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Abstract

The cost of a cache miss depends heavily on the loca-
tion of the main memory that backs the missing line. For
certain applications, this cost is a major factor in overall
performance. We report on the utility of OS-based page
placement as a mechanism to increase the frequency with
which cache fills access local memory in distributed shared
memory multiprocessors. Even with the very simple pol-
icy of first-use placement, we find significant improvements
over round-robin placement for many applications on both
hardware- and software-coherent systems. For most of our
applications, first-use placement allows 35 to 75 percent
of cache fills to be performed locally, resulting in per-
formance improvements of up to 40 percent with respect
to round-robin placement. We were surprised to find no
performance advantage in more sophisticated policies, in-
cluding page migration and page replication. In fact, in
many cases the performance of our applications suffered
under these policies.

1 Introduction

Most modern processors use caches to hide the growing
disparity between processor and memory (DRAM) speeds.
On a uniprocessor, the effectiveness of a cache depends pri-
marily on the hit rate, which in turn depends on such factors
as cache and working set sizes, the amount of temporal and
spatial locality in the reference stream, the degree of asso-
ciativity in the cache, and the cache replacement policy.

Two additional factors come into play on a multipro-
cessor. First, we need a coherence protocol to ensure that
processors do not access stale copies of data that have been
modified elsewhere. Coherence is required for correct-
ness, but may reduce the hit rate (by invalidating lines in
some caches when they are modified in others), and can in-
crease the cost of both hits and misses, by introducing extra
logic into the cache lookup algorithm. Second, because�This work was supported in part by NSF Institutional Infrastructure
grant no. CDA-8822724 and ONR research grant no. N00014-92-J-1801
(in conjunction with the ARPA Research in Information Science and
Technology—High Performance Computing, Software Science and Tech-
nology program, ARPA Order no. 8930).

large-scale machines generally distribute physical memory
among the nodes of the system, the cost of a cache miss
can vary substantially, even without coherence overhead.

Minimizing the cost of coherence is arguably the most
difficult task faced by the designers of large-scale multi-
processors. Given a good coherence protocol, however,
the placement of data in the distributed main memory may
still have a significant impact on performance, because it
affects the cost of cache misses. A substantial body of re-
search has addressed the development of good coherence
protocols. This paper addresses the main-memory place-
ment problem. We focus our attention on behavior-driven
OS-level movement of pages between processors. We limit
our consideration to the class of machines in which each
physical memory address has a fixed physical location (its
home node), and in which the hardware cache controllers
are capable of filling misses from remote locations.

Ideally, the compiler for a parallel language would deter-
mine the best location for each datum at each point in time.
Most current compilers, however, employ a programmer-
specified data distribution (e.g. as in HPF [12]). More-
over, there will always be important programs for which
reference patterns cannot be determined at compile time,
e.g. because they depend on input data [13]. Even when
compile-time placement is feasible, it still seems possible
that OS-level placement will offer a simpler, acceptable
solution. Current distributed shared memory systems use
ad-hoc policies for placing shared pages in memory. For
example on the Alewife multiprocessor data is placed in
the memory module of the processor making the allocation
call, while on DASH pages of shared data are scattered
either randomly or in round-robin fashion [11].

Our work shows that we can achieve effective initial page
placement with no hardware support other than the standard
address translation and page fault mechanisms, and with
coherence maintained either in hardware (on a CC-NUMA
machine) or in kernel-level software (on a non-coherent
NUMA machine). We also evaluate dynamic page migra-
tion and page replication (with invalidations for coherence)
in an attempt to adapt to changes in program reference pat-
terns, but observe little or no performance benefit and often
a performance loss for our application suite.
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2 Related Work

Page migration and replication have been used on cache-
less NUMA multiprocessors in order to take advantage of
the lower cost of accessing local memory instead of remote
memory [3, 5, 10]. By using efficient block-transfer hard-
ware to transfer page-size blocks, these “NUMA memory
management” systems reduce the average cost per refer-
ence. This paper addresses the question of whether sim-
ilar policies are still effective on machines with coherent
caches.

Cache-coherent shared memory multiprocessors fall
into two basic categories, termed CC-NUMA (cache co-
herent, non-uniform memory access) and COMA (cache
only memory architecture). CC-NUMA machines include
the Stanford DASH [11], the MIT Alewife [1], and the Con-
vex SPP-1000, based on the IEEE Scalable Coherent In-
terface standard [7]. COMA machines include the Kendall
Square KSR 1 and the Swedish Data Diffusion Machine
(DDM) [6]. COMA machines organize main memory as
a large secondary or tertiary cache, giving them a per-
formance advantage over CC-NUMA machines when it
comes to servicing capacity and conflict cache misses. Past
work [15] has shown, however, that with additional hard-
ware, or programmer and compiler intervention, data pages
on a CC-NUMA machine can be migrated to the nodes
that would miss on them the most, achieving performance
comparable to that of COMA machines, at lower hardware
cost. Our approach is applicable to both NUMA machines
with non-coherent caches and CC-NUMA machines, and
requires little or no special hardware.

Chandra et. al. have independently studied migration in
the context of coherence [4]. They simulated several migra-
tion policies based on counting cache misses and/or TLB
misses; some of the policies allowed a page to move only
once; others permitted multiple migrations. One of their
policies (single move on the first cache miss) is similar
to our placement policy. They also found that a single-
move policy can cause many cache misses to be performed
locally, though our results are not directly comparable be-
cause we used different applications. We extend their work
by considering replication strategies, as well as investigat-
ing the effects of placement on both eager (hardware) and
lazy (software) coherent systems.

3 Algorithms and Methodology

3.1 Simulation Infrastructure

We use execution driven simulation to simulate a mesh-
connected multiprocessor with up to 64 nodes. Our simu-
lator consists of two parts: a front end, Mint [16], which
simulates the execution of the processors, and a back end

System Constant Name Default Value
TLB size 128 entries
TLB fill time 100 cycles
Interrupt (page fault) cost 140 cycles
Page table modification 320 cycles
Memory latency 12 cycles
Memory bandwidth 1 word / 4 cycles
Page size 4K bytes
Total cache per processor 16K bytes
Cache line size 64 bytes
Network path width 16 bits (bidirectional)
Link latency 2 cycles
Routing time 4 cycles
Directory lookup cost 10 cycles
Cache purge time 1 cycle/line
Page move time approx. 4300 cycles

Table 1: Default values for system parameters, assuming a
100-MHz processor.

that simulates the memory system. The front end calls the
back end on every data reference (instruction fetches are
assumed to always be cache hits). The back end decides
which processors block waiting for memory and which
continue execution. Since the decision is made on-line,
the back end affects the timing of the front end, so that
the control flow of the application, and the interleaving of
instructions across processors, can depend on the behavior
of the memory system.

The front end implements the MIPS II instruction set.
Interchangeable modules in the back end allow us to ex-
plore the design space of software and hardware coherence.
Our hardware-coherent modules are quite detailed, with
finite-size caches, write buffers, full protocol emulation,
distance-dependent network delays, and memory access
costs (including memory contention). Our simulator is ca-
pable of capturing contention within the network, but only
at a substantial cost in execution time; the results reported
here model network contention at the sending and receiv-
ing nodes of a message, but not at the intermediate nodes.
Our software-coherent modules add a detailed simulation
of TLB behavior. To avoid the complexities of instruction-
level simulation of interrupt handlers, we assume a constant
overhead for page fault interrupt handling. We have cho-
sen to simulate small caches in order to capture the impact
of eviction misses. Page placement becomes significantly
more important when an application’s working set does not
fit in the cache. In such situations careful page placement
can turn main memory into a large tertiary cache, signifi-
cantly improving program performance. Table 1 summa-
rizes the default parameters used in our simulations.



The CC-NUMA machine uses the directory-based write-
invalidate coherence protocol of the Stanford DASH ma-
chine. Our software-coherent NUMA machine uses a more
complicated, multi-writer protocol [9]. This protocol em-
ploys a variant of lazy release consistency [8], in which
invalidation messages are sent only at synchronization re-
lease points, and processed (locally) only at synchroniza-
tion acquire points. At an acquire, a processor is required
to flush from its own cache all lines of all pages that have
been modified by any other processor since the current pro-
cessor’s last acquire. It is also required to unmap the page,
so that future accesses will generate a page fault. At a re-
lease, a process is required to write back all dirty words in
its cache.1 To allow a processor to determine which pages
to un-map (and flush the corresponding cache lines) on an
acquire, we maintain a distributed weak list of pages for
which out-of-date cached copies may exist. When a pro-
cessor first accesses a page (or accesses it for the first time
after un-mapping it), the handler for the resulting page fault
adds the page to the processor’s page table and communi-
cates with the page’s home node to update a list of sharing
processors. If the only previously-existing mapping had
read-write permissions, or if the current fault was a write
fault and all previously-existing mappings were read-only,
then the page is added to the weak list.

3.2 Page Placement Mechanisms

The changes required to add page placement to both the
hardware and software coherence protocols were straight-
forward. The basic idea is that the first processor to touch
a given page of shared memory becomes that page’s home
node. To deal with the common case in which one processor
initializes all of shared memory before parallel computation
begins, we created an executable “done with initialization”
annotation that programmers can call at the point at which
the system should begin to migrate (place) pages. In an-
ticipation of programs in which the pattern of accesses to
shared memory might undergo a major change in the middle
of execution, we also created a “phase change” annotation
that programmers could call when the system should re-
evaluate its placement decisions.

At the beginning of execution, shared memory pages are
unmapped (this was already true for the software protocol,
but not for the hardware one). The first processor to suffer
a page fault on a page (or the first one after initialization
or a phase change) becomes the page’s home node. That
processor requests the page from the current home, then
blocks until the page arrives.

Ideally, one would want to place a page on the processor

1Because there may be multiple dirty copies of a given line, non-dirty
words must not be written back. To distinguish the dirty words, we assume
that the cache includes per-word dirty bits.

that will suffer the most cache misses for that page. Unfor-
tunately, this is not possible without future knowledge, so
we place a page based on its past behavior. We simulated a
policy, based on extra hardware, in which the first proces-
sor to perform n cache fills on a page becomes the page’s
home node, but found no significant improvement over the
“first reference” policy. The first reference policy does not
attempt to determine which processor uses a page the most,
but does ensure that no processor is home to pages that it
does not use.

3.3 Application Suite

Our application suite consists of five programs. Two
(sor and mgrid) are locally-written kernels. The others
(mp3d, appbt, and water) are full applications.
SOR performs banded red-black successive over-

relaxation on a 640 � 640 grid to calculate the temperature
at each point of a flat rectangular panel. We simulated 10 it-
erations. Mgrid is a simplified shared-memory version of
the multigridkernel from the NAS Parallel Benchmarks [2].
It performs a more elaborate over-relaxation using multi-
grid techniques to compute an approximate solution to the
Poisson equation on the unit cube. We simulated 2 itera-
tions, with 5 relaxation steps on each grid, and grid sizes
from 64 � 64 � 32 down to 16� 16 � 8.
Mp3d is part of the SPLASH suite [14]. It simulates

rarefied fluid flow using a Monte Carlo algorithm. We
simulated 20,000 particles for 10 time steps. Water, also
from the SPLASH suite, simulates the evolutionof a system
of water molecules by numerically solving the Newtonian
equations of motion at each time step. We simulated 256
molecules for 5 time steps.
Appbt is from the NAS Parallel Benchmarks suite. It

computes an approximate solution to the Navier-Stokes
equations. We simulated a 16 � 16 � 16 grid for 5 time
steps.

These applications were chosen in order to encompass
various common caching and sharing behaviors. The input
sizes we chose, although small (due to simulation con-
straints), deliver reasonable scalability for most of our ap-
plications. We deliberately kept the cache sizes small, so
that the ratio between cache size and working set size would
be about the same as one would expect in a full-size machine
and problem. As we will show in the next section, most of
the applications exhibit behavior for which dynamic page
placement is beneficial.

4 Results

In this section we discuss results, starting with the per-
formance impact of the simple “first touch” placement pol-
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Figure 1: Normalized execution times, for 64 processors
and 64-byte cache blocks.

icy. We then proceed to discuss why the more complicated
policies provide no additional performance benefits.

4.1 Dynamic Page Placement

In this section, we show that the “first reference” page
placement scheme can result in significant performance im-
provements with respect to round-robin placement in both
hardware- and software-coherent systems. Figure 1 shows
the execution time for each of the applications in our suite,
under each of the coherence systems. The times for each
application are normalized so that the hardware-coherent
system without dynamic placement is at 100%. For most
applications, placement improves performance by 20 to 40
percent, by allowing cache misses (and, secondarily, write-
backs) to happen locally.

The software and hardware coherence systems generally
exhibit comparable performance both with and without dy-
namic placement. Our applications exhibit coarse grained
sharing and therefore scale nicely under both coherence
schemes. The principal exception is mp3d, which requires
several modifications to work well on a software coherent
system [9]. These modifications were not applied to the
code in these experiments.

Figure 2 shows the percentage of cache misses and write-
backs that occur on pages that are local after migration.
Without dynamic placement, the applications in our suite
satisfy less than two percent of their misses locally, as would
be expected from round-robin placement on 64 processors.
Dynamic placement allows 35 to 75 percent of cache misses
and 50 to 100 percent of writebacks to be satisfied locally.

Figure 3 shows the average cache fill time for each appli-
cation under both hardware and software coherence. Dy-
namic page placement reduces the average fill time by 20
to 40 percent for the hardware coherent system, and 30 to
50 percent for the software coherent system.

s o r  a p p b t m g r i d w a t e r m p 3 d 
0

20

40

60

80

100

L
o
c
a
l
 
o
p
e
r
a
t
i
o
n
s
 
(
%

)

SW−wbacks
HW−wbacks
SW−misses
HW−misses

Figure 2: Local cache activity, for 64 processors and 64-
byte cache blocks.

Mgrid and sor are statically block-scheduled, and ex-
hibit pair-wise sharing. They obtain a benefit from dynamic
placement even for cache fills and writebacks that are not
satisfied locally, because neighbors in the block-scheduled
code tend to be physically close to one another in the mesh-
based interconnection network.

In most cases, the eager hardware-coherent system ben-
efits more from dynamic placement than does the lazy
software-coherent system. Our hardware-coherent system
sends invalidation messages immediately at the time of a
write, and waits for acknowledgments when a lock is re-
leased. The software system sends write notices at the time
of a release, and invalidates written blocks at the time of
an acquire. As a result, the hardware system incurs more
misses caused by false sharing, and therefore exhibits a
slightly higher miss rate. Thus, any reduction in the av-
erage cost of a miss has a greater impact on the hardware
system’s performance.

Our placement strategy works well for a variety of cache
block sizes. Figure 4 shows the performance of the hard-
ware system2 for block sizes ranging from 16 to 256 bytes.
Each bar represents the execution time of an application for
a particular block size; the height of the bar is the execution
time with dynamic placement relative to the execution time
without it for the same block size. For example, dynamic
page placement provides more performance gains for sor
when the cache blocks are small. For programs with good
spatial locality, such as sor and water, increasing the
block size decreases the miss rate, reducing the relative
performance gain.

For small block sizes, cold-start misses are significant,
as are evictions if the working set size is greater than the
cache size. Dynamic placement speeds up cold-start misses

2Similar results (not shown here) were obtained for the software
system.
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Figure 3: Average fill time, for 64 processors and 64-byte
cache blocks.

by making one block transfer over the network and then per-
forming the misses locally. Eviction misses always access
blocks that were previously accessed; if the page contain-
ing those blocks is moved to the local memory, the misses
can be serviced significantly faster. This is most effective
if the local processor will perform more cache fills on the
page than any other processor. Large cache blocks amortize
the latency of a miss over a large amount of data, but are
more likely to suffer from false sharing and evictions. For
programs with good spatial locality, fetching large blocks
reduces the miss rate but increases the cost of a miss. The
miss rate is the dominant effect, making large cache blocks
a net win, but the increased cost of misses mitigates this to
some extent, so dynamic placement remains worthwhile.

4.2 Page Migration and Replication

Though dynamic placement provides a significant per-
formance gain for many applications, it seemed likely that
the reference behavior of some programs may vary signif-
icantly during execution. Therefore we provided an exe-
cutable “phase change” annotation which indicates to the
operating system or runtime that the program behavior has
changed. In our simulations, the runtime system uses this
as a signal to discard all placement decisions and allow the
pages to migrate to another processor.

Most of our applications do not have well-defined phase
changes. The exception is mgrid, because its access pat-
tern changes as the grid size changes. Adding the phase
change annotation was simple, involving only two lines of
code. However, dynamic migration did not improve the
performance of mgrid; in fact, it reduced the performance
by 13 percent. This is due to the fact that in mgrid,
each phase uses eight times as much data as the previous
(smaller) phase. Therefore data locality is primarily deter-
mined by the last phase. The cost of migrating pages to
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Figure 4: Normalized execution times for varying block
sizes under hardware coherence.

local memory for the smaller phases, and migrating them
again for larger phases, exceeds the cost of performing
remote cache fills for the smaller phases.

We have also investigated several policies for replicating
pages of data. These are:� Time policy: if a page remains mapped for n cycles,

copy it to local memory the next time it is mapped.� Counter policy: if n cache fills are performed on a
page before it is unmapped, copy it to local memory the
next time it is mapped. This requires some hardware
support.� Counter-interrupt policy: if n cache fills have been
performed on a page since it was mapped, copy it to lo-
cal memory immediately. This also requires hardware
support.

For our simulations, we selected several applications
which we believed would be most likely to benefit from
replication. For these applications, the policy which per-
formed best was the counter policy. Figure 5 shows the
relative performance of our applications with page repli-
cation. SOR is the only program for which we found a
significant performance gain from replication (13%).

We believe that the failure of replication is a result of the
sharing patterns exhibited by our applications. In particu-
lar, many replicated pages tended to be accessed very little
before being written again by another processor, invalidat-
ing the copy. Even assuming high network and memory
bandwidths (1 word per cycle), the high cost of replicating
those pages caused performance degradation. Additionally,
the reference patterns of some applications may contain fre-
quent writes, which will not allow very many pages to be
replicated. Replication may still be useful if it is limited to
data structures that are mostly read, such as lookup tables
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Figure 5: Execution times under software coherence with
page replication, as a percentage of time with first-use
placement only.

written only during initialization. We are considering the
use of program annotations to identify such data.

5 Conclusions

We have studied the performance impact of simple
behavior-driven page placement policies under both hard-
ware and software cache coherence. We find that for ap-
plications whose working sets do not fit entirely in cache,
dynamic page placement provides substantial performance
benefits, by allowing capacity misses to be serviced from
local memory, thus incurring reduced miss penalties. We
have also shown that a very simple policy suffices to achieve
good results and that complicated hardware is not required
in devising an effective page placement strategy. Finally we
have investigated the performance impact of dynamic page
migration and page replication on cache coherent multipro-
cessors but found no performance benefits for our applica-
tion suite. We believe that the reference pattern favoring
replication is uncommon in scientific applications, and that
dynamic placement suffices to improve the miss penalties
of the applications that run on these machines.
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