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Abstract

The cost of a cache miss depends heavily on the loca-
tion of the main memory that backs the missing line. For
certain applications, this cost is a major factor in overall
performance. We report on the utility of OS-based page
placement as a mechanism to increase the frequency with
which cache fillsaccess local memory in distributed shared
memory multiprocessors. Even with the very simple pol-
icy of first-use placement, we find significant improvements
over round-robin placement for many applicationson both
hardware- and software-coherent systems. For most of our
applications, first-use placement allows 35 to 75 percent
of cache fills to be performed locally, resulting in per-
formance improvements of up to 40 percent with respect
to round-robin placement. \We were surprised to find no
performance advantage in more sophisticated policies, in-
cluding page migration and page replication. In fact, in
many cases the performance of our applications suffered
under these policies.

1 Introduction

Most modern processors use caches to hide the growing
disparity between processor and memory (DRAM) speeds.
On auniprocessor, the effectiveness of acache depends pri-
marily onthehit rate, whichinturn dependson such factors
as cache and working set sizes, the amount of temporal and
spatial locality in the reference stream, the degree of asso-
ciativity in the cache, and the cache replacement policy.

Two additional factors come into play on a multipro-
cessor. First, we need a coherence protocol to ensure that
processors do not access stale copies of datathat have been
modified elsewhere. Coherence is required for correct-
ness, but may reduce the hit rate (by invalidating lines in
some caches when they are modified in others), and can in-
crease the cost of both hitsand misses, by introducing extra
logic into the cache lookup algorithm. Second, because

*This work was supported in part by NSF Institutional Infrastructure
grant no. CDA-8822724 and ONR research grant no. N00014-92-3-1801
(in conjunction with the ARPA Research in Information Science and
Technology—High Performance Computing, Software Science and Tech-
nology program, ARPA Order no. 8930).

large-scale machines generally distribute physical memory
among the nodes of the system, the cost of a cache miss
can vary substantially, even without coherence overhead.

Minimizing the cost of coherence is arguably the most
difficult task faced by the designers of large-scale multi-
processors. Given a good coherence protocol, however,
the placement of datain the distributed main memory may
gtill have a significant impact on performance, because it
affects the cost of cache misses. A substantia body of re-
search has addressed the development of good coherence
protocols. This paper addresses the main-memory place-
ment problem. We focus our attention on behavior-driven
OS-level movement of pages between processors. We limit
our consideration to the class of machines in which each
physica memory address has a fixed physical location (its
home node), and in which the hardware cache controllers
are capabl e of filling misses from remote locations.

| deally, thecompiler for aparallel languagewoul d deter-
minethe best location for each datum at each pointin time.
Most current compilers, however, employ a programmer-
specified data distribution (e.g. as in HPF [12]). More-
over, there will always be important programs for which
reference patterns cannot be determined at compile time,
e.g. because they depend on input data [13]. Even when
compile-time placement is feasible, it still seems possible
that OS-level placement will offer a simpler, acceptable
solution. Current distributed shared memory systems use
ad-hoc policies for placing shared pages in memory. For
example on the Alewife multiprocessor data is placed in
the memory modul e of the processor making the allocation
cal, while on DASH pages of shared data are scattered
either randomly or in round-robin fashion [11].

Our work showsthat we can achieveeffectiveinitia page
placement with no hardware support other thanthe standard
address trandation and page fault mechanisms, and with
coherence maintained either in hardware (on aCC-NUMA
machine) or in kernel-level software (on a non-coherent
NUMA machine). We aso evaluate dynamic page migra-
tion and page replication (with invalidationsfor coherence)
in an attempt to adapt to changes in program reference pat-
terns, but observelittleor no performance benefit and often
a performance loss for our application suite.
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2 Reated Work

Page migration and replication have been used on cache-
less NUMA multiprocessorsin order to take advantage of
thelower cost of accessing local memory instead of remote
memory [3, 5, 10]. By using efficient block-transfer hard-
ware to transfer page-size blocks, these “NUMA memory
management” systems reduce the average cost per refer-
ence. This paper addresses the question of whether sm-
ilar policies are till effective on machines with coherent
caches.

Cache-coherent shared memory multiprocessors fall
into two basic categories, termed CC-NUMA (cache co-
herent, non-uniform memory access) and COMA (cache
only memory architecture). CC-NUMA machines include
the Stanford DASH [11], theMIT Alewife[1], and the Con-
vex SPP-1000, based on the IEEE Scalable Coherent In-
terface standard [7]. COMA machinesinclude the Kendall
Square KSR 1 and the Swedish Data Diffusion Machine
(DDM) [6]. COMA machines organize main memory as
a large secondary or tertiary cache, giving them a per-
formance advantage over CC-NUMA machines when it
comesto servicing capacity and conflict cache misses. Past
work [15] has shown, however, that with additional hard-
ware, or programmer and compiler intervention, data pages
on a CC-NUMA machine can be migrated to the nodes
that would miss on them the most, achieving performance
comparable to that of COMA machines, at lower hardware
cost. Our approach is applicable to both NUMA machines
with non-coherent caches and CC-NUMA machines, and
requireslittle or no special hardware.

Chandraet. al. haveindependently studied migrationin
the context of coherence[4]. They simulated severa migra-
tion policies based on counting cache misses and/or TLB
misses; some of the policies allowed a page to move only
once; others permitted multiple migrations. One of their
policies (single move on the first cache miss) is similar
to our placement policy. They aso found that a single-
move policy can cause many cache misses to be performed
locally, though our results are not directly comparable be-
cause we used different applications. We extend their work
by considering replication strategies, as well as investigat-
ing the effects of placement on both eager (hardware) and
lazy (software) coherent systems.

3 Algorithmsand Methodology
3.1 Simulation Infrastructure

We use execution driven simulation to simul ate a mesh-
connected multiprocessor with up to 64 nodes. Our simu-
lator consists of two parts: afront end, Mint [16], which
simul ates the execution of the processors, and a back end

System Constant Name Default Value
TLB size 128 entries
TLB fill time 100 cycles
Interrupt (page fault) cost 140 cycles
Page table modification 320 cycles
Memory latency 12 cycles
Memory bandwidth 1word/ 4 cycles
Page size 4K bytes
Total cache per processor 16K bytes
Cachelinesize 64 bytes
Network path width 16 bits (bidirectional)
Link latency 2 cycles
Routing time 4 cycles
Directory lookup cost 10 cycles
Cache purgetime 1 cycleline
Page move time approx. 4300 cycles

Table 1: Default values for system parameters, assuming a
100-MHz processor.

that simulates the memory system. The front end calls the
back end on every data reference (instruction fetches are
assumed to aways be cache hits). The back end decides
which processors block waiting for memory and which
continue execution. Since the decision is made on-line,
the back end affects the timing of the front end, so that
the control flow of the application, and the interleaving of
instructions across processors, can depend on the behavior
of the memory system.

The front end implements the MIPS |1 instruction set.
Interchangeable modules in the back end allow us to ex-
plorethe design space of software and hardware coherence.
Our hardware-coherent modules are quite detailed, with
finite-size caches, write buffers, full protocol emulation,
distance-dependent network delays, and memory access
costs (including memory contention). Our simulator is ca-
pable of capturing contention within the network, but only
at a substantia cost in execution time; the results reported
here model network contention at the sending and receiv-
ing nodes of a message, but not at the intermediate nodes.
Our software-coherent modules add a detailed smulation
of TLB behavior. To avoid the complexities of instruction-
level ssimulation of interrupt handl ers, we assume a constant
overhead for page fault interrupt handling. We have cho-
sen to simulate small caches in order to capture the impact
of eviction misses. Page placement becomes significantly
more important when an application’sworking set does not
fit in the cache. In such situations careful page placement
can turn main memory into a large tertiary cache, signifi-
cantly improving program performance. Table 1 summa-
rizes the default parameters used in our simulations.



The CC-NUMA machineusesthedirectory-based write-
invalidate coherence protocol of the Stanford DASH ma-
chine. Our software-coherent NUMA machine usesamore
complicated, multi-writer protocol [9]. This protocol em-
ploys a variant of lazy release consistency [8], in which
invalidation messages are sent only at synchronization re-
lease points, and processed (locally) only at synchroniza-
tion acquire points. At an acquire, a processor is required
to flush from its own cache all lines of al pages that have
been modified by any other processor since the current pro-
cessor’s last acquire. It isalso required to unmap the page,
so that future accesses will generate a page fault. At are-
lease, aprocess isrequired to write back al dirty wordsin
its cache.! To allow a processor to determine which pages
to un-map (and flush the corresponding cache lines) on an
acquire, we maintain a distributed weak list of pages for
which out-of-date cached copies may exist. When a pro-
cessor first accesses a page (or accesses it for thefirst time
after un-mappingit), the handler for the resulting page fault
adds the page to the processor’s page table and communi-
cates with the page's home node to update a list of sharing
processors. If the only previoudly-existing mapping had
read-write permissions, or if the current fault was a write
fault and all previoudy-existing mappings were read-only,
then the page is added to the weak list.

3.2 Page Placement Mechanisms

The changes required to add page placement to both the
hardware and software coherence protocolswere straight-
forward. The basic ideaisthat thefirst processor to touch
a given page of shared memory becomes that page's home
node. To deal withthecommon caseinwhich oneprocessor
initializesall of shared memory beforeparallel computation
begins, we created an executable “done with initialization”
annotation that programmers can call at the point at which
the system should begin to migrate (place) pages. In an-
ticipation of programs in which the pattern of accesses to
shared memory might undergo amajor changeinthemiddle
of execution, we also created a “phase change’ annotation
that programmers could call when the system should re-
evaluate its placement decisions.

At the beginning of execution, shared memory pages are
unmapped (thiswas already true for the software protocol,
but not for the hardware one). The first processor to suffer
a page fault on a page (or the first one after initialization
or a phase change) becomes the page’s home node. That
processor requests the page from the current home, then
blocks until the page arrives.

| deally, onewould want to place a page on the processor

1Because there may be multiple dirty copiesof agivenline, non-dirty
wordsmust not bewritten back. To distinguishthedirty words, weassume
that the cacheincludes per-word dirty bits.

that will suffer the most cache misses for that page. Unfor-
tunately, thisis not possible without future knowledge, so
we place apage based on its past behavior. We simulated a
policy, based on extra hardware, in which the first proces-
sor to perform n cache fills on a page becomes the page's
home node, but found no significant improvement over the
“first reference” policy. The first reference policy does not
attempt to determinewhich processor uses a page the most,
but does ensure that no processor is home to pages that it
does not use.

3.3 Application Suite

Our application suite consists of five programs. Two
(sor and ngri d) are locally-written kernels. The others
(mp3d, appbt , and wat er ) are full applications.

SOR performs banded red-black successive over-
relaxation on a640 x 640 grid to calculate the temperature
at each point of aflat rectangular panel. Wesimulated 10it-
erations. Myr i d isasimplified shared-memory version of
themultigridkernel fromthe NASParalel Benchmarks|[2].
It performs a more elaborate over-relaxation using multi-
grid techniques to compute an approximate solution to the
Poisson equation on the unit cube. We simulated 2 itera-
tions, with 5 relaxation steps on each grid, and grid sizes
from 64 x 64 x 32 downto 16 x 16 x 8.

Mo3d is part of the SPLASH suite [14]. It simulates
rarefied fluid flow using a Monte Carlo agorithm. We
simulated 20,000 particlesfor 10 time steps. Wt er , aso
fromthe SPLASH suite, simulatestheevol ution of asystem
of water molecules by numerically solving the Newtonian
equations of motion at each time step. We simulated 256
molecules for 5 time steps.

Appbt isfrom the NAS Parallel Benchmarks suite. It
computes an approximate solution to the Navier-Stokes
equations. We simulated a 16 x 16 x 16 grid for 5 time
steps.

These applications were chosen in order to encompass
various common caching and sharing behaviors. Theinput
sizes we chose, athough small (due to simulation con-
straints), deliver reasonable scalability for most of our ap-
plications. We deliberately kept the cache sizes small, so
that therati o between cache sizeand working set sizewould
beabout thesameasonewoul d expectinafull-sizemachine
and problem. Aswe will show in the next section, most of
the applications exhibit behavior for which dynamic page
placement is beneficial.

4 Reaults

In this section we discuss results, starting with the per-
formance impact of the simple“first touch” placement pol-
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Figure 1: Normalized exeCution times, for 64 processors

and 64-byte cache blocks.

icy. We then proceed to discuss why the more complicated
policies provide no additional performance benefits.

4.1 Dynamic Page Placement

In this section, we show that the “first reference” page
placement scheme can result in significant performanceim-
provements with respect to round-robin placement in both
hardware- and software-coherent systems. Figure 1 shows
the execution timefor each of the applicationsin our suite,
under each of the coherence systems. The times for each
application are normalized so that the hardware-coherent
system without dynamic placement is at 100%. For most
applications, placement improves performance by 20 to 40
percent, by allowing cache misses (and, secondarily, write-
backs) to happen locally.

The software and hardware coherence systems generally
exhibit comparabl e performance both with and without dy-
namic placement. Our applications exhibit coarse grained
sharing and therefore scale nicely under both coherence
schemes. The principal exception isnp3d, which requires
several modificationsto work well on a software coherent
system [9]. These modifications were not applied to the
code in these experiments.

Figure 2 showsthe percentage of cachemissesand write-
backs that occur on pages that are local after migration.
Without dynamic placement, the applications in our suite
satisfy lessthan two percent of their misseslocally, aswould
be expected from round-robin placement on 64 processors.
Dynamic placement allows35to 75 percent of cache misses
and 50 to 100 percent of writebacksto be satisfied locally.

Figure 3 showstheaverage cachefill timefor each appli-
cation under both hardware and software coherence. Dy-
namic page placement reduces the average fill time by 20
to 40 percent for the hardware coherent system, and 30 to
50 percent for the software coherent system.
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Figure 2: Local cache Ivity, for 64 processors and 64-
byte cache blocks.

Myri d and sor are statically block-scheduled, and ex-
hibit pair-wisesharing. They obtainabenefit fromdynamic
placement even for cache fills and writebacks that are not
satisfied locally, because neighborsin the block-scheduled
codetendto be physically close to one another in the mesh-
based interconnection network.

In most cases, the eager hardware-coherent system ben-
efits more from dynamic placement than does the lazy
software-coherent system. Our hardware-coherent system
sends invalidation messages immediately at the time of a
write, and waits for acknowledgments when a lock is re-
leased. The software system sendswrite noticesat thetime
of arelease, and invalidates written blocks at the time of
an acquire. As aresult, the hardware system incurs more
misses caused by false sharing, and therefore exhibits a
dightly higher miss rate. Thus, any reduction in the av-
erage cost of a miss has a greater impact on the hardware
system'’s performance.

Our placement strategy workswell for avariety of cache
block sizes. Figure 4 shows the performance of the hard-
ware systen? for block sizes ranging from 16 to 256 bytes.
Each bar represents the execution time of an application for
aparticular block size; the height of the bar isthe execution
timewith dynamic placement relativeto the execution time
without it for the same block size. For example, dynamic
page placement provides more performance gainsfor sor
when the cache blocks are small. For programs with good
spatial locality, such as sor and wat er, increasing the
block size decreases the miss rate, reducing the relative
performance gain.

For small block sizes, cold-start misses are significant,
as are evictions if the working set size is greater than the
cache size. Dynamic placement speeds up col d-start misses

2Similar results (not shown here) were obtained for the software
system.



400

—_
(=3
T

N

9

0

gl Hi

g ] HW+plac
B ool ] _ || Sw
=10 | | B SWeec
0

0

g

0

>

¢

0 .
_ S01 appbt  mgrid  water  mpdd
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cache blocks.

by making oneblock transfer over the network and then per-
forming the misses locally. Eviction misses always access
blocks that were previoudy accessed; if the page contain-
ing those blocks is moved to the local memory, the misses
can be serviced significantly faster. Thisis most effective
if thelocal processor will perform more cache fills on the
pagethan any other processor. Large cache blocksamortize
the latency of a miss over a large amount of data, but are
more likely to suffer from false sharing and evictions. For
programs with good spatia locality, fetching large blocks
reduces the miss rate but increases the cost of amiss. The
missrate isthe dominant effect, making large cache blocks
anet win, but theincreased cost of misses mitigatesthisto
some extent, so dynamic placement remains worthwhile.

4.2 PageMigration and Replication

Though dynamic placement provides a significant per-
formance gain for many applications, it seemed likely that
the reference behavior of some programs may vary signif-
icantly during execution. Therefore we provided an exe-
cutable “phase change’ annotation which indicates to the
operating system or runtime that the program behavior has
changed. In our simulations, the runtime system uses this
asasigna to discard all placement decisionsand allow the
pages to migrate to another processor.

Most of our applicationsdo not have well-defined phase
changes. The exceptionisngr i d, because its access pat-
tern changes as the grid size changes. Adding the phase
change annotation was simple, involving only two lines of
code. However, dynamic migration did not improve the
performance of ngr i d; infact, it reduced the performance
by 13 percent. This is due to the fact that in ngri d,
each phase uses eight times as much data as the previous
(smaller) phase. Therefore datalocality isprimarily deter-
mined by the last phase. The cost of migrating pages to
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sizes under hardware coherence.

loca memory for the smaller phases, and migrating them
again for larger phases, exceeds the cost of performing
remote cache fills for the smaller phases.

We haved so investigated several policiesfor replicating
pages of data. These are:

e Timepolicy: if apage remains mapped for n cycles,
copy it to loca memory the next timeit is mapped.

e Counter policy: if n cache fills are performed on a
pagebeforeitisunmapped, copy ittolocal memory the
next time it is mapped. This requires some hardware
support.

o Counter-interrupt policy: if n cache fills have been
performed on apage sinceit was mapped, copy ittolo-
ca memory immediately. Thisalso requireshardware
support.

For our simulations, we selected several applications
which we believed would be most likely to benefit from
replication. For these applications, the policy which per-
formed best was the counter policy. Figure 5 shows the
relative performance of our applications with page repli-
cation. SOR is the only program for which we found a
significant performance gain from replication (13%).

Webelievethat thefailureof replicationisaresult of the
sharing patterns exhibited by our applications. In particu-
lar, many replicated pages tended to be accessed very little
before being written again by another processor, invalidat-
ing the copy. Even assuming high network and memory
bandwidths (1 word per cycle), the high cost of replicating
those pages caused performance degradation. Additionally,
thereference patternsof someapplicationsmay containfre-
guent writes, which will not allow very many pages to be
replicated. Replication may still be useful if it islimited to
data structures that are mostly read, such as lookup tables
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written only during initiaization. We are considering the
use of program annotationsto identify such data.

5 Conclusions

We have studied the performance impact of simple
behavior-driven page placement policies under both hard-
ware and software cache coherence. We find that for ap-
plications whose working sets do not fit entirely in cache,
dynamic page placement provides substantial performance
benefits, by allowing capacity misses to be serviced from
loca memory, thus incurring reduced miss penalties. We
have al so shown that avery simplepolicy sufficesto achieve
good results and that complicated hardware is not required
indevising an effective page placement strategy. Finally we
have investigated the performance impact of dynamic page
migration and page replication on cache coherent multipro-
cessors but found no performance benefits for our applica-
tion suite. We believe that the reference pattern favoring
replicationis uncommon in scientific applications, and that
dynamic placement suffices to improve the miss penalties
of the applicationsthat run on these machines.
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