
Software Cache Coherence for Large Scale Multiprocessors�Leonidas I. Kontothanassis and Michael L. ScottDepartment of Computer ScienceUniversity of RochesterRochester, NY 14627-0226fkthanasi,scottg@cs.rochester.eduJuly 1994AbstractShared memory is an appealing abstraction for parallel programming. It must be implementedwith caches in order to perform well, however, and caches require a coherence mechanism to ensurethat processors reference current data. Hardware coherence mechanisms for large-scale machinesare complex and costly, but existing software mechanisms have not been fast enough to providea serious alternative.We present a new software coherence protocol that narrows the performance gap betweenhardware and software coherence. This protocol runs on NCC-NUMA1 machines, in which aglobal physical address space allows processors to �ll cache lines from remote memory. We comparethe performance of the protocol to that of existing software and hardware alternatives. We alsoevaluate the tradeo�s among various write policies (write-through, write-back, write-throughwith a write-collect bu�er). Finally, we observe that certain simple program changes can greatlyimprove performance. For the programs in our test suite, the performance advantage of hardwarecache coherence is small enough to suggest that software coherence may be more cost e�ective.Keywords: cache coherence, scalability, cost-e�ectiveness, lazy release consistency, NCC-NUMA ma-chines1 IntroductionLarge scale multiprocessors can provide the computational power needed for some of the largerproblems of science and engineering today. Shared memory provides an appealing programmingmodel for such machines. To perform well, however, shared memory requires the use of caches,which in turn require a coherence mechanism to ensure that copies of data are su�ciently up-to-date. Coherence is easy to achieve on small, bus-based machines, where every processor can seethe memory tra�c of the others [4, 16]. Coherence is substantially harder to achieve on large-scale�This work was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724 and ONR researchgrant no. N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology|HighPerformance Computing, Software Science and Technology program, ARPA Order no. 8930).1NCC-NUMA stands for non cache coherent, non uniform memory access.1
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multiprocessors [1, 21, 25]; it increases both the cost of the machine and the time and intellectuale�ort required to bring it to market. Given the speed of advances in microprocessor technology, longdevelopment times generally lead to machines with out-of-date processors. There is thus a strongmotivation to �nd coherence mechanisms that will produce acceptable performance with little or nospecial hardware.2There are at least three reasons to hope that a software coherence mechanism might be com-petitive with hardware coherence. First, trap-handling overhead is not very large in comparison toremote communication latencies, and will become even smaller as processor improvements continueto outstrip network improvements. Second, software may be able to embody protocols that are toocomplicated to implement reliably in hardware at acceptable cost. Third, programmers and compilerdevelopers are becoming aware of the importance of locality of reference and are attempting to writeprograms that communicate as little as possible, thereby reducing the impact of coherence opera-tions. In this paper we present a software coherence mechanism that exploits these opportunities todeliver performance approaching that of the best hardware alternatives|within 45% worst case inour experiments, and usually much closer.As in most software coherence systems, we use address translation hardware to control accessto shared pages. To minimize the impact of the false sharing that comes with such large coherenceblocks [9, 17], we employ a relaxed consistency protocol that combines aspects of both eager releaseconsistency [10] and lazy release consistency [19, 20]. We target our work, however, at NCC-NUMAmachines, rather than message-based multicomputers or networks of workstations. Machines in theNCC-NUMA class include the Cray T3D, the BBN TC2000, and the Princeton Shrimp [?]. None ofthese has hardware cache coherence, but each provides a globally-accessible physical address space,with hardware support for cache �lls and uncached references that access remote locations. Incomparison to multicomputers, NCC-NUMA machines are only slightly harder to build, but theyprovide two important advantages for implementing software coherence: they permit very fast accessto remote directory information, and they allow data to be moved in cache-line size chunks.We also build on the work of Petersen and Li [26, 27], who developed an e�cient softwareimplementation of release consistency for small-scale multiprocessors. The key observation of theirwork was that NCC-NUMA machines allow the coherence block and the data transfer block to be ofdi�erent sizes. Rather than copy an entire page in response to an access fault, a software coherencemechanism for an NCC-NUMA machine can create a mapping to remote memory, allowing thehardware to fetch individual caches lines as needed, on demand.Our principal contribution is to extend the work of Petersen and Li to large machines. Wedistribute and reorganize the directory data structures, inspect those structures only with regard topages for which the current processor has a mapping, postpone coherence operations for as long aspossible, and introduce a new dimension to the protocol state space that allows us to reduce the costof coherence maintenance on \well-behaved" pages.We compare our mechanism to a variety of existing alternatives, including sequentially-consistenthardware, release-consistent hardware, sequentially-consistent software, and the software coherencescheme of Petersen and Li. We �nd substantial improvements with respect to the other softwareschemes, enough in most cases to bring software cache coherence within sight of the hardware alter-natives.2We are speaking here of behavior-driven coherence|mechanisms that move and replicate data at run time inresponse to observed patterns of program behavior|as opposed to compiler-based techniques [13, 15].2



We also report on the impact of several architectural alternatives on the e�ectiveness of softwarecoherence. These alternatives include the choice of write policy (write-through, write-back, write-through with a write-collect bu�er) and the availability of a remote reference facility, which allowsa processor to choose to access data directly in a remote location, by disabling caching. Finally, toobtain the full bene�t of software coherence, we observe that minor program changes can be crucial.In particular, we identify the need to employ reader-writer locks, avoid certain interactions betweenprogram synchronization and the coherence protocol, and align data structures with page boundarieswhenever possible.The rest of the paper is organized as follows. Section 2 describes our software coherence protocoland provides intuition for our algorithmic and architectural choices. Section 3 describes our exper-imental methodology and workload. We present performance results in section 4 and compare ourwork to other approaches in section 5. We summarize our �ndings and conclude in section 6.2 The Software Coherence ProtocolIn this section we present a scalable algorithm for software cache coherence. The algorithm wasinspired by Karin Petersen's thesis work with Kai Li [26, 27]. Petersen's algorithm was designed forsmall-scale multiprocessors with a single physical address space and non-coherent caches, and hasbeen shown to work well for several applications on such machines.Like most behavior-driven software coherence schemes, Petersen's relies on address translationhardware, and therefore uses pages as its unit of coherence. Unlike most software schemes, however,it does not migrate or replicate whole pages. Instead, it maps pages where they lie in main memory,and relies on the hardware cache-�ll mechanism to bring lines into the local cache on demand. Tominimize the frequency of coherence operations, the algorithm adopts release consistency for itsmemory semantics, and performs coherence operations only at synchronization points.3 Betweensynchronization points, processes may continue to use stale data in their caches. To keep track ofinconsistent copies, the algorithm keeps a count, in uncached main memory, of the number of readersand writers for each page, together with an uncached weak list that identi�es all pages for whichthere are multiple writers, or a writer and one or more readers.Pages that may become inconsistent under Petersen's scheme are inserted in the weak list bythe processor that detects the potential for inconsistency. For example, if a processor attempts toread a variable in a currently-unmapped page, the page fault handler creates a read-only mapping,increments the reader count, and adds the page to the weak list if it has any current writers. On anacquire operation, a processor scans the (uncached) weak list, and purges all lines of all weak pagesfrom its cache. The processor also removes all mappings it may have for such a page. If all mappingsfor a page in the weak list have been removed, the page is removed from the weak list as well.Unfortunately, while a centralized weak list works well on small machines, it poses serious obsta-cles to scalability: the size of the list, and consequently the amount of work that a processor needs toperform at a synchronization point, increases with the size of the machine. Moreover the frequencyof references to each element of the list also increases with the size of the machine, implying the3Under release consistency [24], memory references are classi�ed as acquires, releases, or ordinary references. Arelease indicates that the processor is completing an operation on which other processor(s) may depend; all of theprocessor's previous writes must be made visible to any processor that performs a subsequent acquire. An acquireindicates that the processor is beginning an operation that may depend on someone else; all other processors' writesmust be now be made locally visible. 3
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Figure 1: Scalable software cache coherence state diagrampotential for serious memory contention. Our goal has been to achieve scalability by designing analgorithm whose overhead is a function of the degree of sharing and not of the size of the machine.Since previous studies have shown that the degree of sharing for coherence blocks remains relativelyconstant when the size of the machine increases [11], an algorithm with the above property shouldscale nicely to larger numbers of processors.Our solution assumes a distributed, non-replicated directory data structure that maintains cacheabil-ity and sharing information, similar to the coherent map data structure of Platinum [14]. Pagescan be in one of the following four states:Uncached { No processor has a mapping to this page. This is the initial state for all pages.Shared { One or more processors have read-only mappings to this page.Dirty { A single processor has both read and write mappings to the page.Weak { Two or more processors have mappings to the page and at least one has both read andwrite mappings to it.To facilitate transitions from weak back to the other states, the coherent map includes auxiliarycounts of the number of readers and writers of each page.Each processor holds the portion of the coherent map that describes the pages whose physicalmemory is local to that processor|the pages for which the processor is the home node. In addition,each processor holds a local weak list that indicates which of the pages to which it has mappings areweak. When a processor takes a page fault it locks the coherent map entry representing the pageon which the fault was taken. It then changes the coherent map entry to reect the new state ofthe page. If necessary (i.e. if the page has made the transition from shared or dirty to weak) theprocessor updates the weak lists of all processors that have mappings for that page. It then unlocks4



the entry in the coherent map. The process of updating a processor's weak list is referred to asposting a write notice.Distribution of the coherent map and weak list eliminates both the problem of centralization (i.e.memory contention) and the need for processors to do unnecessary work at acquire points (scanningweak list entries in which they have no interest). However it makes the transition to the weak stateconsiderably more expensive, since a potentially large number of remote memory operations mighthave to be performed (serially) in order to notify all sharing processors. Ideally, we would like tomaintain the low acquire overhead of per-processor weak lists while requiring only a constant amountof work per shared page on a transition to the weak state.In order to approach this goal we take advantage of the fact that page behavior tends to berelatively constant over the execution of a program, or at least a large portion of it. Pages that areweak at one acquire point are likely to be weak at another. We therefore introduce an additional pairof states, called safe and unsafe. These new states, which are orthogonal to the others (for a total of8 distinct states), reect the past behavior of the page. A page that has made the transition to weakseveral times and is about to be marked weak again is also marked as unsafe. Future transitions tothe weak state will no longer require the sending of write notices. Instead the processor that causesthe transition to the weak state changes only the entry in the coherent map, and then continues. Theacquire part of the protocol now requires that the acquiring processor check the coherent map entryfor all its unsafe pages, and invalidate the ones that are also marked as weak. A processor knowswhich of its pages are unsafe because it maintains a local list of them (this list is never modi�edremotely). A page changes from unsafe back to safe if has been checked at several acquire operationsand found not to be weak.The correctness of the protocol depends on the following observation: unsafe pages are knownas such by the processors that create new mappings to them; they will therefore be checked for thepossibility of being weak on the next acquire operation. Safe pages have write notices posted on theirbehalf when they make the transition to the weak state. When a page �rst makes the transition tounsafe some processors (those that already have mappings to it) will receive write notices; others(those that create subsequent mappings) will know that it is unsafe from the state information savedin the coherent map entry.Comparing our protocol to the use of a central weak list, we see that rather than iterate over allweak pages at each acquire point, a processor iterates over only those pages to which it currently hasa mapping, and that on the basis of past behavior have a high probability of really being weak. Thecomparatively minor downside is that for pages that become weak without a past history of doingso, a processor must pay the cost of posting appropriate write notices.The state diagram for a page in our protocol appears in �gure 1. The state of a page is representedin the coherent map. It is a property of the system as a whole, not (as in most protocols) the viewpointof a single processor. The transactions represent read, write, and acquire accesses on the part of anyprocessor. Count is the number of processors having mappings to the page; notices is the numberof notices that have been sent on behalf of a safe page; and checks is the number of times that aprocessor has checked the coherent map regarding an unsafe page and found it not to be weak. Theaccess to the coherent map is then wasted work, since the processor was not required to invalidateits mapping to the page. To guard against this waste, our policy switches a page back to safe aftera small number of unnecessary checks of the coherent map.We apply one additional optimization. When a processor takes a page fault on a write to ashared, non-weak page we could choose to make the transition to weak (and post write notices if the5



page was safe) immediately, or we could choose to wait until the processors's next release operation:the semantics of release consistency do not require us to make writes visible before then4. Theadvantage of delayed transitions is that any processor that executes an acquire operation beforethe writing processor's next release will not have to invalidate the page. This serves to reducethe overall number of invalidations. On the other hand, delayed transitions have the potential tolengthen the critical path of the computation by introducing contention, especially for programswith barriers, in which many processors may want to post notices for the same page at roughly thesame time, and will therefore serialize on the lock of the coherent map entry. Delayed write noticeswere introduced in the Munin distributed shared memory system [10], which runs on networks ofworkstations and communicates solely via messages. Though the relative values of constants arequite di�erent, experiments indicate (see section 4) that delayed transitions are generally bene�cialin our environment as well.One �nal question that has to be addressed is the mechanisms whereby written data makes itsway back into main memory. Petersen in her work found a write-through cache to be the best option,but these can generate a potentially unacceptable amount of memory tra�c in large-scale systems.Assuming a write-back cache either requires that no two processors write to the same cache line of aweak page|an unreasonable assumption|or a mechanism to keep track of which individual wordsare dirty. We ran our experiments (see section 4.1) under three di�erent assumptions: write-throughcaches, write-back caches with per-word hardware dirty bits in the cache, and write-through cacheswith a write-collect bu�er [12] that hangs onto recently-written lines (16 in our experiments) andcoalesces any writes that are directed to the same line. Depending on the write policy, the coherenceprotocol at a release operation must force a write-back of all dirty lines, purge the write-collect bu�er,or wait for acknowledgments of write-throughs.3 Experimental MethodologyWe use execution driven simulation to simulate a mesh-connected multiprocessor with up to 64nodes. Our simulator consists of two parts: a front end, Mint [30, 31], that simulates the executionof the processors, and a back end that simulates the memory system. The front end calls the backend on every data reference (instruction fetches are assumed to always be cache hits). The backend decides which processors block waiting for memory and which continue execution. Since thedecision is made on-line, the back end a�ects the timing of the front end, so that the interleavingof instructions across processors depends on the behavior of the memory system and control owwithin a processor can change as a result of the timing of memory references. This is more accuratethan trace-driven simulation, in which control ow is predetermined (recorded in the trace).The front end is the same in all our experiments. It implements the MIPS II instruction set.Interchangeable modules in the back end allow us to explore the design space of software and hard-ware coherence. Our hardware-coherent modules are quite detailed, with �nite-size caches, fullprotocol emulation, distance-dependent network delays, and memory access costs (including mem-ory contention). Our simulator is capable of capturing contention within the network, but only at asubstantial cost in execution time; the results reported here model network contention at the sendingand receiving nodes of a message, but not at the nodes in-between. Our software-coherent modulesadd a detailed simulation of TLB behavior, since it is the protection mechanism used for coherence4Under the same principle a write page-fault on an unmapped page will take the page to the shared state. Thewrites will be made visible only on the subsequent release operation6



System Constant Name Default ValueTLB size 128 entriesTLB �ll time 24 cyclesInterrupt cost 140 cyclesCoherent map modi�cation 160 cyclesMemory response time 20 cycles/cache linePage size 4K bytesTotal cache per processor 128K bytesCache line size 32 bytesNetwork path width 16 bits (bidirectional)Link latency 2 cyclesWire latency 1 cycleDirectory lookup cost 10 cyclesCache purge time 1 cycle/lineTable 1: Default values for system parametersand can be crucial to performance. To avoid the complexities of instruction-level simulation of in-terrupt handlers, we assume a constant overhead for page faults. Table 1 summarizes the defaultparameters used both in our hardware and software coherence simulations, which are in agreementwith those published in [3] and in several hardware manuals.Some of the transactions required by our coherence protocols require a collection of the operationsshown in table 1 and therefore incur the aggregate cost of their constituents. For example a read page-fault on an unmapped page consists of the following: a) a TLB fault and TLB �ll, b) a processorinterrupt caused by the absence of read rights, c) a coherent map entry lock acquisition, and d)a coherent map entry modi�cation followed by the lock release. Lock acquisition itself requirestraversing the network and accessing the memory module where the lock is located. The total costfor the example transaction is well over 300 cycles.3.1 WorkloadWe report results for six parallel programs. Three are best described as computational kernels:Gauss, sor, and fft. Three are complete applications: mp3d, water, and appbt. The kernels arelocal creations. Gauss performs Gaussian elimination without pivoting on a 448� 448 matrix. Sorcomputes the steady state temperature of a metal sheet using a banded parallelization of red-blacksuccessive overrelaxation on a 640� 640 grid. Fft computes an one-dimensional FFT on a 65536-element array of complex numbers, using the algorithm described in [2].Mp3d and water are part of the SPLASH suite [29]. Mp3d is a wind-tunnel airow simulation.We simulated 40000 particles for 10 steps in our studies. Water is a molecular dynamics simulationcomputing inter- and intra-molecule forces for a set of water molecules. We used 256 moleculesand 3 times steps. Finally appbt is from the NASA parallel benchmarks suite [5]. It computes anapproximation to Navier-Stokes equations. It was translated to shared memory from the originalmessage-based form by Doug Burger and Sanjay Mehta at the University of Wisconsin. Due tosimulation constraints our input data sizes for all programs are smaller than what would be run7



on a real machine, a fact that may cause us to see unnaturally high degrees of sharing. Since westill observe reasonable scalability for all the applications we believe that the data set sizes do notcompromise our results.4 ResultsOur principal goal is to determine whether one can approach the performance of hardware cachecoherence without the special hardware. To that end, we begin in section 4 by evaluating thetradeo�s between di�erent software protocols. Then, in sections 4.1 and 4.2, we consider the impactof di�erent write policies and of simple program changes that improve the performance of softwarecache coherence. These changes include segregation of synchronization variables, data alignmentand padding, use of reader-writer locks to avoid coherence overhead, and use of uncached remotereferences for �ne-grain data sharing. Finally, in section 4.3, we compare the best of the softwareresults to the corresponding results on sequentially-consistent and release-consistent hardware.subsectionSoftware coherence protocol alternatives This section compares the software protocolalternatives discussed in section 2. The architecture on which the comparison is made assumes awrite-back cache which is ushed at the time of a release. Coherence messages (if needed) can beoverlapped with the ush operations, once the writes have entered the network. The �ve protocolswe compare are:rel.distr.del: The delayed version of our distributed protocol, with safe and unsafe pages. Writenotices are posted at the time of a release and invalidations are done at the time of an acquire.At release time, the protocol scans the TLB/page table dirty bits to determine which pageshave been written. Pages can therefore be mapped read/write on the �rst miss, eliminating theneed for a second trap if a read to an unmapped page is followed by a write. This protocol hasslightly higher bookkeeping overhead than rel.distr.nodel below, but reduces trap costs andpossible coherence overhead by delaying transitions to the dirty or weak state (and posting ofassociated write notices) for as long as possible. It provides the unit of comparison (normalizedrunning time of 1) in our graphs.rel.distr.nodel: Same as rel.distr.del, except that write notices are posted as soon as an in-consistency occurs. (Invalidations are done at the time of an acquire, as before.) While thisprotocol has slightly less bookkeeping overhead (no need to remember pages for an upcom-ing release operation), it may cause higher coherence overhead and higher trap costs. TheTLB/page table dirty bits are not su�cient here, since we want to take action the moment aninconsistency occurs. We must use the write-protect bits to generate page faults.rel.centr.del: Same as rel.distr.del, except that write notices are propagated by inserting weakpages in a global list which is traversed on acquires. List entries are distributed among thenodes of the machine although the list itself is conceptually centralized.rel.centr.nodel: Same as rel.distr.nodel, except that write notices are propagated by insertingweak pages in a global list which is traversed on acquires. This is the protocol proposed byPetersen and Li [26, 27]. The previous protocol (rel.centr.del) is also similar to that ofPetersen and Li with the addition of the delayed write notices.8
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Figure 3: Overhead analysis of di�erentsoftware protocols on 64 processorsseq: A sequentially consistent software protocol that allows only a single writer for every coherenceblock at any given point in time. Interprocessor interrupts are used to enforce coherence whenan access fault occurs. Interprocessor interrupts present several problems for our simulationenvironment (fortunately this is the only protocol that needs them) and the level of detail atwhich they are simulated is signi�cantly lower than that of other system aspects. Results forthis protocol may underestimate the cost of coherence management (especially in cases of highnetwork tra�c) but since it is the worst protocol in most cases, the inaccuracy has no e�ecton our conclusions.Figure 2 presents the running time of the di�erent software protocols on our set of partially mod-i�ed applications. We have used the best version of the applications that does not require protocolmodi�cations (i.e. no identi�cation of reader/writer locks or use of remote reference; see section 4.2).The distributed protocols outperform the centralized implementations, often by a signi�cant mar-gin. The distributed protocols also show the largest improvement (almost three-fold) on water andmp3d, the two applications in which software coherence lags the most behind hardware coherence(see section 4.3). This is predictable behavior: applications in which the impact of coherence is im-portant are expected to show the greatest variance with di�erent coherence algorithms. However itis important to notice the di�erence in the scale of �gures 2 and 11. While the distributed protocolsimprove performance over the centralized ones by a factor of three for water and mp3d they are only30 to 40% worse than their hardware competitors. In programs where coherence is less important,the decentralized protocols still provide reasonable performance improvements over the centralizedones, ranging from 2% to 35%.The one application in which the sequential protocol outperforms the relaxed alternatives isGaussian elimination. While the actual di�erence in performance may be smaller than shown in thegraph, due in part to the reduced detail in the implementation of the sequential protocol, there isone source of overhead that the relaxed protocols have to pay that the sequential version does not.Since the releaser of a lock does not know who the subsequent acquirer of the lock will be, it has toush changes to shared data at the time of a release in the relaxed protocols, so those changes will be9



visible. Gauss uses locks as ags to indicate that a particular pivot row is available to processors toeliminate their rows. In section 4.2 we note that use of the ags results in many unnecessary ushes,and we present a re�nement to the relaxed consistency protocols that avoids them.Sor and water have very regular sharing patterns, sor among neighbors and water within awell-de�ned subset of the processors partaking in the computation. The distributed protocol makesa processor pay a coherence penalty only for the pages it cares about, while the centralized one forcesprocessors to examine all weak pages, which is all the shared pages in the case of water, resultingin very high overheads. It is interesting to notice that in water the centralized relaxed consistencyprotocols are badly beaten by the sequentially consistent software protocol. This agrees to someextent with the results reported by Petersen and Li [26], but the advantage of the sequentiallyconsistent protocol was less pronounced in their work. We believe there are two reasons for ourdi�erence in results. First we have restructured the code to greatly reduce false sharing,5 thusremoving one of the advantages that relaxed consistency has over sequential consistency. Second, wehave simulated a larger number of processors, aggravating the contention caused by the centralizedweak list used in the centralized relaxed consistency protocols.Appbt and fft have limited sharing. Fft exhibits limited pairwise sharing among di�erentprocessors for every phase (the distance between paired elements decreases for each phase). Wewere unable to establish the access pattern of appbt from the source code; it uses linear arrays torepresent higher dimensional data structures and the computation of o�sets often uses several levelsof indirection.Mp3d [29] has very wide-spread sharing. We modi�ed the program slightly (prior to the currentstudies) to ensure that colliding molecules belong with high probability to either the same processoror neighboring processors. Therefore the molecule data structures exhibit limited pairwise sharing.The main problem is the space cell data structures. Space cells form a three dimensional array.Unfortunately molecule movement is fastest in the outermost dimension resulting in long strideaccess to the space cell array. That coupled with the large coherence block results in having all thepages of the space cell data structure shared across all processors. Since the processors modify thedata structure for every particle they process, the end behavior is a long weak list and serializationon the centralized protocols. The distributed protocols improve the coherence management of themolecule data structures but can do little to improve on the cell data structure, since sharing iswide-spread.While runtime is the most important metric for application performance it does not capture thefull impact of a coherence algorithm. Figure 3 shows the breakdown of overhead into its majorcomponents for the �ve software protocols on our six applications. These components are: IPCinterrupt handling overhead (sequentially consistent protocol only), time spent waiting for applicationlocks, coherence protocol overhead (including waiting for system locks and ushing and purgingcache lines), and time spent waiting for cache misses. Coherence protocol overhead has an impacton the time spent waiting for application locks|the two are not easily separable. The relativeheights of the bars do not agree in �gures 2 and 3, because the former pertains to the criticalpath of the computation, while the latter provides totals over all processors for the duration ofexecution. Aggregate costs for the overhead components can be higher but critical path length canbe shorter if some of the overhead work is done in parallel. The coherence part of the overheadis signi�cantly reduced by the distributed delayed protocol for all applications. For mp3d the main5The sequentially consistent software protocol still outperforms the centralized relaxed consistent software protocolson the unmodi�ed application but to a lesser extent. 10
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Figure 4: Comparative performance ofdi�erent cache architectures on 64 processors
Application Write Back Write Through Write CollectGauss 38% 74% 47%Sor 8.5% 52.5% 40.5%Water 5.1% 25% 8.3%Mp3d 24.2% 40.7% 39%Appbt 11.1% 28.4% 18.6%Fft 29.3% N/A 6 38.8%Figure 5: Delayed cache misses for di�erent cachetypesbene�t comes from the reduction of lock waiting time. The program is tightly synchronized; areduction in coherence overhead implies less time holding synchronization variables and therefore areduction in synchronization waiting time.We have also run simulations in order to determine the performance bene�ts caused by the intro-duction of the safe and unsafe states. What we have discovered is that for our modi�ed applicationsthe performance impact of these two states is small; they help performance in some cases by up to5%, and hurt it in other cases (due to unnecessary checks on the unsafe state) by up to 3%. Thereason for this behavior is the limited degree of sharing for pages exhibited by our modi�ed appli-cations. We have run simulations on unmodi�ed applications and have found that the existence ofthese two states can help improve performance by as much as 35%. Unfortunately the performanceof software coherence, even with the introduction of our optimization is not competitive to hard-ware for the unmodi�ed applications. We view our optimization as a safeguard that can help yieldreasonable performance for bad sharing patterns, but for well behaving programs that scale nicelyunder software coherence, its impact is signi�cantly reduced.4.1 Write policiesIn this section we consider the choice of write policy for the cache. Speci�cally, we compare theperformance obtained with a write-through cache, a write-back cache, and a write-through cachewith a bu�er for merging writes [12]. We assume that a single policy is used for all cached data bothprivate and shared. We have modi�ed our simulator to allow us to vary policies independently forprivate and shared data, and expect to have results shortly that will simulate the above options forshared data only, while using a write-back policy for private data.Write-back caches impose the minimum load on the memory and network, since they write blocksback only on eviction, or when explicitly ushed. In a software coherent system, however, write-back caches have two undesirable qualities. The �rst of these is that they delay the execution ofsynchronization operations, since dirty lines must be ushed at the time of a release. Write-through11



caches have the potential to overlap memory accesses with useful computation.The second problem is more serious, because it a�ects program correctness in addition to perfor-mance. Because a software coherent system allows multiple writers for the same page, it is possiblefor di�erent portions of a cache line to be written by di�erent processors. When those lines areushed back to memory we must make sure that changes are correctly merged so no data modi�ca-tions are lost. The obvious way to do this is to have the hardware maintain per-word dirty bits, andthen to write back only those words in the cache that have actually been modi�ed. We assume thereis no sub-word sharing: words modi�ed by more than one processor imply that the program is notcorrectly synchronized.Write-through caches can potentially bene�t relaxed consistency protocols by reducing the amountof time spent at release points. They also eliminate the need for per-word dirty bits. Unfortunately,they may cause a large amount of tra�c, delaying the service of cache misses and in general de-grading performance. In fact, if the memory subsystem is not able to keep up with all the tra�c,write-through caches are unlikely to actually speed up releases, because at a release point we have tomake sure that all writes have been globally performed before allowing the processor to continue. Awrite completes when it is acknowledged by the memory system. With a large amount of write tra�cwe may have simply replaced waiting for the write-back with waiting for missing acknowledgments.Write-through caches with a write-collect bu�er [12] employ a small (16 entries in our case) fullyassociative bu�er between the cache and the interconnection network. The bu�er merges writes tothe same cache line, and allocates a new entry for a write to a non-resident cache line. When it runsout of entries the bu�er randomly chooses a line for eviction and writes it back to memory. Thewrite-collect bu�er is an attempt to combine the desirable features of both the write-through and thewrite-back cache. It reduces memory and network tra�c when compared to a plain write-throughcache and has a shorter latency at release points when compared to a write-back cache. Per-worddirty bits are required at the bu�er to allow successful merging of cache lines into memory.Figure 4 presents the relative performance of the di�erent cache architectures when using the bestrelaxed protocol on our best version of the applications. For all programs with the exception of mp3dthe write-back cache outperforms the others. The main reason is the reduced amount of memorytra�c. Figure 5 presents the number of delayed cache misses under di�erent cache policies. A miss isde�ned as delayed when it is forced to wait in a queue at the memory while contending accesses areserviced. The di�erence between the di�erent cache types is most pronounced on programs that havelittle sharing or a lot of private data. Water, appbt and fft fall in this category. For water, whichhas a very large number of private writes, the write-through cache ends up degrading performanceby a factor of more than 50.For programs whose data is mostly actively shared, the write-through policies fare better. Thebest example is mp3d, in which the write-collect cache outperforms the write-back cache by about20%. The reason for this is that frequent synchronization in mp3d requires frequent write-backs, sothe program generates approximately the same amount of tra�c as it would with a write-throughcache. Furthermore a ush operation on a page costs 128 cycles (1 cycle per line) regardless of thenumber of lines actually present in the cache. So if only a small portion of a page is touched, thewrite-back policy still pays a high penalty at releases.6Our write-through simulation for fft required too much memory so we had to modify it slightly. The number ofdelayed misses that we have is not directly comparable with that of the other two protocols, although it is larger thaneither of them 12



Our results are in partial agreement with those reported by Chen and Veidenbaum [12]. We both�nd that write-through caches su�er signi�cant performance degradation due to increased networkand memory tra�c. However, while their results favor a write-collect bu�er in most cases, we discoverthat write-back caches are preferable under our software scheme. We believe the di�erence stemsfrom the fact that we overlap cache ush costs with other coherence management (in their case cacheushes constitute the coherence management cost) and we use a di�erent set of applications.4.2 Program modi�cations to support software cache coherenceThe performance observed under software coherence is very sensitive to the locality properties ofthe application. In this section we describe the modi�cations we had to make to our applicationsin order to get them to run e�ciently on a software coherent system. We then present performancecomparisons for the modi�ed and unmodi�ed applications.We have used four di�erent techniques to improve the performance of our applications. Twoare simple program modi�cations and require no additions to the coherence protocol. Two takeadvantage of program semantics to give hints to the coherence protocol on how to reduce coherencemanagement costs. Our four techniques are:� Separation of synchronization variables from other writable program data.� Data structure alignment and padding at page or subpage boundaries.� Identi�cation of reader-writer locks and avoidance of coherence overhead at the release point.� Identi�cation of �ne grained shared data structures and use of remote reference for their accessto avoid coherence management.All our changes produced dramatic improvements on the runtime of one or more applications, withsome showing improvement of well over 100%.Separation of busy-wait synchronization variables from the data they protect is also used onhardware coherent systems to avoid invalidating the data protected by locks due to unsuccessfultest and set operations on the locks themselves. Under software coherence however, this optimiza-tion becomes signi�cantly more important to performance. The problem caused by the colocation isaggravated by an adverse interaction between the application locks and the locks protecting coherentmap entries at the OS level. A processor that attempts to access an application lock for the �rst timewill take a page-fault and will attempt to map the page containing the lock. This requires the acqui-sition of the OS lock protecting the coherent map entry for that page. The processor that attemptsto release the application lock must also acquire the lock for the coherent map entry representing thepage that contains the lock and the data it protects, in order to update the page state to reect thefact that the page has been modi�ed. In cases of contention the lock protecting the coherent mapentry is unavailable: it is owned by the processor(s) attempting to map the page for access.We have observed this lock-interaction e�ect in Gaussian elimination, in the access to the lockprotecting the index to the next available row. It is also present in the implementation of barriersunder the Argonne P4 macros (used by the SPLASH applications), since they employ a sharedcounter protected by a lock. We have changed the barrier implementation to avoid the problem inall our applications and have separated synchronization variables and data in Gauss to eliminate the13
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Figure 6: Runtime of Gauss with di�erentlevels of restructuring water
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adverse interaction. Gauss enjoys the greatest improvement due to this change, though noticeableimprovements occur in water, appbt and mp3d as well.Data structure alignment and padding is a well-known means of reducing false sharing [18]. Sincecoherence blocks in software coherent systems are large (4K bytes in our case), it is unreasonableto require padding of data structures to that size. However we can often pad data structures tosubpage boundaries so that a collection of them will �t exactly in a page. This approach coupledwith a careful distribution of work, ensuring that processor data is contiguous in memory, can greatlyimprove the locality properties of the application. Water and appbt already had good contiguity,so padding was su�cient to achieve good performance. Mp3d on the other hand starts by assigningmolecules to random coordinates in the three-dimensional space. As a result, interacting particlesare seldom contiguous in memory, and generate large amounts of sharing. We �xed this problemby sorting the particles according to their slow-moving x coordinate and assigned each processora contiguous set of particles. Interacting particles are now likely to belong to the same page andprocessor, reducing the amount of sharing.We were motivated to give special treatment to reader-writer locks after studying the Gaussianelimination program. Gauss uses locks to test for the readiness of pivot rows. In the process ofeliminating a given row, a processor acquires (and immediately releases) the locks on the previousrows one by one. With regular exclusive locks, the processor is forced on each release to notify otherprocessors of its most recent (single-element) change to its own row, even though no other processorwill attempt to use that element until the entire row is �nished. Our change is to observe that thecritical section protected by the pivot row lock does not modify any data (it is in fact empty!), sono coherence operations are needed at the time of the release. We communicate this information tothe coherence protocol by identifying the critical section as being protected by a reader's lock.7In general, changing to the use of reader's locks means changing application semantics, sinceconcurrent entry to a readers' critical section is allowed. Alternatively, one can think of the changeas a program annotation that retains exclusive entry to the critical section, but permits the co-herence protocol to skip the usual coherence operations at the time of the release. (In Gauss thedi�erence does not matter, because the critical section is empty.) A \skip coherence operations onrelease" annotation could be applied even to critical sections that modify data, if the programmeror compiler is sure that the data will not be used by any other processor until after some subsequentrelease. This style of annotation is reminiscent of entry consistency [6], but with a critical di�erence:Entry consistency requires the programmer to identify the data protected by particular locks|ine�ect, to identify all situations in which the protocol must not skip coherence operations. Errors ofomission a�ect the correctness of the program. In our case correctness is a�ected only by an error ofcommission (i.e. marking a critical section as protected by a reader's lock when this is not the case).Even with the changes just described, there are program data structures that are shared at a very�ne grain (both spatial and temporal), and that can therefore cause performance degradations. It canbe bene�cial to disallow caching for such data structures, and to access the memory module in whichthey reside directly. We term this kind of access remote reference, although the memory module maysometimes be local to the processor making the reference. We have identi�ed the data structures inour programs that could bene�t from remote reference and have annotated them appropriately byhand (our annotations range from one line of code in water to about ten lines in mp3d.) Mp3d sees7An alternative �x for Gauss would be to associate with each pivot row a simple ag variable on which the processorsfor later rows could spin. Reads of the ag would be acquire operations without corresponding releases. This �x wasnot available to us because our programming model provides no means of identifying acquire and release operationsexcept through a pre-de�ned set of synchronization operations.15



the largest bene�t: it improves by almost two fold when told to use remote reference on the spacecell data structure. Appbt improves by about 12% when told to use remote reference on a certainarray of condition variables. Water and Gauss improve only minimally; they have a bit of �ne-grainshared data, but they don't use it very much.The performance improvements for our four modi�ed applications can be seen in �gures 6through 9. Gauss improves markedly when �xing the lock interference problem and also bene�tsfrom the identi�cation of reader-writer locks. Remote reference helps only a little. Water gains mostof its performance improvement by padding the molecule data structures to sub-page boundariesand relocating synchronization variables. Mp3d bene�ts from relocating synchronization variablesand padding the molecule data structure to subpage boundaries. It bene�ts even more from im-proving the locality of particle interactions via sorting, and remote reference shaves o� another 50%.Finally appbt sees dramatic improvements after relocating one of its data structures to achieve goodpage alignment and bene�ts nicely from the use of remote reference as well.Our program changes were simple: identifying and �xing the problems was a mechanical processthat consumed at most a few hours. The one exception was mp3d which, apart from the mechanicalchanges, required an understanding of program semantics for the sorting of particles. Even in thatcase identifying the problem was an e�ort of less than a day; �xing it was even simpler: a call toa sorting routine. We believe that such modest forms of tuning represent a reasonable demand onthe programmer. We are also hopeful that smarter compilers will be able to make many of thechanges automatically. The results for mp3d could most likely be further improved, with more majorrestructuring of access to the space cell data structure, but this would require e�ort out of keepingwith the current study.4.3 Hardware v. software coherenceFigures 10 and 11 compare the performance of our best software protocol to that of a relaxed-consistency DASH-like hardware protocol [24] on 16 and 64 processors respectively. The unit line inthe graphs represents the running time of each application under a sequentially consistent hardwarecoherence protocol. In all cases the performance of the software protocol is within 45% of the betterof the hardware protocols. In most cases it is much closer. For fft, the software protocol is fastest.For all programs the best software protocol is the one described in section 2, with a distributedcoherence map and weak list, safe/unsafe states, delayed transitions to the weak state, and (exceptfor mp3d) write-back caches augmented with per-word dirty bits.8 The applications include all theprogram modi�cations described in section 4.2, though remote reference is used only in the contextof software coherence; it does not make sense in the hardware-coherent case. Experiments (notshown) con�rm that the program changes improve performance under both hardware and softwarecoherence, though they help more in the software case. They also help the sequentially-consistenthardware more than the release consistent hardware; we believe this accounts for the relativelymodest observed advantage of the latter over the former.8The mp3d result uses a write-through cache with the write-collect bu�er since this is the con�guration that performsbest for software coherence on this program. 16
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Figure 10: Comparative software andhardware system performance on 16processors
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Figure 11: Comparative software andhardware system performance on 64processors5 Related WorkOur work is most closely related to that of Petersen and Li [26, 27]: we both use the notion ofweak pages, and purge caches on acquire operations. The di�erence is scalability: we distribute thecoherent map and weak list, distinguish between safe and unsafe pages, check the weak list onlyfor unsafe pages mapped by the current processor, and multicast write notices for safe pages thatturn out to be weak. We have also examined architectural alternatives and program-structuringissues that were not addressed by Petersen and Li. Our work resembles Munin [10] and lazy releaseconsistency [19] in its use of delayed write notices, but we take advantage of the globally accessiblephysical address space for cache �lls and for access to the coherent map and the local weak lists.Our use of remote reference to reduce the overhead of coherence management can also be found inwork on NUMA memory management [7, 8, 14, 22, 23]. However relaxed consistency greatly reducesthe opportunities for pro�table remote data reference. In fact, early experiments we have conductedwith on-line NUMA policies and relaxed consistency have failed badly in their attempt to determinewhen to use remote reference.On the hardware side our work bears resemblance to the Stanford Dash project [25] in the useof a relaxed consistency model, and to the Georgia Tech Beehive project [28] in the use of relaxedconsistency and per-word dirty bits for successful merging of inconsistent cache lines. Both thesesystems use their extra hardware to allow coherence messages to propagate in the background ofcomputation (possibly at the expense of extra coherence tra�c) in order to avoid a higher waitingpenalty at synchronization operations.Coherence for distributed memory with per-processor caches can also be maintained entirelyby a compiler [13, 15]. Under this approach the compiler inserts the appropriate cache ush andinvalidation instructions in the code, to enforce data consistency. The static nature of the approach,however, and the di�culty of determining access patterns for arbitrary programs, often dictatesconservative decisions that result in higher miss rates and reduced performance.17



6 ConclusionsWe have shown that supporting a shared memory programming model while maintaining high per-formance does not necessarily require expensive hardware. Similar results can be achieved by main-taining coherence in software using the operating system and address translation hardware. We haveintroduced a new scalable protocol for software cache coherence and have shown that it out-performsexisting approaches (both relaxed and sequentially consistent). We have also studied the tradeo�sbetween di�erent cache write policies, showing that in most cases a write-back cache is preferable butthat a write-collect bu�er can help make a write-through cache acceptable. Both write-back (withper-word dirty bits) and write-collect require special hardware, but neither approaches the complex-ity of full-scale hardware coherence. Finally we have shown how some simple program modi�cationscan signi�cantly improve performance on a software coherent system.We are currently studying the sensitivity of software coherence schemes to architectural parame-ters (e.g. network latency and page and cache line sizes). We are also pursuing protocol optimizationsthat will improve performance for important classes of programs. For example, we are consideringpolicies in which ushes of modi�ed lines and purges of invalidated pages are allowed to take place \inthe background"|during synchronization waits or idle time, or on a communication co-processor.We are developing on-line policies that use past page behavior to identify situations in which remoteaccess is likely to out-perform remote cache �lls. We are considering several issues in the use ofremote reference, such as whether to adopt it globally for a given page, or to let each processor makeits own decision (and deal with the coherence issues that then arise). Finally, we believe stronglythat software coherence can bene�t greatly from compiler support. We are actively pursuing thedesign of annotations that a compiler can use to provide performance-enhancing hints for OS-basedcoherence.AcknowledgementsOur thanks to Ricardo Bianchini and Jack Veenstra for the long nights of discussions, idea exchangesand suggestions that helped make this paper possible.References[1] A. Agarwal and others. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multi-processor. In M. Dubois and S. S. Thakkar, editors, Scalable Shared Memory Multiprocessors.Kluwer Academic Publishers, 1992.[2] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, Inc., EnglewoodCli�s, NJ, 1989.[3] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. The Interaction of Archi-tecture and Operating System Design. In Proceedings of the Fourth International Conferenceon Architectural Support for Programming Languages and Operating Systems, pages 108{120,Santa Clara, CA, April 1991.[4] J. Archibald and J. Baer. Cache Coherence Protocols: Evaluation Using a MultiprocessorSimulation Model. ACM Transactions on Computer Systems, 4(4):273{298, November 1986.18
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