Tech. Rep. 600

Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms *

Maged M. Michael Michael L. Scott

Department of Computer Science
University of Rochester
Rochester, NY 14627-0226
{m chael , scott }@s. rochester. edu

December 1995

Abstract

Drawing ideasfrom previous authors, we present anew non-blocking concurrent queue algorithm and anew
two-lock queuea gorithmin which one enqueue and one dequeue can proceed concurrently. Both a gorithms
aresimple, fast, and practical; wewere surprised not to find them intheliterature. Experimentsonal2-node
SGI Challenge multiprocessor indicate that the new non-blocking queue consistently outperforms the best
known alternatives; it isthe clear algorithm of choice for machines that provide auniversal atomic primitive
(e.g. conpar e_and_swap or | oad_l i nked/st or e_condi ti onal). Thetwo-lock concurrent queue
outperforms a single lock when severa processes are competing simultaneously for access; it appears to
be the algorithm of choice for busy queues on machines with non-universal atomic primitives (e.g. t est _
and_set). Since much of the motivation for non-blocking algorithmsis rooted in their immunity to large,
unpredictable delays in process execution, we report experimental results both for systems with dedicated
processors and for systems with several processes multiprogrammed on each processor.

Keywords: concurrent queue, lock-free, non-blocking, conpar e _and_swap, multiprogramming.

*This work was supported in part by NSF grants nos. CDA-94-01142 and CCR-93-19445, and by ONR research grant
no. N00014-92—-3-1801 (in conjunction with the DARPA Research in Information Science and Technology—High Performance
Computing, Software Science and Technology program, ARPA Order no. 8930).

mls
Tech. Rep. 600

1 Introduction

Concurrent FIFO queues are widely used in parallel applications and operating systems. To ensure cor-
rectness, concurrent access to shared queues has to be synchronized. Generally, algorithms for concurrent
data structures, including FIFO queues, fal into two categories: blocking and non-blocking. Blocking
algorithms alow a slow or delayed process to prevent faster processes from completing operations on the
shared data structure indefinitely. Non-blocking algorithms guarantee that if there are one or more active
processes trying to perform operations on a shared data structure, an operations will complete within finite
number of time steps. On asynchronous (especially multiprogrammed) multiprocessor systems, blocking
algorithms suffer significant performance degradation when aprocessishalted or delayed at an inopportune
moment. Possible sources of delay include processor scheduling preemption, page faults, and cache misses.
Non-blocking agorithms are more robust in the face of these events.

Many researchers have proposed lock-free algorithms for concurrent FIFO queues. Hwang and
Briggs[7], Sites[17], and Stone [20] present lock-free algorithms based on conpar e_and_swap.! These
algorithmsareincompletely specified; they omit detail ssuch asthe handling of empty or single-item queues,
or concurrent enqueues and dequeues. Lamport [9] presents await-free a gorithm that restricts concurrency
to a single enqueuer and a single dequeuer.?

Gottlieb et al. [3] and Méelor-Crummey [11] present algorithmsthat are lock-free but not non-blocking:
they do not use locking mechanisms, but they alow a slow process to delay faster processes indefinitely.

Treiber [21] presents an algorithm that is non-blocking but inefficient: a dequeue operation takes
time proportional to the number of the elementsin the queue. Herlihy [6]; Prakash, Lee, and Johnson [15];
Turek, Shasha, and Prakash [22]; and Barnes[2] propose general methodol ogiesfor generating non-blocking
versions of sequential or concurrent lock-based algorithms. However, the resulting implementations are
generdly inefficient compared to specialized algorithms.

Herlihy and Wing [4] and Val 0is[23] present a gorithmsbased oninfinitearrays. Valois'sagorithmalso
requires an unaligned conpar e_and_swap. Massalin and Pu [10] present lock-free agorithmsbased on a
doubl e_conpar e_and_swap primitivethat operates on two arbitrary memory locations simultaneously,
and that seemsto be available only on later members of the Motorola 68000 family of processors.

Stone [18] presents a queue that is lock-free but non-linearizable® and not non-blocking. It is non-
linearizable because a slow enqueuer may cause a faster process to enqueue an item and subsequently
observe an empty queue, even though the enqueued item has never been dequeued. It is not non-blocking
because a slow enqueue can delay dequeues by other processesindefinitely. Our experimentsaso revedled a
race conditionin which a certain interleaving of a slow dequeue with faster enqueues and dequeues by other
process(es) can cause an enqueued item to be lost permanently. Stone also presents [19] a non-blocking
gueue based on a circular singly-linked list. The agorithm uses one anchor pointer to manage the queue
instead of the usual head and tail. Our experiments revealed arace condition in which aslow dequeuer can
cause an enqueued item to be lost permanently.

Prakash, Lee, and Johnson[14, 16] present alinearizable non-bl ocking al gorithm that requires enqueuing
and dequeuing processes to take a snapshot of the queuein order to determineits“state” prior to updating it.
The algorithm achieves the non-blocking property by allowing faster processes to complete the operations
of slower processes instead of waiting for them.

'Conpar e_and_swap, introduced on the IBM System 370, takes as arguments the address of a shared memory location, an
expected value, and a new value. If the shared location currently holds the expected value, it is assigned the new value atomically.
A Boolean return value indicates whether the replacement occurred.

2A wait-free algorithm is both non-blocking and starvation free: it guaranteesthat every active processwill makeprogresswithin
a bounded number of time steps.

3An implementation of a data structure islinearizableif it can alwaysgive an external observer, observing only the abstract data
structure operations, the illusion that each of these operationstakes effect instantaneously at some point between its invocation and
its response [5].

Valois [23, 24] presents a list-based non-blocking algorithm that avoids the contention caused by the
snapshots of Prakash et al.’s agorithm and allows more concurrency by keeping adummy node at the head
(dequeue end) of a singly-linked list, thus simplifying the specia cases associated with empty and single-
item queues (a technique suggested by Sites [17]). Unfortunately, the algorithm allows the tail pointer to
lag behind the head pointer, thus preventing degqueuing processes from safely freeing or re-using dequeued
nodes. If thetail pointer lags behind and a process frees a dequeued node, the linked list can be broken, so
that subsequently enqueued items are lost. Since memory is alimited resource, prohibiting memory reuse
is not an acceptable option. Valois therefore proposes a special mechanism to free and allocate memory.
The mechanism associates a reference counter with each node. Each time a process creates a pointer to a
node it increments the node's reference counter atomically. When it does not intend to access a hode that
it has accessed before, it decrements the associated reference counter atomicaly. In addition to temporary
links from process-local variables, each reference counter reflects the number of linksin the data structure
that point to the node in question. For a queue, these are the head and tail pointersand linked-list links. A
nodeis freed only when no pointersin the data structure or temporary variables point to it.

We discovered and corrected [13] race conditions in the memory management mechanism and the
associated non-blocking queue algorithm. Even so, the memory management mechanism and the queue
that employsit are impractical: no finite memory can guarantee to satisfy the memory requirements of the
algorithm al the time. Problems occur if a process reads a pointer to a node (incrementing the reference
counter) and is then delayed. Whileit isnot running, other processes can enqueue and dequeue an arbitrary
number of additional nodes. Because of the pointer held by the delayed process, neither the node referenced
by that pointer nor any of its successors can be freed. It istherefore possibleto run out of memory even if
the number of itemsin the queue is bounded by aconstant. 1n experimentswith agueue of maximum length
12 items, we ran out of memory several times during runs of ten million enqueues and dequeues, using a
freelist initialized with 64,000 nodes.

Most of the algorithms mentioned above are based on conpar e_and_swap, and must therefore deal
with the ABA problem: if a process reads a value A in a shared location, computes a new vaue, and
then attempts a conpar e_and_swap operation, the conpar e_and_swap may succeed when it should
not, if between the read and the conpar e_and_swap some other process(es) change the A to a B and
then back to an A again. The most common solution is to associate a modification counter with a pointer,
to aways access the counter with the pointer in any read-modify-conpar e_and_swap sequence, and to
increment it in each successful conpar e_and_swap. This solution does not guarantee that the ABA
problem will not occur, but it makes it extremely unlikely. To implement this solution, one must either
employ adouble-word conpar e_and_swap, or else usearray indicesinstead of pointers, so that they may
share a single word with a counter. Valois's reference counting technique guarantees preventing the ABA
problem without the need for modification counters or the double-word conpar e_and_swap. Médlor-
Crummey’s lock-free queue [11] requires no special precautions to avoid the ABA problem because it
usesconpar e_and_swap inaf et ch_and_st or e-modify-conpar e_and_swap sequence rather than
the usua read-modify-comnpar e_and_swap sequence. However, this same feature makes the algorithm
blocking.

In section 2 we present two new concurrent FIFO queue algorithms inspired by ideas in the work
described above. Both of the agorithms are simple and practical. One is non-blocking; the other uses
a par of locks. Correctness of these agorithms is discussed in section 3. We present experimental
results in section 4. Using a 12-node SGI Challenge multiprocessor, we compare the new agorithms to
a straightforward single-lock queue, Méellor-Crummey’s blocking algorithm [11], and the non-blocking
algorithms of Prakash et al. [16] and Valois [24], with both dedicated and multiprogrammed workloads.
The results confirm the value of non-blocking algorithms on multiprogrammed systems. They also show
consistently superior performance on the part of the new lock-free algorithm, both with and without
multiprogramming. The new two-lock agorithm cannot compete with the non-blocking aternatives on

3

a multiprogrammed system, but outperforms a single lock when several processes compete for access
simultaneously. Section 5 summarizes our conclusions.

2 Algorithms

Figure 1 presents commented pseudo-code for the non-blocking queue data structure and operations. The
algorithmimplementsthe queueasasingly-linkedlist with Head and Tail pointers. Asin Valois'salgorithm,
Head alwayspointsto adummy node, whichisthefirst nodeinthelist. Tail pointsto either thelast or second
to last node in thelist. The agorithm uses conpar e_and_swap, with modification counters to avoid the
ABA prablem. To alow dequeuing processes to free dequeued nodes, the dequeue operation ensures that
Tail does not point to the dequeued node nor to any of its predecessors. This means that dequeued nodes
may safely be re-used.

To obtain consistent val ues of various pointerswe rely on sequences of reads that re-check earlier values
to be sure they haven't changed. These sequences of reads are similar to, but simpler than, the snapshots
of Prakash et al. (we need to check only one shared variable rather than two). A similar technique can
be used to prevent the race condition in Stone's blocking algorithm. We use Treiber’s simple and efficient
non-blocking stack algorithm [21] to implement a non-blocking free list.

Figure 2 presents commented pseudo-code for the two-lock queue data structure and operations. The
algorithm employs separate Head and Tail locks, to alow complete concurrency between enqueues and
degueues. Asinthe non-blocking queue, we keep adummy node at the beginning of thelist. Because of the
dummy node, enqueuers never have to access Head, and dequeuers never have to access Tail, thusavoiding
potential deadlock problems that arise from processes trying to acquire the locks in different orders.

3 Correctness
3.1 Safety
We show that the presented a gorithms are safe by showing that they satisfy the following properties:
1. Thelinkedlistisaways connected.
2. Nodes are only inserted after the last nodein the linked list.
3. Nodes are only deleted from the beginning of the linked list.
4. Head aways pointsto thefirst nodein thelinked list.
5. Tail dways point to anodein thelinked list.

Initialy, all these properties hold. By induction, we show that they continue to hold, assuming that the
ABA problem never occurs.

1. Thelinked listisalways connected because once anode isinserted, its next pointer isnot set to NULL
beforeitisfreed, and no node isfreed until it is deleted from the beginning of the list (property 3).

2. Inthelock-free agorithm, nodes are only inserted at the end of the linked list because they are linked
through the Tail pointer, which always pointsto a node in the linked-list (property 5), and an inserted
nodeislinked only to a node that has a NULL next pointer, and the only such node in the linked list
isthelast one (property 1).

structure pointer_t {ptr: pointer to node_t, count: unsigned integer }
structure node.t {value: datatype, next: pointer_t}
structure queue_t {Head: pointer_t, Tail: pointer_t}

initialize(Q: pointer to queue.t)

node = new_node() # Allocate a free node
node—>next.ptr = NULL # Make it the only node in the linked list
Q—>Head = Q—>Tail = node # Both Head and Tail point to it
enqueue(Q: pointer to queue-t, value: datatype)
El: node = new_node() # Allocate a new node from the free list
E2: node—>value = value # Copy enqueued value into node
E3: node—>next.ptr = NULL # Set next pointer of nodeto NULL
E4: repeat # Keep trying until Enqueue is done
E5: tail = Q—>Tail # Read Tail.ptr and Tail.count together
E6: next = tail .ptr—next # Read next ptr and count fields together
E7: if tail == Q—>Tail # Aretail and next consistent?
E8: if next.ptr == NULL # Was Tail pointing to the last node?
E9: if CAS(&tail.ptr—>next, next, <node, next.count+1>) # Try to link node at the end of the linked list
E10: break # Enqueue isdone. Exit loop
E11: ese # Tail was not pointing to the last node
E12: CAS(&Q—>Tall, tail, <next.ptr, tail.count+1>) # Try to swing Tail to the next node
E13: CAS(&Q—>Tail, tail, <node, tail .count+1>) # Engqueue isdone. Try to swing Tail to the inserted node
dequeue(Q: pointer to queuet, pvalue: pointer to datatype): boolean
D1: repeat # Keep trying until Dequeue is done
D2: head = Q—>Head # Read Head
D3: tail = Q—>Tail # Read Tall
D4: next = head—>next # Read Head.ptr—>next
D5: if head == Q—>Head # Are head, tail, and next consistent?
Dé6: if head.ptr == tail.ptr # |s queue empty or Tail falling behind?
D7: if next.ptr == NULL # |s queue empty?
D8: return FALSE # Queue is empty, couldn’t dequeue
D9: CAS(&Q—>Tall, tail, <next.ptr, tail.count+1>) # Tail isfaling behind. Try to advance it
D10: ese # No need to ded with Tail
Read value before CAS, otherwise another dequeue might free the next node
D11: *pvalue = next.ptr—>value
Di12: if CAS(& Q—Head, head, <next.ptr, head.count+1>) # Try to swing Head to the next node
D13: break # Dequeue isdone. Exit loop
D14: free(head.ptr) # It is safe now to free the old dummy node
D15: return TRUE # Queue was not empty, degqueue succeeded

Figure 1: Structure and operation of a non-blocking concurrent queue.

structure node.t {value: datatype, next: pointer to node_t}
structure queue.t {Head: pointer to node_t, Tail: pointer to node_t, H_lock: lock type, T_lock: lock type}

initialize(Q: pointer to queue.t)

node = new_node() # Allocate afree node
node—>next.ptr = NULL # Makeit the only nodein the linked list
Q—>Head = Q—>Tail = node # Both Head and Tail point toit

Q—>H_lock = Q—>T_lock =FREE # Locksareinitially free

enqueue(Q: pointer to queue-t, value: datatype)

node = new_node() # Allocate anew node from the free list
node—>value = value # Copy engueued value into node
node—>next.ptr = NULL # Set next pointer of nodeto NULL
lock(& Q—>T_lock) # Acquire T_lock in order to access Tail
Q—>Tail—next = node # Link node at the end of thelinked list
Q—>Tail = node # Swing Tail to node
unlock(& Q—>T_lock) # Release T_lock
dequeue(Q: pointer to queue-t, pvalue: pointer to datatype): boolean
lock(& Q—>H_lock) # Acquire H_lock in order to access Head
node = Q—>Head # Read Head
new_head = node—>next # Read next pointer
if new_head == NULL # |s queue empty?
unlock(& Q—>H_lock) # Release H_lock before return
return FALSE # Queue was empty
*pvalue = new_head—>value # Queue not empty. Read value before release
Q—>Head = new_head # Swing Head to next node
unlock(& Q—>H_lock) # Release H_lock
freg(node) # Free node
return TRUE # Queue was not empty, degueue succeeded

Figure 2: Structure and operation of atwo-lock concurrent queue.

In the lock-based agorithm nodes are only inserted at the end of the linked list because they are
inserted after the node pointed to by Tail, and in this algorithm Tail always pointsto the last nodein
thelinked list, unlessit is protected by the tail lock.

3. Nodes are deleted from the beginning of the list, because they are deleted only when they are pointed
to by Head and Head aways pointsto the first node in the list (property 4).

4. Head aways points to the first node in the list, because it only changes its value to the next node
atomically (either using the head lock or using conpar e _and_swap). When this happens the node
it used to point to isconsidered deleted from thelist. The new value of Head cannot be NUL L because
if there is one node in the linked list the dequeue operation returns without del eting any nodes.

5. Tail dwayspointsto anodeinthelinked list, because it never lags behind Head, so it can never point
to adeleted node. Also, when Tail changesits valueit aways swingsto the next node in thelist and
it never triesto change its valueif the next pointer isSNULL.

32 Linearizability

The presented algorithms are linearizable because there is a specific point during each operation at which
it is considered to “take effect” [5]. An enqueue takes effect when the allocated node is linked to the last
node in the linked list. A dequeue takes effect when Head swings to the next node. And, as shown in the
previous subsection (properties 1, 4, and 5), the queue variables always reflect the state of the queue; they
never enter atransient state in which the state of the queue can be mistaken (e.g. anon-empty queue appears
to be empty).

3.3 Liveness
The Lock-Free Algorithm is Non-Blocking

We show that the lock-free algorithm is non-blocking by showing that if there are non-delayed processes
attempting to perform operations on the queue, an operation is guaranteed to complete within finite time.
An enqueue operation loops only if the condition in line E7 fails, the condition in line E8 fails, or the
conpar e_and_swap inlineE9 fails. A dequeue operation loopsonly if the conditionin line D5 fails, the
conditionin line D6 holds (and the queue is not empty), or the conpar e_and_swap inline D12 fails.
We show that the agorithm is non-blocking by showing that a process |oops beyond afinite number of
timesonly if another process completes an operation on the queue.

e Theconditionin line E7 failsonly if Tail iswritten by an intervening process after executing line E5.
Tail aways pointsto the last or second to last node of the linked list, and when modified it follows
the next pointer of the node it pointsto. Therefore, if the condition in line E7 fails more than once,
then another process must have succeeded in compl eting an enqueue operation.

e The condition in line E8 failsif Tail was pointing to the second to last node in the linked-list. After
theconpar e_and_swap inline E12, Tail must point to thelast nodein thelist, unless a process has
succeeded in enqueuing a new item. Therefore, if the condition in line E8 fails more than once, then
another process must have succeeded in completing an enqueue operation.

e Theconpar e_and_swap inline E9 failsonly if another process succeeded in enqueuing anew item
to the queue.

e Theconditioninline D5 and theconpar e_and_swap inline D12 fail only if Head has been written
by another process. Head iswritten only when aprocess succeeds in dequeuing an item.

e The condition in line D6 succeeds (while the queue is not empty) only if Tail points to the second
to last node in the linked list (in this case it is adso the first node). After the conpar e_and_swap
in line D9, Tail must point to the last node in the list, unless a process succeeded in enqueuing a
new item. Therefore, if the condition of line D6 succeeds more than once, then another process must
have succeeded in completing an enqueue operation (and the same or another process succeeded in
dequeuing an item).

The Two-Lock Algorithm isLivelock-Free

The two-lock algorithm does not contain any loops. Therefore, if the mutual exclusion lock algorithm
used for locking and unlocking the head and tail locks is livelock-free, then the presented algorithm is
livel ock-free too. There are many mutual exclusion algorithmsthat are livel ock-free [12].

7

4 Performance

We use a 12-processor Silicon Graphics Challenge multiprocessor to compare the performance of the new
algorithms to that of a single-lock algorithm, the agorithm of Prakash et al. [16], Valois's algorithm [24]
(with corrections to the memory management mechanism [13]), and Melor-Crummey’s agorithm [11].
We include the algorithm of Prakash et al. because it appears to be the best of the known non-blocking
aternatives. Mdlor-Crummey’s algorithm represents non-lock-based but blocking alternatives; it issimpler
than the code of Prakash et al., and could be expected to display lower constant overhead in the absence of
unpredictable processdelays, but islikely to degenerate on amultiprogrammed system. Weinclude Valois's
algorithm to demonstrate that on multiprogrammed systems even a comparatively inefficient non-blocking
algorithm can outperform blocking algorithms.

For the two lock-based agorithms we use test-and-t est _and_set locks with bounded exponential
backoff [12, 1]. We also use backoff where appropriate in the non-lock-based algorithms. Performance
was not sensitive to the exact choice of backoff parameters in programs that do at least a modest amount of
work between gqueue operations. We emulate both t est _and_set and the atomic operations required by
the other algorithms (conpar e _and_swap, f et ch_and_i ncr enent , f et ch_and_decr enent , etc.)
using the MIPS R4000 | oad_l i nked and st or e_condi ti onal instructions.

C code for the tested agorithms can be obtained from ft p: //ftp. cs. rochest er. edu/ pub/
packages/ sched_consci ous_synch/ concur rent _queues. The agorithms were compiled at
the highest optimization level, and were carefully hand-optimized. We tested each of the algorithmsin
hours-long executions on various numbers of processors. It was during this process that we discovered the
race conditions mentioned in section 1.

All the experiments employ an initially-empty queue to which processes perform a series of enqueue
and dequeue operations. Each process enqueues an item, does* other work”, dequeues an item, does “other
work”, and repeats. With p processes, each process executes thisloop | 10%/p| or [108/p] times, for atotal
of one million enqueues and dequeues. The “other work” consists of approximately 6 s of spinningin an
empty loop; it serves to make the experiments moreredistic by preventing long runs of queue operations by
the same process (which would display overly-optimistic performance due to an unredisticaly low cache
miss rate). We subtracted the time required for one processor to complete the “other work” from the total
time reported in the figures.

Figure 3 shows net elapsed time in seconds for one million enqueue/dequeue pairs. Roughly speaking,
thiscorrespondsto thetimein microsecondsfor one enqueue/dequeue pair. Moreprecisely, for k& processors,
the graph shows the time one processor spends performing 108/ % enqueue/dequeue pairs, plus the amount
by which the critical path of the other 10%(k — 1) /k pairs performed by other processors exceeds the time
spent by the first processor in “other work” and loop overhead. For & = 1, the second term iszero. Ask
increases, the first term shrinks toward zero, and the second term approaches the critical path length of the
overall computation; i.e. onemilliontimesthe serial portion of an enqueue/dequeue pair. Exactly how much
execution will overlap in different processors depends on the choice of algorithm, the number of processors
k, and the length of the “other work” between queue operations.

With only one processor, memory references in al but the first loop iteration hit in the cache, and
completion times are very low. With two processors active, contention for head and tail pointers and queue
elements causes a high fraction of references to missin the cache, leading to substantial ly higher completion
times. The queue operations of processor 2, however, fit into the other work” time of processor 1, and vice
versa, so we are effectively measuring the timefor one processor to complete 5 x 10° enqueue/dequeue pairs.
At three processors, the cache missrateis about the same asit waswith two processors. Each processor only
has to perform 10°/3 enqueue/dequeue pairs, but some of the operations of the other processors no longer
fit in the first processor’s “other work” time. Total elapsed time decreases, but by a fraction less than 1/3.
Toward the right-hand side of the graph, execution time rises for most agorithms as smaller and smaller

8

amounts of per-processor “other work” and loop overhead are subtracted from a total time dominated by
critical path length. In the single-lock and Mélor-Crummey curves, theincrease is probably accelerated as
high rates of contention increase the average cost of a cache miss. In Vaois's algorithm, the plotted time
continues to decrease, as more and more of the memory management overhead moves out of the critical
path and into the overlapped part of the computation.

Figures 4 and 5 plot the same quantity asfigure 3, but for a system with 2 and 3 processes per processor,
respectively. The operating system multiplexes the processor among processes with a scheduling quantum
of 10 ms. As expected, the blocking algorithms fare much worse in the presence of multiprogramming,
since an inopportune preemption can block the progress of every processin the system. Also as expected,
the degree of performance degradation increases with the level of multiprogramming.

In all three graphs, the new non-blocking queue outperforms all of the other alternatives when three
or more processors are active. Even for one or two processors, its performance is good enough that we
can comfortably recommend its use in al situations. The two-lock algorithm outperforms the one-lock
algorithm when more than 5 processors are active on a dedicated system: it appears to be a reasonable
choice for machines that are not multiprogrammed, and that lack a universal atomic primitive (conpar e_
and_swap or | oad_l i nked/st or e_condi ti onal).

5 Conclusions

Queues are ubiquitousin parallel programs, and their performance is a matter of major concern. We have
presented a concurrent queue algorithm that is simple, non-blocking, practica, and fast. We were surprised
not to find it in the literature. 1t seems to be the agorithm of choice for any queue-based application on
amultiprocessor with universal atomic primitives (e.g. conpar e_and_swap or | oad_| i nked/st ore_
condi tional).

We have a so presented a queue with separate head and tail pointer locks. Itsstructureissimilarto that of
the non-blocking queue, but it allowsonly one enqueue and one degqueueto proceed at agiven time. Because
it is based on locks, however, it will work on machines with such simple atomic primitivesast est _and_
set . We recommend it for heavily-utilized queues on such machines (For a queue that is usually accessed
by only one or two processors, asingle lock will run alittle faster.)

Thiswork is part of alarger project that seeks to evaluate the tradeoffs among alternative mechanisms
for atomic update of common data structures. Structures under consideration include stacks, queues,
heaps, search trees, and hash tables. Mechanisms include single locks, data-structure-specific multi-
lock agorithms, general-purpose and special-purpose non-blocking agorithms, and function shipping to a
centralized manager (avalid techniquefor situationsinwhich remote access | atencies dominate computation
time).

Inrelated work [8, 25, 26], we have been devel oping genera -purpose synchronization mechanisms that
cooperate with a scheduler to avoid inopportune preemption. Given that immunity to processes delaysis a
primary benefit of non-blocking parallel agorithms, we plan to compare these two approachesin the context
of multiprogrammed systems.

References

[1] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multiprocessors.
|EEE Transactions on Parallel and Distributed Systems, 1(1):6-16, January 1990.

9

25

20

Figure 3: Net execution timefor one million enaueue/deaueue pairs on a dedicated multiprocessor.

25

20

Figure 4: Net execution time for one million enqueue/dequeue pairs on a multiprogrammed system with 2

Processes per processor.

25

20

Figure 5: Net execution time for one million enqueue/dequeue pairs on a multiprogrammed system with 3

ProCesses per processor.

Single lock

MC lock—free
Valois non-blocking
new two—lock

PLJ non—blocking
new non-blocking

Processors

6 7 8
Processors

10

11

12

6 7 8
Processors

10

10

11

12

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. Barnes. A Method for Implementing Lock-Free Data Structures. In Proceedings of the Fifth
Annual ACM Symposium on Parallel Algorithms and Architectures, Velen, Germany, June—July
1993.

A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for the Efficient Coordination
of Very Large Numbers of Cooperating Sequential Processors. ACM Transactions on Programming
Languages and Systems, 5(2):164—189, April 1983.

M. P. Herlihy and J. M. Wing. Axions for Concurrent Objects. In Proceedings of the 14th ACM
Symposium on Principles of Programming Languages, pages 13—26, January 1987.

M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.

M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects. ACM Transactions
on Programming Languages and Systems, 15(5): 745770, November 1993.

K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing. McGraw-Hill, 1984.

L. Kontothanassis and R. Wisniewski. Using Scheduler Information to Achieve Optimal Barrier
Synchronization Performance. In Proceedings of the Fourth ACM Symposium on Principles and
Practice of Parallel Programming, May 1993.

L. Lamport. Specifying Concurrent Program Modules. ACM Transactions on Programming Lan-
guagesand Systems, 5(2):190-222, April 1983.

H. Massalin and C. Pu. A Lock-Free Multiprocessor OS Kernel. Technical Report CUCS-005-91,
Computer Science Department, Columbia University, 1991.

J. M. Mdllor-Crummey. Concurrent Queues: Practical Fetch-and-® Algorithms. TR 229, Computer
Science Department, University of Rochester, November 1987.

J.M. Mdllor-Crummey and M. L. Scott. Algorithmsfor Scal able Synchronization on Shared-Memory
Multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65, February 1991.

M. M. Michael and M. L. Scott. Correction of a Memory Management Method for Lock-Free Data
Structures. Technical Report 599, Computer Science Department, University of Rochester, December
1995.

S. Prakash, Y. H. Lee, and T. Johnson. A Non-Blocking Algorithm for Shared Queues Using
Compare-and_Swap. In Proceedings of the 1991 International Conference on Parallel Processing,
pages 11:68-75, 1991.

S. Prakash, Y. H. Lee, and T. Johnson. Non-Blocking Algorithms for Concurrent Data Structures.
Technical Report 91-002, University of Florida, 1991.

S. Prakash, Y. H. Lee, and T. Johnson. A Nonblocking Algorithm for Shared Queues Using Compare-
and-Swap. |EEE Transactions on Computers, 43(5):548-559, May 1994.

R. Sites. Operating Systemsand Computer Architecture. In H. Stone, editor, Introductionto Computer
Architecture, 2nd edition, Chapter 12, 1980. Science Research Associates.

J. M. Stone. A Simpleand Correct Shared-Queue Algorithm Using Compare-and-Swap. In Proceed-
ings Supercomputing ' 90, November 1990.

11

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

J. M. Stone. A Non-Blocking Compare-and-Swap Algorithm for a Shared Circular Queue. In S
Tzafestaset al ., editors, Parallel and Distributed Computing in Engineering Systems, pages 147-152,
1992. Elsevier Science Publishers.

H. S. Stone. High Performance Computer Architecture. Addison-Wesley, 1993.

R. K. Treiber. Systems Programming: Coping with Parallelism. In RJ 5118, IBM Almaden Research
Center, April 1986.

J. Turek, D. Shasha, and S. Prakash. Locking without Blocking: Making Lock Based Concurrent
Data Structure Algorithms Nonbl ocking. In Proceedings of the 11th ACM SGACT-S GMOD-S GART
Symposium on Principles of Database Systems, pages 212—222, 1992.

J. D. Vaois. Implementing L ock-Free Queues. In Seventh International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV, October 1994.

J. D. Valois. Lock-Free Data Structures. Ph. D. dissertation, Rensselagr Polytechnic Institute, May
1995.

R. W. Wisniewski, L. Kontothanassis, and M. L. Scott. Scalable Spin Locks for Multiprogrammed
Systems. In Proceedings of the Eighth Inter national Parallel Processing Symposium, pages 583-589,
Cancun, Mexico, April 1994. Earlier but expanded version available as TR 454, Computer Science
Department, University of Rochester, April 1993.

R. W. Wisniewski, L. |. Kontothanassis, and M. L. Scott. High Performance Synchronization
Algorithmsfor Multiprogrammed Multiprocessors. In Proceedings of the Fifth ACM Symposiumon
Principlesand Practice of Parallel Programming, Santa Barbara, CA, July 1995.

12

