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Several atomic primitives have been proposed and implemented on DSM architectures.Most of them are special-purpose primitives that are designed to support some particularstyle of synchronization operations. Examples include test and set with special semanticson the DASH multiprocessor [17], the QOLB primitives on the Wisconsin Multicube [6] andthe IEEE Scalable Coherent Interface standard [24], the full/empty bits on the Alewife [1]and Tera machines [3], and the primitives for locking and unlocking cache lines on theKSR1 [15].While it is possible to implement arbitrary synchronization mechanisms on top of special-purpose locks, greater concurrency, e�ciency, and fault-tolerance may be achieved by usingmore general-purpose primitives. Examples include fetch and �, compare and swap, andthe pair load linked/store conditional, which can easily implement a wide variety ofstyles of synchronization (e.g. operations on wait-free and lock-free objects, read-write locks,priority locks, etc.). These primitives are easy to implement on bus-based multiprocessors,where they are e�ciently embedded in snooping cache coherence protocols, but there aremany tradeo�s to be considered in designing their implementations on a DSM machine.Compare and swap and load linked/store conditional are not provided by any of themajor DSM multiprocessors.We propose and evaluate several implementations of these general-purpose atomic prim-itives on directory-based cache coherent DSM multiprocessors, in an attempt to answer thequestion: which atomic primitives should be provided on future DSM multiprocessors andhow should they be implemented?Our analysis and experimental results suggest that the best overall performance will beachieved by compare and swap, with comparators in the caches, a write-invalidate coherencepolicy, and an auxiliary load exclusive instruction.The rest of this paper is organized as follows. In section 2 we discuss the di�erencesin functionality and expressive power among the primitives under consideration. In section3 we present several implementation options for these primitives on DSM multiprocessors.Then we present our experimental results and discuss their implications in section 4, andconclude with recommendations in section 5.2 Atomic Primitives2.1 FunctionalityA fetch and � primitive [7] takes (conceptually) two parameters: the address of the desti-nation operand, and a value parameter. It atomically reads the original value of the desti-nation operand, computes the new value as a function � of the original value and the valueparameter, stores this new value, and returns the original value. Examples of fetch and �primitives include test and set, fetch and store, fetch and add, and fetch and or.The compare and swap primitive was �rst provided on the IBM System/370 [4]. Compare -and swap takes three parameters: the address of the destination operand, an expected value,and a new value. If the original value of the destination operand is equal to the expected2



value, the former is replaced by the latter (atomically) and the return value indicates suc-cess, otherwise the return value indicates failure.The pair load linked/store conditional, proposed by Jensen et al. [13], are im-plemented on the MIPS II [14] and the DEC Alpha [2] architectures. They must be usedtogether to read, modify, and write a shared location. Load linked returns the value storedat the shared location and sets a reservation associated with the location and the proces-sor. Store conditional checks the reservation. If it is valid a new value is written tothe location and the operation returns success, otherwise it returns failure. Conceptually,for each shared memory location there is a reservation bit associated with each processor.Reservations for a shared memory location are invalidated when that location is writtenby any processor. Load linked and store conditional have not been implemented onnetwork-based multiprocessors. On bus-based multiprocessors they can easily be embeddedin snooping cache coherence protocol, in such a way that should store conditional fail,it fails locally without causing any bus tra�c.In practice, processors are generally limited to one outstanding reservation, and reser-vations may be invalidated even if the variable is not written. On the MIPS R4000 [22], forexample, reservations are invalidated on context switches and TLB exceptions. We can ig-nore these spurious invalidations with respect to lock-freedom, so long as we always try againwhen a store conditional fails, and so long as we never put anything between load -linked and store conditional that may invalidate reservations deterministically. De-pending on the processor, these things may include loads, stores, and incorrectly-predictedbranches.2.2 Expressive PowerHerlihy introduced an impossibility and universality hierarchy [9] that ranks atomic oper-ations according to their relative power. The hierarchy is based on the concepts of lock-freedom and wait-freedom. A concurrent object implementation is lock-free if it alwaysguarantees that some processor will complete an operation in a �nite number of steps,and it is wait-free if it guarantees that each process will complete an operation in a �nitenumber of steps. Lock-based operations are neither lock-free nor wait-free. In Herlihy'shierarchy, it is impossible for atomic operations at lower levels of the hierarchy to providea lock-free implementation of atomic operations in a higher level. Atomic reads, loads, andstores are at level 1. The primitives fetch and store, fetch and add, and test and setare at level 2. Compare and swap is a universal primitive|it is at level 1 of the hierar-chy [11]. Load linked/store conditional can also be shown to be universal if we assumethat reservations are invalidated if and only if the corresponding shared location is written.Thus, according to Herlihy's hierarchy, compare and swap and load linked/store -conditional can provide lock-free simulations of fetch and � primitives, and it is impos-sible for fetch and � primitives to provide lock-free simulations of compare and swap andload linked/store conditional. It should also be noted that although fetch and storeand fetch and add are at the same level (level 2) in Herlihy's hierarchy, this does not implythat there are lock-free simulations of one of these primitives using the other. Similarly,while both compare and swap and the pair load linked/store conditional are univer-3



sal primitives, it is possible to provide a lock-free simulation of compare and swap usingload linked and store conditional, but not vice versa.A pair of atomic load and compare and swap cannot simulate load linked and store -conditional because compare and swap cannot detect if a shared location has been writtenwith the same value that has been read by the atomic load or not. Thus compare and swapmight succeed where store conditional should fail. This feature of compare and swap cancause a problem if the data is a pointer and if a pointer can retain its original value afterdeallocating and reallocating the storage accessed by it. Herlihy presented methodologiesfor implementing lock-free (and wait-free) implementations of concurrent data objects usingcompare and swap [10] and load linked/store conditional [12]. The compare and swapalgorithms are less e�cient and conceptually more complex than the load linked/store -conditional algorithms due to the pointer problem [12].On the other hand, there are several algorithms that need or bene�t from compare and -swap [18, 19, 20, 27]. A simulation of compare and swap using load linked and store -conditional is less e�cient than providing compare and swap in hardware. A successfulsimulated compare and swap is likely to cause two cache misses instead of the one that wouldoccur if compare and swap were supported in hardware. (If load linked su�ers a cachemiss, it will generally obtain a shared (read-only) copy of the line. Store conditionalwill miss again in order to obtain write permission.) Also, unlike load linked/store -conditional, compare and swap is not subject to any restrictions on the loads and storesbetween atomic load and compare and swap. Thus, it is more suitable for implementingatomic update operations that require memory access between loading and comparing (e.g.an atomic update operation that requires a table lookup based on the original value).3 ImplementationsThe main design issues for implementing atomic primitives on cache coherent DSM multi-processors are:1. Where should the computational power to execute the atomic primitives be located:in the cache controllers, in the memory modules, or both?2. Which coherence policy should be used for atomically accessed data: no caching,write-invalidate, or write-update?3. What auxiliary instructions, if any, can be used to enhance performance?We focus our attention on fetch and �, compare and swap, and load linked/store -conditionalbecause of their generality, their popularity on small-scale machines, and theirprevalence in the literature. We consider three implementations for fetch and �, �ve forcompare and swap, and three for load linked/store conditional. The implementationscan be grouped into three categories according to the coherence policies used:1. EXC (EXClusive): Computational power in the cache controllers with write-invalidatecoherence policy. The main advantage of this implementation is that once the data is4



in the cache, subsequent atomic updates are executed locally, so long as accesses byother processors do not intervene.2. UPD (UPDate): Computational power in the memory with a write-update policy.The main advantage of this implementation is a high read hit rate, even in the caseof alternating accesses by di�erent processors.3. NOC (NO Caching): Computational power in memory with caching disabled. Themain advantage of this implementation is that it eliminates the coherence overheadof the other two policies, which may be a win in the case of high contention or eventhe case of no contention when accesses by di�erent processors alternate.Other implementation options, such as computational power in the memory with a write-invalidate coherence policy, or computational power in the caches with a write-update orno-caching policy, always yield performance inferior to that of EXC.EXC and UPD implementations are embedded in the cache coherence protocols. Ourprotocols are mainly based on the directory-based protocol of the DASH multiprocessor [16].For fetch and �, EXC obtains an exclusive copy of the data and performs the operationlocally. NOC sends a request to the memory to perform the operation on uncached data.UPD also sends a request to the memory to perform the operation, but retains a sharedcopy of the data in the local cache. The memory multicasts all updates to all the cacheswith copies.The EXC, NOC, and UPD implementations of compare and swap are analogous to thoseof fetch and �. In addition, however, we introduce two variants of EXC: EXCd (d for deny)and EXCs (s for share). If the line is not cached exclusive, comparison of the old value withthe expected value takes place in the home node or the owner node, whichever has the mostup-to-date copy of the line (the home node is the node at which the memory resides). Ifequality holds, EXCd and EXCs behave exactly like EXC. Otherwise, the response to therequesting node indicates that compare and swap must fail, and in the case of EXCd, nocached copy is provided, while in the case of EXCs, a read-only copy is provided (insteadof an exclusive copy in the case of EXC). The rationale behind these variants is to preventa request that will fail from invalidating copies cached in other nodes.The implementations of load linked/store conditional are somewhat more elabo-rate, due to the need for reservations. In the EXC implementation, each processing nodehas a reservation bit and a reservation address register. Load linked sets the reservationbit to valid and writes the address of the shared location to the reservation register. Ifthe cache line is not valid, a shared copy is acquired, and the value is returned. If thecache line is invalidated and the address corresponds to the one stored in the reservationregister, the reservation bit is set to invalid. Store conditional checks the reservationbit. If it is invalid, store conditional fails. If the reservation bit is valid and the line isexclusive, store conditional succeeds locally. Otherwise, the request is sent to the homenode. If the directory indicates that the line is exclusive or uncached, store conditionalfails, otherwise (the line is shared) store conditional succeeds and invalidations are sentto holders of other copies. 5



In the NOC implementation of load linked/store conditional, each memory loca-tion (at least conceptually) has a reservation bit vector of size equal to the total numberof processors. Load linked reads the value from memory and sets the appropriate reser-vation bit to valid. Any write or successful store conditional to the location invalidatesthe reservation vector. Store conditional checks the corresponding reservation bit andsucceeds or fails accordingly. Various space optimizations are conceivable for practical im-plementations; see section 3.2 below.The UPD implementation load linked/store conditional also has (conceptually) areservation vector. Load linked requests have to go to memory even if the data is cached,in order to set the appropriate reservation bit. Similarly, store conditional requests haveto go to memory to check the reservation bit.3.1 Auxiliary InstructionsIn order to enhance the performance of some of these implementations, we consider thefollowing auxiliary instructions:1. Load exclusive: reads data and acquires exclusive access. If the implementation isEXC, this instruction can be used instead of an ordinary atomic load when readingdata that is then accessed by compare and swap. The intent is to make it likely thatcompare and swap will not have to go to memory. Aside from arom atomic primitives,load exclusive is also useful in decreasing coherency operations for migratory data.2. Drop copy: if the implementation is EXC or UPD, this instruction can be used todrop (self-invalidate) cached data, if they are not expected to be accessed beforean intervening access by another processor. The intent is to reduce the number ofserialized messages required for subsequent accesses by other processors: a write misswill require 2 serialized messages (from requesting node to the home node and back),instead of 4 for remote exclusive data w(requesting node to home to owner to homeand back to requesting node) and 3 for remote shared data (from requesting node tohome to sharing nodes and acknowledgments are sent back to the requesting node).3.2 Hardware RequirementsIf the base coherence policy is di�erent from the coherence policy for access to synchroniza-tion variables, the complexity of the cache coherence protocol increases signi�cantly. How-ever, the directory entry size remains the same with any coherence policy on directory-basedmultiprocessors (modulo any requirements for reservation information in the memory).Computational power (e.g. adders and comparators) needs to be added to each cachecontroller if the implementation is EXC, or to each memory module if the implementation isUPD or NOC, or to both caches and memory modules if the implementation for compare -and swap is EXCd or EXCs.If load linked and store conditional are implemented in the caches, one reservationbit and one reservation address register are needed to maintain ideal semantics, assuming6



that load linked and store conditional pairs are not allowed to nest. On the MIPSR4000 processor [22] there is an LLbit and an on-chip system control processor registerLLAddr. The LLAddr register is used only for diagnostic purposes, and serves no functionduring normal operation. Thus, invalidation of any cache line causes LLbit to be reset. Astore conditional to a valid cache line is not guaranteed to succeed, as the data mighthave been written by another process on the same physical processor. Thus, a reservationbit is needed (at least to be invalidated on a context switch).If load linked and store conditional are implemented in the memory, the hardwarerequirements are more signi�cant. A reservation bit for each processor is needed for eachmemory location. There are several options:� A bit vector of size equal to the number of processors is added to each directory entry.This option limits the scalability of the multiprocessor, as the (total) directory sizeincreases quadratically with the number of processors. The bits cannot be encoded,because any subset of them may legitimately be set.� A linked list can be used to hold the ids of the processors holding reservations on amemory block. The size overhead is reduced to the size of the head of the list, if thememory block has no reservations associated with it. However, a free list is neededand it has to be maintained by the cache coherence protocol.� A limited number of reservations (e.g. 4) can be maintained. Reservations beyondthe limit will be ignored, so their corresponding store conditional's are doomedto fail. If a failure indicator can be returned by beyond-the-limit load linked's,the corresponding store conditional's can fail locally without causing any networktra�c. This option eliminates the need for bit vectors or a free list. Also, it can helpreduce the e�ect of high contention on performance. However, it compromises thesemantics of lock-free objects based on load linked and store conditional.� A hardware counter associated with each memory block can be used to indicate aserial number of writes to that block. Load linked will return both the data and theserial number, and store conditional must provide both the data and the expectedserial number. A store conditional with a serial number di�erent from that of thecounter will fail. The counter should be large enough (e.g. 32 bits) to eliminate anyproblems due to wrap around. The message sizes associated with load linked andstore conditional increase by the counter size.In each of these options, if the space overhead is too high to accept for all of memory, atomicoperations can, with some loss of convenience, be limited to a subset of the physical addressspace.For the purposes of this paper we do not need to �x an implementation for reservations inmemory, but we recommend the last option. It has the potential to provide the advantagesof both compare and swap and load linked/store conditional. Load linked resemblesa load that returns a longer datum; store conditional resembles a compare and swap thatprovides a longer datum. The serial number portion of the datum eliminates the pointerproblem mentioned in section 2.2. In addition, the lack of an explicit reservation means7



that store conditional does not have to be preceded closely in time by load linked; aprocess that expects a particular value (and serial number) in memory can issue a barestore conditional, just as it can issue a bare compare and swap. This capability is usefulfor algorithms such as the MCS queue-based spin lock [19], in which it reduces by one thenumber of memory accesses required to relinquish the lock. It is not even necessary thatthe serial number reside in special memory: load linked and store conditional couldbe designed to work on doubles. The catch is that \ordinary" stores to synchronizationvariables need to update the serial number. If this number were simply kept in half of adouble, special instructions would need to be used instead of ordinary stores.4 Experimental Results4.1 MethodologyIn this section we present experimental results that compare the performance of the dif-ferent implementations of the atomic primitives under study. The results were collectedfrom an execution driven cycle-by-cycle simulator. The simulator uses MINT (Mips IN-Terpreter) [26], which simulates MIPS R4000 object code, as a front end. The back endsimulates a 64 node multiprocessor with directory-based caches, 32-byte blocks, queuedmemory, and a 2-D worm-hole mesh network. The simulator supports directory-basedcache coherence protocols with write-invalidate and write-update coherence policies. Thebase cache coherence protocol is a write-invalidate protocol. In order to provide accuratesimulations of programs with race conditions, the simulator keeps track of the values ofcached copies of atomically accessed data in the cache of each processing node. In additionto the MIPS R4000 instruction set (which includes load linked and store conditional),the simulated multiprocessor supports fetch and �, compare and swap, load exclusive,and drop copy. Memory and network latencies re
ect the e�ect of memory contention andof contention at the entry and exit of the network (though not at internal nodes).We used two sets of applications, real and synthetic, to achieve di�erent goals. Webegan by studying two lock-based applications from the SPLASH suite [25]|LocusRouteand Cholesky| in order to identify typical sharing patterns of atomically accessed data. Wereplaced the library locks with an assembly language implementation of the test-and-test-and-set lock [23] with bounded exponential backo� implemented using the atomic primitivesand auxiliary instructions under study.Our three synthetic applications served to explore the parameter space and to providecontrolled performance measurements. The �rst uses lock-free concurrent counters to coverthe case in which load linked/store conditional simulates fetch and �. The seconduses a counter protected by a test-and-test-and-set lock with bounded exponential backo�to cover the case in which all three primitives are used in a similar manner. The third usesa counter protected by an MCS lock [19] to cover the case in which load linked/store -conditional simulates compare and swap. 8



NOC EXC UPDLocusRoute 1.83 1.79 1.70Cholesky 1.62 1.68 1.59Table 1: Average write-run length in LocusRoute and Cholesky.4.2 Sharing PatternsPerformance of atomic primitives is a�ected by two main sharing pattern parameters: con-tention and average write-run length [5]. In this context, we de�ne the level of contentionas the number of processors that concurrently try to access an atomically accessed sharedlocation. Average write-run length is the average number of consecutive writes (includingatomic updates) by a processor to an atomically accessed shared location without interven-ing accesses (reads or writes) by any other processors.Table 1 shows the average write-run length of atomically accessed data in simulated runsof LocusRoute and Cholesky on 64 processors with di�erent coherence policies. The resultsindicate that in these applications lock variables are unlikely to be written more than twoconsecutive times by the same processor without intervening accesses by other processors.In other words, a processor usually acquires and releases a lock without intervening accessesby other processors, but it is unlikely to re-acquire it without intervention.As a measure of contention, we use histograms of the number of processors contendingto access an atomically accessed shared location at the beginning of each access (we founda line graph to be more readable than a bar graph, though the results are discrete, notcontinuous). Figure 1 shows the contention histograms for LocusRoute and Cholesky, withdi�erent coherence policies. The �gures con�rm the expectation that the no-contentioncase is the common one, for which performance should be optimized. At the same time,they indicate that the low and moderate contention cases do arise, so that performance forthem needs also to be good. High contention is rare: reasonable di�erences in performanceamong the primitives can be tolerated in this case.4.3 Relative Performance of ImplementationsWe collected performance results of the synthetic applications with various levels of con-tention and write-run length. We used constant-time barriers supported by MINT to controlthe level of contention. Because these barriers are constant-time, they have no e�ect onthe results other than enforcing the intended sharing patterns. In these applications, eachprocessor is in a tight loop, where in each iteration it either updates the counter or not,depending on the desired level of contention. Depending on the desired average write-runlength, every one or more iterations are protected by a constant-time barrier.Figures 2, 3, and 4 show the performance results for the synthetic applications. Thebars represent the elapsed time averaged over a large number of counter updates. In each�gure, the graphs to the left represent the no-contention case with di�erent numbers of9
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Figure 1: Histograms of the level of contention in LocusRoute and Cholesky.consecutive accesses by each processor without intervention from the other processors. Thegraphs to the right represent di�erent levels of contention. The bars in each graph arecategorized according to the three coherence policies used in the implementation of atomicprimitives. In EXC and UPD, there are two subsets of bars. The bars to the right representthe results with using the drop copy instruction, while those to the left are without usingit. In each of the two subsets in the EXC category, there are 4 bars for compare and swap.They represent, from left to right, the results for the implementations EXC, EXCd, EXCs,and EXC with load exclusive, respectively.Figure 5 shows the performance results for LocusRoute. Time is measured from thebeginning to the end of execution of the parallel part of the application. The order of barsin the graph is the same as in the previous �gures.We base our analysis on the results of the synthetic applications, where we have controlover the parameter space. The results for LocusRoute help to validate the results of thesynthetic applications. Careful inspection of trace data from the simulator suggests thatthe relatively poor performance of fetch and � in LocusRoute is due to changes in control
ow that occur when very small changes in timings allow processors to obtain work fromthe central work queue in di�erent orders.4.3.1 Coherence PolicyIn the case of no contention with short write-runs, NOC implementations of the threeprimitives are competitive, and sometimes better than, their corresponding cached imple-mentations, even with an average write-run length as large as 2. There are two reasons forthese results. First, a write miss on an uncached line takes two serialized messages, which10
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Figure 2: Average time per counter update for the lock-free counter application. P denotesprocessors, c contention, and a the average number of non-intervened counter updates byeach processor. 11
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Figure 3: Average time per counter update for the TTS-lock-based counter application.P denotes processors, c contention, and a the average number of non-intervened counterupdates by each processor. 12
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Figure 4: Average time per counter update for the MCS-lock-based counter application.P denotes processors, c contention, and a the average number of non-intervened counterupdates by each processor. 13
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CAS   Figure 5: Total elapsed time for LocusRoute with di�erent implementations of atomicprimitives.is always the case with NOC, while a write miss on a remote exclusive or remote shared linetakes 4 or 3 serialized messages respectively. Second, NOC implementations do not incurthe overhead of invalidations and updates as EXC and UPD implementations do.Furthermore, with contention (even very low), NOC outperforms the other policies(with the exception of EXC compare and swap/load exclusive when simulating fetch -and �), as the e�ect of avoiding excess serialized messages, and invalidations or updates,is more evident as ownership of data changes hands more frequently. The EXC compare -and swap/load exclusive combination for simulating fetch and � is an exception as thetiming window between the read and the write in the read-modify-write cycle is narrowedsubstantially, thereby diminishing the e�ect of contention by other processors. Also, in theEXC implementation, successful compare and swap's after load exclusive's are mostlyhits, while by de�nition, all NOC accesses are misses.On the other hand, as write-run length increases, EXC increasingly outperforms NOCand UPD, because subsequent accesses in a run length are all hits.Comparing UPD to EXC, we �nd that EXC is always better in the common case ofno and low contention. This is due to the excessive number of useless updates incurredby UPD. EXC is much better in the case of long write-runs, as it bene�ts from caching.With higher levels of contention with the test-and-test-and-set lock, UPD is better as everytime the lock is released almost all processors try to acquire it by writing to it. With EXCall these processors acquire exclusive copies although only one will eventually succeed inacquiring the lock, while in the case of UPD, only successful writes cause updates. Read-only accesses are always misses under NOC, and most of the time under EXC, but aremostly hits under UPD.4.3.2 Atomic PrimitivesIn the case of the lock-free counter, NOC fetch and add yields superior performance overthe other primitives and implementations, especially with contention. The exception isthe case of long write-runs, which are not the common case, and may well represent badprograms (e.g. a shared counter should be updated only when necessary, instead of beingrepeatedly incremented). We conclude that NOC fetch and add is a useful primitive to14



provide for supporting shared counters. Because it is limited to only certain kinds ofalgorithms, however, we recommend it only in addition to a universal primitive.Among the EXC universal primitives, compare and swap almost always bene�ts fromload exclusive, because compare and swap's are hits in the case of no contention and, asmentioned earlier, load exclusive helps minimize the failure rate of compare and swap ascontention increases. Load linked cannot be exclusive: otherwise livelock is likely to occur.The EXCd and EXCs implementations of compare and swap are almost always equalto or worse than compare and swap or compare and swap/load exclusive. Thus, theirperformance does not justify the cost of extra hardware to make comparisons both inmemory and in the caches.As for UPD universal primitives, compare and swap is always better than load linkedand store conditional, as most of the time compare and swap is preceded by an ordinaryread which is most likely to be a hit with UPD. Load linked requests have to go to memoryeven if the data is cached locally, as the reservation has to be set in a unique place that hasthe most up-to-date version of data|in memory in the case of UPD.4.3.3 Drop CopyWith an EXC policy and an average write-run length of one with no contention, drop -copy improves the performance of fetch and � and compare and swap/load exclusive,because it allows the atomic primitive to obtain the needed exclusive copy of the data withonly 2 serialized messages instead of 4 (no other processor has location cached; they allhave dropped their copies). As contention increases, the e�ect of drop copy varies with theapplication.With an UPD policy, drop copy always improves performance, because it reduces thenumber of useless updates and in most cases reduces the number of serialized messages fora write from 3 to 2.5 ConclusionsBased on the experimental results and the relative power of atomic primitives, we rec-ommend implementing compare and swap in the cache controllers of future DSM multi-processors, with a write-invalidate coherence policy. To address the pointer problem, werecommend consideration of an implementation based on serial numbers, as described forthe in-memory implementation of load linked/store conditional in section 3.2. We alsorecommend supporting load exclusive to enhance the performance of compare and swap,in addition to its bene�ts in e�cient data migration. Finally, we recommend supportingdrop copy to allow programmers to enhance the performance of compare and swap/load -exclusive in the common case of no or low contention with short write runs.Although we do not recommend it as the sole atomic primitive, we �nd fetch and addto be useful with lock-free counters (and with many other objects [8]). We recommendimplementing it in uncached memory as an extra atomic primitive.15
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