PPoPP '95

High Performance Synchronization Algorithms for Multiprogrammed

Multiprocessors

Robert W. Wisniewski, Leonidas I. Kontothanassis, and Michael L. Scott

Department of Computer Science
University of Rochester
Rochester, NY 14627-0226

{bob,kthanasi,scott}@cs.rochester.edu

Abstract

Scalable busy-wait synchronization algorithms are es-
sential for achieving good parallel program performance
on large scale multiprocessors. Such algorithms include
mutual exclusion locks, reader-writer locks, and bar-
rier synchronization. Unfortunately, scalable synchro-
nization algorithms are particularly sensitive to the ef-
fects of multiprogramming: their performance degrades
sharply when processors are shared among different ap-
plications, or even among processes of the same applica-
tion. In this paper we describe the design and evaluation
of scalable scheduler-conscious mutual exclusion locks,
reader-writer locks, and barriers, and show that by shar-
ing information across the kernel/application interface
we can improve the performance of scheduler-oblivious
implementations by more than an order of magnitude.

1 Introduction

This work was supported in part by National Science Foun-
dation grants numbers CCR-~9319445 and CDA-8822724, by ONR
contract number N00014-92-J-1801 (in conjunction with the
ARPA Research in Information Science and Technology-High
Performance Computing, Software Science and Technical pro-
gram, ARPA Order no. 8930), and by ARPA research grant no.
MDA972-92-J-1012. Robert Wisniewski was supported in part
by an ARPA Fellowship in High Performance Computing admin-
istered by the Institute for Advanced Computer Studies, Univer-
sity of Maryland. Experimental results were obtained in part
through use of resources at the Cornell Theory Center, which re-
ceives major funding from NSF and New York State; additional
funding comes from ARPA, the NIH, IBM Corporation, and other
members of the Center’s Corporate Research Institute. The Gov-
ernment has certain rights in this material.

Most busy-wait synchronization algorithms assume a
dedicated machine with one process per processor. The
introduction of multiprogramming can cause severe per-
formance degradation for these algorithms, especially
for the variants designed to scale well on dedicated ma-
chines. Performance degrades in the presence of multi-
programming under the following circumstances:

e A process is preempted while holding a lock.
This situation arises in both mutual exclusion and
reader-writer locks when a process is preempted in
its critical section. It has been addressed by several
researchers [2, 4, 7, 15].

e A process is preempted while waiting for a lock and
then is handed the lock while still preempted. This
situation can arise in locks that enforce a predeter-
mined ordering, either for the sake of fairness or to
minimize contention on large-scale machines [21].

e A process spins waiting for its peers when some
of them are preempted. This situation arises
with locks, but is satisfactorily addressed by tech-
niques that choose dynamically between spinning
and yielding, based on observed lengths of critical
sections [9]. A more severe version of the problem
occurs with barriers, where the decision between
spinning and yielding needs to be based not on
critical section lengths, but on whether there are
preempted processes that have not yet reached the
barrier [10]. Scalable barriers exacerbate the prob-
lem by requiring portions of the barrier code in dif-
ferent processes to be interleaved in a deterministic
order—an order that may conflict with the schedul-
ing policy on a multiprogrammed processor, leading
to an unreasonable number of context switches [14].

We have developed a simple set of mechanisms to
handle synchronization difficulties arising from multi-
programming. The key idea is to share information

mls
PPoPP '95

across the application-kernel interface in order to elimi-
nate the sources of overhead mentioned above. Specifi-
cally, the kernel exports the number of processors in the
partition,! the state of each application process, and the
identities of the processes on each processor. Each pro-
cess indicates when it is performing critical operations
and should not be preempted. Critical operations in-
clude portions of the synchronization algorithms them-
selves, and the critical sections protected by locks. Plac-
ing limits on when the kernel honors a request for dis-
abling preemption allows the kernel to maintain control
of the processor.

In previous work we used the concept of ker-
nel/application information sharing to design small-
scale scheduler-conscious barriers [10] and scalable
scheduler-conscious locks [21] for multiprogrammed ma-
chines. In this paper we extend this work to encompass
three important busy-wait synchronization algorithms
that have not previously been addressed. Specifically
we provide algorithms for:

1. A mutual-exclusion ticket lock. The ticket lock
has lower overhead than a queued lock in the ab-
sence of contention, and scales almost as well when
equipped with proportional backoff. It has constant
space requirements and is fairer than a test-and-set
lock. For multiprogrammed, large scale multipro-
cessors our results indicate that the ticket lock is
the best-performing software mutual exclusion al-
gorithm.

2. A queue-based reader-writer lock. The version pre-
sented in this paper provides fair service to both
readers and writers. Versions that give preference
to readers or to writers can also be devised using
the same kernel interface.

3. A scalable tree-based barrier. This algorithm em-
ploys a centralized barrier within a processor and
a tree barrier across processors. QOur code uses
kernel-provided information to identify the bor-
der between the centralized and tree portions of
the barrier, to decide between spinning and block-
ing for the centralized portion, and to re-organize
the barrier data structures when processors are re-
partitioned among applications.

The rest of the paper is organized as follows. Section 2
discusses related work. We describe our scheduler-
conscious algorithms in section 3. Section 4 discusses
performance results. Conclusions appear in section 5.

LOur barrier algorithm assumes that processors are partitioned
among applications (i.e. that each processor is dedicated to a
particular application), as suggested by several recent studies [6,
13, 22, 20]. Our lock algorithms work in a more general, time-
shared setting; for them, the current “partition” is simply the set
of processors on which the application’s processes are running (or
ran last if not currently running).

2 Related Work

Mutual exclusion algorithms in which many processes
spin on the same location can incur large amounts of
contention on scalable multiprocessors, degrading par-
allel program performance. Several researchers [1, 8, 16]
have observed that the key to good performance is to
minimize active sharing by spinning on local locations.
Similar approaches have been adopted for more com-
plex synchronization primitives, including barriers [16]
and reader-writer locks [12, 17].

The efficiency of synchronization primitives depends
in large part on the scheduling discipline used by the
operating system. A growing body of evidence [6, 13,
20, 22] suggests that throughput is maximized by parti-
tioning processors among applications. Unfortunately,
if an application receives fewer processors than it has
processes, the resulting multiprogramming can degrade
performance by allowing processes to spin while their
peers could be doing useful work. Several researchers
have shown how to avoid preempting a process that
holds a lock [7, 15], or to recover from such preemption if
it occurs [2, 4]. Others have shown how to guess whether
a lock is going to be held long enough that it makes
sense to yield the processor, rather than busy-wait for
access [9, 18, 23]. In previous work we have shown
how to make an optimal decision between spinning and
yielding in a small-scale centralized barrier [10]. We
have also shown how to maintain good performance in a
multiprogrammed environment for queue-based mutual-
exclusion locks [21]. Other researchers [5, 19] have
shown how to extend our work to real-time environ-
ments.

As noted in the introduction, scalable synchroniza-
tion algorithms are particularly susceptible to scheduler-
induced performance problems on multiprogrammed
machines. They may give locks to preempted processes,
spin at a barrier that has not yet been reached by a pre-
empted peer, or force the scheduler through unnecessary
context switches. Techniques that avoid or recover from
preemption in critical sections, or that make spin ver-
sus yield decisions based on estimated critical section
lengths do not address these problems.

3 Algorithms

In this section we present three scalable synchronization
algorithms that perform well in the presence of multi-
programming. The first is a mutual-exclusion ticket lock
that uses handshaking to detect preempted waiting pro-
cesses and avoid giving them the lock. The second is a
scheduler-conscious fair reader-writer lock based on the
scheduler-oblivious code of Krieger, Stumm, and Un-
rau [12]. The third is a scheduler-conscious tree bar-
rier. It incorporates our counter-based barrier [10] into

a two-level barrier scheme, and adjusts dynamically to
the available number of processors in an application’s
partition. Two-level barriers employ a single counter
on each processor, and a scalable barrier between pro-
cessors. They were originally proposed by Axelrod [3]
to minimize requirements for locks; Markatos et al. [14]
first suggested their use to minimize overhead on mul-
tiprogrammed systems.

The ability to perform well in the presence of multi-
programming is a combination of intelligent algorithms
and extensions to the kernel interface. We have ex-
tended the kernel interface in three ways:

1. The kernel and application cooperate to maintain
a state variable for each process. This variable can
have one of four values: preemptable, preempted,
self unpreemptable, and other unpreemptable.
Preemptable indicates that the process is run-
ning, but that the kernel is free to preempt
it. Preempted indicates that the kernel has pre-
empted the process. Self unpreemptable and
other_unpreemptable indicate that the process is
running and should not be preempted. The kernel
honors this request whenever possible, deducting
any time it adds to the end of the current quan-
tum from the beginning of the next. A process
changes its state to self _unpreemptable before it
attempts to execute critical-section code. Its peers
can change its state to other_unpreemptable when
handing it a lock. Synchronization algorithms can
inspect the state variable to avoid such things
as passing a lock to a preempted process. Most
changes to the state variable are valid only for a
particular previous value (e.g. user-level code can-
not change a state variable from preempted to any-
thing else). To enforce this requirement, changes
are made with an atomic compare,and,store2 in-
struction.

2. The kernel and application also cooperate to main-
tain a per-process Boolean flag. The kernel sets the
flag whenever it wants to preempt the process, but
honors a request not to do so. Upon exiting a crit-
ical section, the application should change its state
variable to preemptable and then voluntarily yield
the processor if the Boolean flag is set. (The kernel
clears the flag whenever the process stops running.)
These conventions suffice to avoid preemption dur-
ing a critical section, provided that critical sections
take less than one quantum to execute.

3. The kernel maintains a data structure that indi-
cates the number of processors available to the ap-

2Compare_and_store (location,expected_value,new_value)
inspects the contents of the specified location and, if they match
the expected value, overwrites them with the new value. It returns
a status code indicating whether the overwrite occurred.

plication, the number of processes being scheduled
on each processor, and the processor on which each
process is running or is scheduled to run. It also
maintains a generation count for the application’s
partition. The kernel increments this count each
time it changes the allocation of processes to pro-
CESSOors.

Extensions (1) and (2) are based in part on ideas
introduced in Symunix [7], and described in our work
on queued locks [21]. Extension (3) is a generalization
of the interface described in our work on small-scale
scheduler-conscious barriers [10]. None of these exten-
sions requires the kernel to maintain information that it
does not already have available in its internal data struc-
tures. Furthermore, the kernel requires no knowledge of
the particular synchronization algorithm(s) being used
by the application, and does not need to access any
user-level code or data structures. Although we have
run our experiments in user space as described in sec-
tion 4, a kernel-level implementation of our ideas would
not be hard to build.

The rest of this section describes the scheduler-
conscious synchronization algorithms in more de-
tail. Pseudocode for these algorithms can be found
in a technical report [11] (it is omitted here to
save space). C code for all algorithms is avail-
able via anonymous ftp from cs.rochester.edu in
directory /pub/packages/sched_conscious_synch file
multiprogramming-sync-code.tar.Z.

3.1 Ticket Lock

The basic idea of the ticket lock is reminiscent of
the “please take a number” and “now serving” signs
found at customer service counters. When a pro-
cess wishes to acquire the lock it performs an atomic
fetch_and_increment on a “next available number”
variable. It then spins until a “now serving” variable
matches the value returned by the atomic instruction.
To avoid contention on large-scale machines, a process
should wait between reads of the “now serving” variable
for a period of time proportional to the difference be-
tween the last read value and the value returned by the
fetch and_increment of the “next available number”
variable. To release the lock, a process increments the
“now serving” variable.

The scheduler-conscious version of the ticket lock is
implemented using a handshaking technique to ensure
that the releaser and acquirer agree that the lock has
passed from one to the other. After incrementing the
“now serving” flag, the releaser waits for confirmation
from the acquirer. If that confirmation does not arrive
within a certain amount of time, it withdraws its grant
of the lock, and re-increments the “now serving” flag in
an attempt to find another acquirer.

For nested locks we need to make sure that releas-
ing the inner lock does not reset the state variable to
preemptable. We can achieve this by keeping track of
the nest depth and clearing the state variable only when
we release the outermost lock.

3.2 Reader-Writer Lock

Our scheduler-conscious reader-writer lock is fair in that
it gives equal preference to both readers and writers.
The algorithm uses the first two kernel extensions.

When a process attempts to acquire a lock it inserts
itself into a doubly-linked queue. If the process at the
tail of the queue is an active reader and the new process
is also a reader, then the newcomer may continue; oth-
erwise it will need to spin, on a local location, waiting
for its predecessor to indicate that it may go.

When releasing the lock, a process removes itself from
the queue. It then checks to see whether its successor
is preempted. If a process finds that its successor is
preempted, it links that successor out of the queue and
sets a flag in the successor’s queue record indicating that
it needs to retry the lock when it wakes up.

To avoid race conditions when manipulating queue
links, processes acquire and release mutual exclusion
locks in the individual queue records. Because these are
test_and_set locks in our code, they may lead to spinning
on non-local locations on a non-cache-coherent machine.
We could replace them with locks that spin only on local
locations, but performance would suffer: the expected
level of contention is low enough that minimum critical
path lengths (especially in the expected case in which
preemption does not occur) are the overriding concern.
Nesting of reader-writer locks is handled in the same
way as with the ticket-lock.

3.3 Scalable Barrier

Our scalable scheduler-conscious barrier uses the third
kernel extension. Processes running on the same pro-
cessor use the small-scale scheduler-conscious barrier
described in previous work [10] to coordinate among
themselves, spinning or yielding as appropriate. The
last process arriving at the barrier on a given proces-
sor becomes the unique representative of that proces-
sor. In steady state (no re-partitioning), representative
processes then participate in a scalable tree barrier [16].

In response to re-partioning in a dynamic multipro-
grammed environment, the barrier goes through a data
structure reorganization phase that allows it to main-
tain a single representative process per processor. This
is accomplished using the partition generation counter
provided by the kernel. We shadow this counter with
a counter that belongs to the barrier. The process at
the root of the inter-processor barrier tree checks the

barrier generation counter against the partition gen-
eration counter. If the two counters are found to be
different, processes go through a representative elec-
tion phase based on the number of available processors.
The elected representatives then go through a barrier
reorganization phase, setting up tree pointers appro-
priately. This approach has the property that barrier
data structures can be reorganized only at a barrier de-
parture point. As a result, processes may go through
one episode of the barrier using outdated information.
While this does not affect correctness it could have an
impact on performance. If re-partitioning were an ex-
tremely frequent event, then processes would use old
information too often and performance would suffer.
However, it is unlikely that re-partitioning would oc-
cur more than a couple times per second on a large,
high-performance machine.

4 Experiments and Results

We have tested our algorithms on a 12 processor Silicon
Graphics Challenge and a 64 processor Kendall Square
KSR 1 using both synthetic and real applications.? We
have used the synthetic applications to thoroughly ex-
plore the parameter space, and the real applications to
verify results and to measure the impact of ordinary
(non-synchronization) references. Our results indicate
that scheduler-oblivious algorithms suffer severe perfor-
mance degradation when used in a multiprogrammed
environment, and that the scheduler-conscious algo-
rithms eliminate this problem without introducing sig-
nificant overhead when used on a dedicated machine.
Due to lack of space we have omitted graphs with the
SGI results. A more thorough description of all the
results can be found in a technical report [11]. The
SGI graphs resemble the KSR graphs in terms of the
comparison between scheduler-conscious and scheduler-
oblivious algorithms, but favor centralized algorithms
over the scalable alternatives, because the small num-
ber of processors reduces the level of contention.

Our synchronization algorithms require atomic oper-
ations not available on the SGI or KSR machines. We
implemented a software version of these atomic instruc-
tions using the native spinlocks. This approach is ac-
ceptable (does not induce contention) as long as the
time between high-level synchronization operations is
significantly longer than the time spent simulating the
execution of the atomic instruction. Since this is true
for our experiments, our results are very close to what
would be achieved with hardware fetch_and_$ instruc-
tions.

3No application that uses reader-writer locks and exhibits a
high degree of contention was available to us, so our reader-writer
results all use a synthetic application.

Secs T T T T T T T T T T
Ticket

150 ||]
" TAS-B .
L e B Smart-Q

100 N TAS.Bnp
LS G O

Native-np

1 12 14 16 18 2 22 24 26 28 3
multiprogramming level

Figure 1: Varying multiprogramming level on a 63-
processor KSR 1.

Smart-Q
Ticket-np
Ticket
TAS-B-np
TAS-B |

~2m

Native-np |/
Native

Figure 3: Completion time (in seconds) for
Cholesky on the KSR 1.

The multiprogramming level reported in the exper-
iments indicates the average number of processes per
processor. A multiprogramming level of 1.0 indicates
one process on each processor. Fractional multipro-
gramming levels indicate additional processes on some,
but not all, processors. For the lock-based experiments,
one process per processor belongs to the tested appli-
cation and the others are dummy processes assumed to
belong to another application. For the barrier-based
experiments, all the processes belong to the applica-
tion, and participate in all the barriers. The princi-
pal reason for the difference in methodology for experi-
ments with the two types of synchronization is that for
lock-based applications we were principally concerned
about processes being preempted while holding a critical
resource, while for barrier-based applications we were
principally concerned about processes wasting processor
resources while their peers could be doing useful work.
Our lock algorithms are designed to work in any mul-
tiprogrammed environment; the barrier assumes that

secs — , : , : ;
;Ticket .
100 |} ! A
| as
80 I Smart-%:,_.;r_.- J
i ‘___,."5?(:: ‘
60 | TASE e
4t o 1
; .8 np
20
oo -
¥

10 20 30 40 50 60
number of processors

Figure 2: Varying the number of processors on the
KSR 1.

Uiiiisiibiisisibibsibbime >10m

\

Smart-Q
Ticket-np
Ticket
TAS-B-np
TAS-B

Native-np
Native

0 20 40 60 80 100

Figure 4: Completion time (in seconds) for
quicksort on the KSR 1.

processors are partitioned among applications.

In all the experiments, an additional processor (be-
yond the reported number) is dedicated to running a
user-level scheduler. For the lock experiments, each ap-
plication process has its own processor. Preemption is
simulated by sending a user-defined signal to the pro-
cess. The process catches this signal and jumps to a
handler where it spins waiting for the scheduler process
to indicate that it can return to executing application
code. In the barrier environment there can be multiple
application processes per processor. The scheduler uses
primitives provided by the operating system to move
processes to specific processors, or to make processors
unavailable for process execution.

Processes in the lock-based synthetic programs exe-
cute a loop containing critical and non-critical sections.
For the experiments presented in this paper, we ran 5000
iterations of the loop for a total of 5000 x 63 = 315000
lock acquisition and release pairs. Critical to non-
critical section work ratio is set to be inversely propor-

secs ‘
RW-Queued ——

450 RW-Smart-Q -+-- 1
RW-TAS-B &

400 RW-TAS-B-np x|

RW-Native -&--- |

30 RW-Native-np -x-- .

300 P

250 S T

200 | y]

150 PR

100 1

50 S ot iy A =1

O 1 1 1 1 L

1 12 14 16 1 2 22 24 26 28 3
multiprogramming level

Figure 5: Varying the multiprogramming level on a
63-processor KSR 1.

tional to the number of processors. Scheduling quantum
was set to 50 ms on the KSR 1.

Figure 1 compares the performance of the scheduler-
conscious ticket lock (Ticket-np) to that of sev-
eral other locks on a 63-processor KSR 1 as the
multiprogramming level increases. Figure 2 presents
the analogous results for varying numbers of proces-
sors. The other locks include a plain (scheduler-
oblivious) ticket lock (with proportional backoff)
(Ticket), our scheduler-conscious queue-based lock
(Smart-Q) [21], and both scheduler-conscious (TAS-
B-np) and scheduler-oblivious (TAS-B) versions of a
test_and_set lock with exponential backoff. We also
include results for the native (hardware-implemented)
spinlock (Native) and a modified version of the na-
tive lock that avoids preemption in the critical section
(Native-np). The scheduler-conscious ticket lock pro-
vides performance improvements of more than an order
of magnitude over the scheduler-oblivious version. Fur-
thermore it is the best software lock for almost all multi-
programming levels. The ticket lock provides good tol-
erance for contention with modest overhead, properties
that make it an ideal candidate for multiprogrammed
environments with a limited amount of contention. Sim-
ilar results were obtained for the real applications. Fig-
ures 3 and 4 show the execution time for Cholesky fac-
torization for the bcsstk15 matrix and a parallel ver-
sion of quicksort for 2 million integers on a 63-processor
KSR 1 with a multiprogramming level of 2.0.

Similar results to those obtained for mutual ex-
clusion were seen in our experiments with reader-
writer locks. We present results for a scheduler-
conscious queue-based reader-writer lock (RW-Smart-
Q), a scheduler-oblivious, queue-based reader-writer
lock (RW-Queued), a preemption-safe centralized

secs
| RW-Queued —— |
450 RW-Smart-Q -+
L RW-TAS-B -&- |
400 RW-TAS-B-np -
350 RW-Native -2--- -
RW-Native-np -x--
300 1
250 1
200 -
e
150 r 1
100 |))
50
0

10 20
number of processors

Figure 6: Varying the number of processors on the
KSR 1

reader-writer lock (RW-TAS-B-np), a preemption-
unsafe centralized reader-writer lock (RW-TAS-B),
and preemption-safe and unsafe version of the reader-
writer lock based on the native mutual exclusion lock
(RW-Native-np and RW-Native respectively).

We have modified the synthetic program in the
reader-writer locks to increase the amount of time spent
in the critical section. We expected that due to the
increased concurrency of readers, reader/writer locks
would experience less contention than mutual exclu-
sion locks. To our surprise we found that this was not
case. Contention in reader/writer locks is just as im-
portant as in mutual exclusion locks. Our scheduler-
conscious queued lock provides more than an order of
magnitude improvement over the naive queued lock and
is significantly better than the scheduler-conscious cen-
tralized (test_and_set based) version. The performance
of the different reader/writer lock implementations can
be seen in figures 5 and 6.

Processes in the barrier-based synthetic program ex-
ecute a loop containing a barrier. The amount of work
between barriers was chosen randomly in each process in
each iteration, and varies uniformly between 240 us and
290 ps. The scheduler re-partitions processors among
applications once per second. With probability 1/2 the
application is given all available processors. The other
half of the time it receives 1/2, 1/3, or 1/4 of the avail-
able processors, with equal probability. For the experi-
ments presented in this paper we timed 4000 iterations
of the loop.

Figure 7 shows the performance of a set of alterna-
tive barrier implementations as the number of proces-
sors increases. The multiprogramming level in this ex-
periment was set to 2.0. The four lines represent: (1)
a standard arrival tree barrier in which processes al-

secs : ‘ ‘ | |
el -
350 1| A
300 | R
0 — + R x |
50 4]
T | |

10 20 30 40 50 60
number of processors

Figure 7: Barrier performance on the KSR 1 for differ-
ent numbers of processors with a multiprogramming
level of 2.

ways spin (until preempted by the kernel scheduler)
(Arrival-tree); (2) a tree barrier that uses a simple
spin_then_block heuristic to avoid wasting a quantum
when there are preempted peers (Heuristic-tree); (3)
a centralized barrier in which processes always yield
the processor, rather than spin (Central-block); and
(4) our scheduler-conscious two-level barrier (Scalable-
SC). The first of these outperforms the others in the
absence of multiprogramming [16], but performs ter-
ribly with multiprogramming, because a process can
spin away the bulk of a scheduling quantum waiting
for a peer to reach the barrier, when that peer has
been preempted. The heuristic tree barrier improves
performance significantly but still suffers from the large
number of context switches that are required at every
barrier episode. The centralized blocking algorithm pro-
vides even better performance by decreasing the number
of context switches required at a barrier episode. Fi-
nally, the scheduler-conscious tree barrier provides the
best performance: it combines the minimum number of
context switches with the low contention and low (log-
arithmic) cost of the tree barrier. Experiments with a
real barrier-based application (Gaussian elimination on
a 640X640 matrix) confirm the observations obtained
from the synthetic program. Figure 8 shows the relative
performance of gauss on 64 processors and a multipro-
gramming level of two, for different barrier implemen-
tations.

We have also run experiments to study the impact
of scheduling decision frequency on the performance
of our barrier algorithms. When re-partitioning deci-
sions are extremely frequent, our scheduler-conscious
two-level barrier suffers significant performance degra-
dation, because processes frequently base the structure
of the inter-processor tree on out-of-date partition in-

. 777777777 777777777737 %//
Arrival-tree [// %/ | >3m
V777 //////////////7///////////// 7/ ¥l i’
L. %’ 7777777777777 7
Heuristic-tree / // |
V7777 /7 //// ///// i/ .’}
”/////////// //7//// 777 ////%
Central bIOCk ?7/////////////////////%
calable- g////////////////////////%
i T T T T 1
0 10 20 30 40 50

time in secs

Figure 8: Gauss performance on the KSR 1 for
different barrier types with a multiprogramming
level of 2.

formation. Performance is excellent, however, when re-
partitioning decisions are as little as 500 ms apart.

5 Conclusions

This paper makes three primary contributions. First,
it demonstrates that synchronization performance, es-
pecially for scalable algorithms, can degrade rapidly in
the presence of multiprogramming. This can occur be-
cause a process is preempted in the critical section, is
given a lock while preempted, or is spinning when its
preempted peers could be doing useful work. Second, it
describes mechanisms to solve these problems. Specif-
ically, it proposes that the kernel export information
about the processes and processors in each machine par-
tition, and that the application indicate which of its
processes are performing critical operations and should
not be preempted. Third, it describes how to use this
information to implement three scalable synchroniza-
tion algorithms: a mutual exclusion ticket lock, a fair,
queued, reader-writer lock, and a scalable barrier. All
three algorithms perform significantly better than their
scheduler-oblivious competitors.

Acknowledgement

Our thanks to Donna Bergmark and the Cornell Theory
Center for their help with the KSR 1.

References

[1] T. E. Anderson. The Performance of Spin Lock Al-
ternatives for Shared-Memory Multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
1(1):6-16, January 1990.

2l

3]

(4]

5]

(6]

(9]

(10]

(1]

(12]

(13]

(14]

T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler Activations: Effective Ker-
nel Support for the User-Level Management of Par-
allelism. ACM Transactions on Computer Systems,
10(1):53-79, February 1992. Originally presented at
the Thirteenth ACM Symposium on Operating Systems
Principles, October 1991.

T. S. Axelrod. Effects of Synchronization Barriers
on Multiprocessor Performance. Parallel Computing,
3:129-140, 1986.

D. L. Black. Scheduling Support for Concurrency and
Parallelism in the Mach Operating System. Computer,
23(5):35-43, May 1990.

Travis S. Craig. Queuing Spin Lock Algorithms to
Support Timing Predictability. In Proceedings of
the Fourteenth IEEE Real-Time Systems Symposium,
Raleigh-Durham, NC, December 1993.

Mark Crovella, Prakash Das, Cesary Dubnicki,
Thomas LeBlanc, and Evangelos Markatos. Multipro-
gramming on Multiprocessors. In Proceedings of the
Third IEEE Symposium on Parallel and Distributed
Processing, pages 590-597, December 1991.

J. Edler, J. Lipkis, and E. Schonberg. Process Man-
agement for Highly Parallel UNIX Systems. In Pro-
ceedings of the USENIX Workshop on Uniz and Su-
percomputers, Pittsburgh, PA, September 1988.

G. Graunke and S. Thakkar. Synchronization Al-
gorithms for Shared-Memory Multiprocessors. Com-
puter, 23(6):60-69, June 1990.

A. R. Karlin, K. Li, M. S. Manasse, and S. Ow-
icki. Empirical Studies of Competitive Spinning for
a Shared-Memory Multiprocessor. In Proceedings of
the Thirteenth ACM Symposium on Operating Systems
Principles, pages 41-55, Pacific Grove, CA, October
1991.

L. Kontothanassis and R. Wisniewski. Using Scheduler
Information to Achieve Optimal Barrier Synchroniza-
tion Performance. In Proceedings of the Fourth ACM
Symposium on Principles and Practice of Parallel Pro-
gramming, May 1993.

Leonidas I. Kontothanassis, Robert W. Wisniewski,
and Michael L. Scott. Scheduler-Conscious Synchro-
nization. TR 550, Computer Science Department, Uni-
versity of Rochester, December 1994. Submitted for
publication.

O. Krieger, M. Stumm, and R. Unrau. A Fair Fast
Scalable Reader-Writer Lock. In Proceedings of the
1998 International Conference on Parallel Processing,
St. Charles, IL, August 1993.

S. T. Leutenegger and M. K. Vernon. Performance
of Multiprogrammed Multiprocessor Scheduling Algo-
rithms. In Proceedings of the 1990 ACM SIGMET-
RICS International Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, May
1990.

Evangelos Markatos, Mark Crovella, Prakash Das, Ce-
sary Dubnicki, and Thomas LeBlanc. The Effects

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

[23]

of Multiprogramming on Barrier Synchronization. In
Proceedings of the Third IEEE Symposium on Parallel
and Distributed Processing, pages 662-669, December
1991.

Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc,
and Evangelos P. Markatos. First-Class User-Level
Threads. In Proceedings of the Thirteenth ACM Sym-
posium on Operating Systems Principles, pages 110—
121, Pacific Grove, CA, October 1991.

J. M. Mellor-Crummey and M. L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory Mul-
tiprocessors. ACM Transactions on Computer Sys-
tems, 9(1):21-65, February 1991.

J. M. Mellor-Crummey and M. L. Scott. Scalable
Reader-Writer Synchronization for Shared-Memory
Multiprocessors. In Proceedings of the Third ACM
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 106—-113, Williamsburg, VA, April
1991.

B. Mukherjee and K. Schwan. Improving Performance
by Use of Adaptive Objects: Experimentation with a
Configurable Multiprocessor Thread Package. In Pro-
ceedings of the Second International Symposium on
High Performance Distributed Computing, Spokane,
WA, July 1993.

Hiroaki Takada and Ken Sakamura. Predictable Spin
Lock Algorithms with Preemption. In Proceedings of
the Eleventh IEEE Workshop on Real-Time Operating
Systems and Software, pages 2-6, Seattle, WA, May
1994. Expanded version available as TR 93-2, Depart-
ment of Information Science, University of Tokyo, July
1993.

A. Tucker and A. Gupta. Process Control and Schedul-
ing Issues for Multiprogrammed Shared-Memory Mul-
tiprocessors. In Proceedings of the Twelfth ACM Sym-
posium on Operating Systems Principles, pages 159—
166, Litchfield Park, AZ, December 1989.

Robert W. Wisniewski, Leonidas Kontothanassis, and
Michael L. Scott. Scalable Spin Locks for Multipro-
grammed Systems. In Proceedings of the Eighth Inter-
national Parallel Processing Symposium, pages 583—
589, Cancun, Mexico, April 1994. Earlier but ex-
panded version available as TR 454, Computer Science
Department, University of Rochester, April 1993.

J. Zahorjan and C. McCann. Processor Scheduling
in Shared Memory Multiprocessors. In Proceedings of
the 1990 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Sys-
tems, pages 214-225, Boulder, CO, May 1990.

J. Zahorjan, E. D. Lazowska, and D. L. Eager. The
Effect of Scheduling Discipline on Spin Overhead in
Shared Memory Parallel Systems. IEFEE Transac-
tions on Parallel and Distributed Systems, 2(2):180—
198, April 1991.

