worse than the unlimited bandwidth mem-ory system. Asymptotically, DRAM performancewith a very large number of banks approaches thein�nite system.4. When data caches are added to the DRAM sys-tems, the results become very dependent on spe-ci�c benchmarks. In two of the benchmarks, CGand SP, caches improve performance signi�cantly.Furthermore, for these two benchmarks there areimprovements for all cache sizes. With CG, per-formance for all three caches approach the in-�nite performance with 256 DRAM banks. InSP, this is true of the medium and large caches;the small cache performance is closer to DRAMperformance at 256 banks. In other benchmarks,performance with data caches can be worse thanwith no cache at all, depending on the cachesize. The worst case is IS where none of thecaches improves performance. In other bench-marks, the large caches give better performance,but the small cache does worse.Caches can lead to degraded performance becausethey sometimes amplify memory bandwidth require-ments. This occurs because a cache miss results in 16words (a full line) being fetched from main memory.If some of these words are unused before the line isreplaced (due to low spatial locality) then bandwidthwas wasted in fetching the unused portion of the line.Non-unit stride or gather/scatter references are an ob-vious cause of fetches of unused data. Furthermore,this e�ect will be greater with smaller caches wherethere is less chance that words in a line will be usedbefore the line has to be replaced.Figures 9 and 10 show the memory tra�c ratios forsix of our applications3 with a 16 word and a 4 wordcache line on two di�erent cache sizes. The mem-ory tra�c ratio is the number of words transferredbetween main memory and a data cache divided bythe number of words transferred in a system without3We were unable to gather the data for BT due to lack oftime

16words
4words

 CG SP LU MG IS FFT

0.0
0.5

1.0
1.5

2.0
2.5

Me
mo

ry
Tra

ffic
 Ra

tio

Figure 10: Tra�c ratio for 16 and 4 word lines on a1Mw cachea cache. Hence, the unit line represents the relativememory tra�c for a cacheless system. In all casesmemory tra�c is less with the smaller line size (withsigni�cant reductions for some of the applications).The rami�cations of this �nding are further discussedin section 3.2.Application Miss rate64Kw .25Mw 1MwCG 60.30% 56.13% 53.68%SP 36.23% 29.39% 25.92%LU 36.03% 32.10% 30.73%MG 65.15% 46.06% 18.87%IS 66.11% 64.15% 44.94%FFT 79.25% 30.45% 6.51%BT 45.57% 38.95% 27.75%Table 3: Average Miss rates for the NAS parallel bench-marks using the single word fetch strategy3.2 Line and fetch size e�ects on perfor-manceIn the previous section we saw that using long cachelines can sometime cause memory tra�c ampli�cationdue to the fetching of unused data. While the prefetche�ect of long cache lines may be desirable on a micro-processor based system with limited abilities to toler-ate memory latency, it is of limited use in the typesof machines we are examining. Vector machines withsophisticated compiler support can tolerate latenciesquite well; the main bene�t of a cache is to reduce themain memory bandwidth requirements.6

SRAM
1Wfetch
16Wfetch
Var. fetch

CG SP LU BT IS MG FFT

0
1

2
3

Re
lat

ive
 Pe

rfo
rm

an
ce

Figure 11: Normalized execution time under di�erentfetching policies for a 64Kw cacheThis would tend to indicate that single word linesshould be used. Unfortunately such an approach leadsto a high overhead because each word of data in thecache must be accompanied by a tag|an overhead of30 to 50%. An alternative solution is to use a sectorcache [9], in which a line is divided into a number ofsectors, each with a valid bit. Tags are maintained forlines, but only the data belonging to a sector is fetchedon a miss. Any sector fetched in this way is markedvalid; other sectors are invalid. The type of sectorcache we are interested in uses single word sectors|i.e. there is a valid bit per word. Smaller fetch sizeswill decrease the amount of memory tra�c but willalso decrease spatial locality hits, thus increasing av-erage memory access latency. The latency tolerancesof vector computers tips the balance in favor of thereduced memory tra�c. A more elaborate design vari-ant exploits variable fetch sizes by taking advantageof vector stride information available in the vector in-struction causing a miss. We can use this informationto invoke a full line fetch for unit stride accesses andsingle word fetches for all other references.Figures 11 and 12 show normalized execution timesfor the seven benchmarks under the three di�erentfetching policies (single word fetch, whole line (16words) fetch, and variable fetch) for 64Kw and 1Mwcaches with a 256 bank DRAM main memory. Ex-ecution time with an SRAM memory system is alsoprovided for comparison purposes. The unit line rep-resents the execution time of a cacheless DRAM mem-ory system. Miss rates for the single word fetch policyare shown in table 3.The single word fetch policy is the most consistentat improving application performance. It is interesting

SRAM
1Wfetch
16Wfetch
Var. fetch

CG SP LU BT IS MG FFT

0
1

2
3

Re
lat

ive
 Pe

rfo
rm

an
ce

Figure 12: Normalized execution time under di�erentfetching policies for a 1Mw cacheto note that better performance is associated with thehigher miss ratios as can be seen from tables 2 and 3.The explanation is simple; the cost of a miss is radi-cally di�erent across the single word fetch and wholeline fetch organizations. Whole line fetches cost 16times as much as single word fetches and low miss ratesdo not necessarily translate to less memory tra�c. CGis the only application that performs better with awhole line fetch policy. This is surprising because CGhas a fairly high proportion of gather/scatter refer-ences. Closer inspection of the benchmark reveals thatCG still has good spatial locality; that is, its cache\working set" is small.The variable fetch policy tries to take advantage ofunit stride accesses but the bene�t is small due to thelatency tolerance property of the code. Furthermore incases of pathological conicts (as is the case in someof the 64K cache experiments) fetching a whole linecan be detrimental to performance even for unit strideaccesses, since the line may be replaced due to conictsbefore it is fully used.The improved performance with small fetch sizesis in conict with the result obtained by Fu and Pa-tel [4] in a similar study. They found that large fetchsizes were desirable and signi�cantly improved per-formance. The reason for this di�erence is the typeof processor simulated. Fu and Patel assumed thatprocessors stall on a cache miss waiting for the datato return. Under such assumptions spatial localitybecomes crucial to performance and the tradeo� ofmemory tra�c to miss ratio is resolved in the oppo-site way.In this study we have not taken into account page ornibble mode DRAMs. For such systems that can pro-7

vide multiple successive words at low cost, larger sec-tor sizes may be preferable. The preferred sector sizewill depend on cache parameters like size and associa-tivity and application/compiler properties like spatiallocality and data conicts. If lines are replaced beforethe words in a sector can be used, large sector sizeswill provide no performance bene�ts.3.3 Sources of memory overheadWe have identi�ed three categories that contributeto degraded memory performance.� Overall limited bandwidth. Performance is de-graded because more memory references are is-sued from the processor than the memory systemcan handle, even if the references are evenly dis-tributed among the banks.� Memory bank conicts due to uneven referencepatterns. In this case there are some \hot" mem-ory banks. So while the memory system as awhole may be underutilized, references that ac-cess the same bank may be delayed because ofbank conicts.� Standard memory latency. Performance is de-graded because of the amount of memory latencyeven in the absence of bank contention.The addition of a cache doubles the number of cat-egories to six. The extra three categories are identicalto the ones presented above but apply to the cachesubsystem.Figure 13 shows the execution breakdown of four ofour benchmarks into processor time and the di�erenttypes of memory overhead we have identi�ed above.The bars from left to right represent the runtime fora no-cache DRAM memory system with 128 banks, a1Mw cache system with 128 banks of main memory, ano-cache DRAM system with 256 banks, and a 1Mwcache system with 256 banks of main memory. Thedi�erent overhead categories are: BC for bank conicts,BW for bandwidth, and lat for latency. The pre�x M-or C- signi�es whether the overhead is due to the cacheor the memory subsystem.As can be seen caches reduce the amount of perfor-mance loss in the memory system for all applications,albeit for di�erent reasons. In CG, all three overheadsin the cacheless system are reduced when going to acached system. The most dramatic improvements arein the memory bank conict areas, although latencyis reduced as well. We believe that the unit stridereferences of CG bene�t from the increase in band-width while the random access and scalar references

(of which CG has a fair number) bene�t mostly fromthe reduction in latency. When going from a cache-less 128 bank system to a cacheless 256 banks system,overall bandwidth limitations are relieved, but lossesdue to hot banks remain virtually unchanged.In SP, the biggest performance improvements aredue to latency reductions. However, in the 128 banksystem there are some improvements due to betterbandwidth. The LU characteristics are similar to SP;i.e. the biggest improvements are due to latency re-ductions. The results for LU and SP are consistentwith the observation that these two applications havea large number of short vector operations (mostly LU)that are more sensitive to latency.In MG, both better bandwidth and latency con-tribute to performance improvement. Because band-width overhead is higher in the cacheless system, theoverall improvement due to better bandwidth is higherthan the improvement due to lower latency.4 Related workVector caches have been studied previously by anumber of researchers using miss ratios as the mainperformance metric [1, 3, 11]. Our work reports missratios similar to those observed by those studies, (i.e.predominantly unit stride applications have lower missratios than applications with a lot of non-unit stridereferences) but also provides the correlation of missratios with run time which is the ultimate system per-formance metric.Gee and Smith [5] also report run time results forvector caches but with a signi�cantly di�erent work-load and system architecture. They compare cacheswith a limited bandwidth at memory (8 or 16 wayinterleaving only) and use applications that have smalldata sets and predominantly unit strides. Their envi-ronment is therefore more \cache-friendly" than ours,and they do not observe the memory tra�c ampli�-cation phenomenon that appears in our experiments.Furthermore since their at memory has considerablyless bandwidth than the ones we consider, the reportedbene�ts due to the addition of the cache are muchhigher than the ones we observe. The issue of cachefetch sizes has also been looked at by Fu and Patel [4](see the discussion in section 3.2).Hsu and Smith [7] study cached DRAMs for vectormultiprocessors. They show that a shared cache at thememory can increase e�ective memory bandwidth byfactors of about two to four. We recommend furtherstudies to evaluate the tradeo� between shared andper-processor caches.8

0

40

80

120

160

200

DRAM
128b

1M
128b

DRAM
256b

1M
256b

Memory System

CG

E
xe

c.
 T

im
e

(M
 c

ps
)

C-BC

M-BC

C-BW

M-BW

C-lat

M-lat

CPU

0

50

100

150

200

250

DRAM
128b

1M
128b

DRAM
256b

1M
256b

Memory System

SP
E

xe
c.

 T
im

e
(M

 c
ps

)

C-BC

M-BC

C-BW

M-BW

C-lat

M-lat

CPU

0

50

100

150

200

250

300

350

400

450

DRAM
128b

1M
128b

DRAM
256b

1M
256b

Memory System

LU

E
xe

c.
 T

im
e

(M
 c

ps
)

C-BC

M-BC

C-BW

M-BW

C-lat

M-lat

CPU

0

40

80

120

160

200

DRAM
128b

1M
128b

DRAM
256b

1M
256b

Memory System

MG

E
xe

c.
 T

im
e

(M
 c

ps
)

C-BC

M-BC

C-BW

M-BW

C-lat

M-lat

CPU

Figure 13: Execution time breakdown for system with and without caches9

5 ConclusionsIn this paper we have looked at the performance im-pact of caches and cache fetching strategies in vectorprocessors using detailed simulations of state of the artvector machines. We have shown that SRAM mem-ory systems provide the best overall performance witha relatively small number of memory banks. Theiruse in supercomputer-class applications where time-to-solution is at a premium appears to be justi�ed.For some of the benchmarks, performance with a datacache plus DRAM comes close to SRAM performance,but about eight times as many DRAM memory banksare required to do so.For systems where cost/performance is the maingoal, rather than time-to-solution, lower cost systemsbased on DRAM main memory and local caches canhelp mitigate the two big performance problems withDRAM systems: relatively high latency and low band-width. Despite the unfriendliness of the benchmarksuite toward cache memories we �nd that we can ob-tain competitive performance using a small fetch size(1 word) on every miss. The latency tolerating prop-erty of vector codes allows us to trade a higher missratio for a reduction in main memory tra�c. We be-lieve that caches can be used to provide cost/e�ectivememory systems for vector processors, especially withthe maturing of compilers that may allow applicationsto exploit higher cache reuse.AcknowledgementsWe would like to thank Ram Gupta for his helpfulinsights and comments on this paper.
ISSN 1063-9535. Copyright (c) 1994 IEEE. Allrights reserved.Personal use of this material is permitted. How-ever, permission to reprint/republish this materialfor advertising or promotional purposes or for creat-ing new collective works for resale or redistributionmust be obtained from IEEE. For information on ob-taining permission, send a blank email message toinfo.pub.permission@ieee.org.By choosing to view this document, you agree toall provisions of the copyright laws protecting it.

References[1] W. Abu-Sufah and A. D. Malony. Vector Pro-cessing on the Alliant FX/8 Multiprocessor. InInternational Conference on Parallel Processing,pages 559{566, August 1986.[2] D. Bailey, J. Barton, T. Lasinski, and H. Simon.The NAS Parallel Benchmarks. Report RNR-91-002, NASA Ames Research Center, January1991.[3] R. S. Clark and T. L. Wilson. Vector SystemPerformance on the IBM 3090. IBM SystemJournal, 25(1):63{82, 1986.[4] J. W. C. Fu and J. H. Patel. Data Prefetching inMultiprocessor Vector Cache Memories. In Pro-ceedings of the Eighteenth International Sympo-sium on Computer Architecture, pages 54{63,Toronto, Canada, May 1991.[5] J. D. Gee and A. J. Smith. The PerformanceImpact of Vector Processor Caches. Proceedingsof the Twenty-Fifth Hawaii International Con-ference on System Sciences, 1:437{449, January1992.[6] J. R. Goodman. Using Cache Memory to Re-duce Processor/Memory Tra�c. In Proceedingsof the Tenth International Symposium on Com-puter Architecture, pages 124{131, June 1983.[7] W.-C. Hsu and J. Smith. Performance of CachedDRAM Organizations in Vector Supercomput-ers. In Proceedings of the Twentieth Inter-national Symposium on Computer Architecture,San Diego, CA, May 1993.[8] D. E. Knuth. Sorting and Searching, volume 3 ofThe Art of Computer Programming. Addison-Wesley, Reading, MA, 1973.[9] J. S. Liptay. Structural Aspects of the Sys-tem/360 Model 85, Part II: The Cache. IBMSystems Journal, 7(1):15{21, 1968.[10] A. J. Smith. Cache Memories. ACM ComputingSurveys, 14(3):473{530, September 1982.[11] K. So and V. Zecca. Cache Performance on Vec-tor Processors. In Proceedings of the FifteenthInternational Symposium on Computer Archi-tecture, pages 261{268, Honolulu, HI, June 1988.10

