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Abstract 

We present a new algorithm for concurrent access to array-based priority queue heaps. Deletions proceed top-down as 
they do in a previous algorithm due to Rao and Kumar (1988), but insertions proceed bottom-up, and consecutive insertions 
use a bit-reversal technique to scatter accesses across the fringe of the tree, to reduce contention. Because insertions do not 
have to traverse the entire height of the tree (as they do in previous work), as many as 0 ( M )  operations can proceed in 
parallel, rather than O(log M) on a heap of size M. Experimental results on a Silicon Graphics Challenge multiprocessor 
demonstrate good overall performance for the new algorithm on small heaps, and significant performance improvements 
over known alternatives on large heaps with mixed insertionldeletion workloads. 
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1. Introduction 

The heap data structure is widely used as a priority 
queue [ 2 ] .  The basic operations on a priority queue are 
insert and delete. Insert inserts a new item in the queue 
and delete removes and returns the highest priority 
item from the queue. A heap is a binary tree with the 
property that the key at any node has higher priority 
than the keys at its children (if they exist). An array 
representation of a heap is the most space efficient: 
the root of the heap occupies location 1 and the left 
and right children of the node at location i occupy the 
locations 2i and 2i + 1, respectively. No items exist in 
level 1 of the tree unless level 1 - 1 is completely full. 

Many applications (e.g. heuristic search algorithms, 
graph search, and discrete event simulation [ 5 ,6 ]  ) 
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on shared memory multiprocessors use shared prior- 
ity queues to schedule sub-tasks. In these applications, 
items can be inserted and deleted from the heap by 
any of the participating processes. The simplest way 
to ensure the consistency of the heap is to serialize the 
updates by putting them in critical sections protected 
by a mutual exclusion lock. This approach limits con- 
current operations on the heap to one. Since updates 
to the heap typically modify only a small fraction of 
the nodes, more concurrency should be achievable by 
allowing processes to access the heap concurrently as 
long as they do not interact with each other. 

Biswas and Browne [ 11 proposed a scheme that al- 
lows many insertions and deletions to proceed concur- 
rently. Their scheme relies on the presence of main- 
tenance processes that dequeue sub-operations from a 
FIFO work queue. Sub-operations are placed on the 
work queue by the processes performing insert and 
delete operations. The work queue is used to avoid 
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deadlock due to insertions and deletions proceeding 
in opposite directions in the tree. The need for a work 
queue and maintenance processes causes this scheme 
to incur substantial overhead. Rao and Kumar [7] 
present another scheme that avoids deadlock by us- 
ing top-down insertions, where an inserted item has 
to traverse a path through the whole height of the heap 
(insertions in a traditional sequential heap proceed 
bottom-up) . Jones [3] presents a concurrent prior- 
ity queue algorithm using skew heaps. He notes that 
top-down insertions in array-based heaps are ineffi- 
cient, while bottom-up insertions would cause dead- 
lock if they collide with top-down deletions without 
using extra server processes. 

This paper presents a new concurrent priority 
queue heap algorithm that addresses the problems 
encountered in previous research. On large heaps the 
algorithm achieves significant performance improve- 
ments over both the serialized single-lock algorithm 
and the algorithm of Rao and Kumar, for various 
insertionldeletion workloads. For small heaps it still 
performs well, but not as well as the single-lock 
algorithm. The new algorithm allows concurrent in- 
sertions and deletions in opposite directions, without 
risking deadlock and without the need for special 
server processes. It also uses a "bit-reversal" tech- 
nique to scatter accesses across the fringe of the tree 
to reduce contention. 

2. The new algorithm 

The new algorithm augments the standard heap data 
structure [2] with a mutual-exclusion lock on the 
heap's size and locks on each node in the heap. Each 
node also has a tag that indicates whether it is empty, 
valid, or in a transient state due to an update to the 
heap by an inserting process. Nodes that contain no 
data are tagged EMPTY. Nodes that are available for 
deletion are tagged AVAILABLE. A node that has been 
inserted, and is being moved into place, is tagged with 
the process identifier (p id)  of the inserting process. 

Array based heaps can be considered as a binary tree that is 
filled at all levels except possibly the last level. In skew heaps 
this restriction is relaxed; the representative binary tree need not 
be filled at all the intermediate levels. 

A delete operation in the new algorithm, as in the 
sequential algorithm, starts by reading the data and 
priority of the root of the heap and then replacing them 
with those of as rightmost node in the lowest level of 
the heap. Then, the delete operation "heapifies" the 
heap. It compares the priority of the root with that of 
each of its children (if any). If necessary, it swaps 
the root item with one of its children in order to en- 
sure that none of the children has priority higher than 
the root. If no swapping is necessary the delete oper- 
ation is complete; it returns the data that was origi- 
nally in the root. Otherwise, the operation recursively 
"heapifies" the subheap rooted at the swapped child. 
To handle concurrency all these steps are performed 
under the protection of the locks on the individual 
nodes and a lock on the size of the heap. In each 
step of the heapify operation, the lock of the subtree 
root is already held. It is not released until the end of 
that step. Prior to comparing priorities, the locks of 
the children are acquired. If swapping is performed, 
the lock on the swapped child is retained through the 
next recursive heapify step, and the locks on the root 
and the unswapped child are released. Otherwise, all 
the locks are released, and the delete operation com- 
pletes. 

An insert operation starts by inserting the new data 
and priority in the lowest level of the heap. If the in- 
serted node is the root of the heap, then the insert oper- 
ation is complete. Otherwise, the operation compares 
the priority of the inserted node to that of its parent. 
If the child's priority is higher than that of its parent, 
then the two items are swapped, otherwise the insert 
operation is complete. If swapping was necessary, then 
the same steps are applied repeatedly bottom-up un- 
til reaching a step in which no swapping is necessary, 
or the inserted node has become the root of the heap. 
To handle concurrency, all these steps are performed 
under the protection of the locks and tags on the indi- 
vidual nodes and the lock on the size of the heap. In 
every step of the bottom-up comparison, the lock of 
the parent is acquired first, followed by the lock on the 
inserted node. After comparison and swapping (if nec- 
essary), both locks are released. Locks are acquired 
in the same order as in the delete operation, parent- 
child, to avoid deadlock. This mechanism requires re- 
leasing and then acquiring the lock on the inserted 
item between successive steps, opening a window of 
vulnerability during which the inserted item might be 
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swapped by other concurrent operations. Tags are used 
to resolve these situations. 

An insert operation tags the inserted item with its 
pid. In every step, an insert operation can identify the 
item it is moving up the heap even if the item has been 
swapped upwards by a deletion. In particular, tags are 
used in the following manner: 

If the tag of the parent node is equal to AVAILABLE 
and the tag of the current node is equal to the insert 
operation's pid, then no interference has occurred 
and the insertion step can proceed normally. 
If the tag of the parent node is equal to EMPTY, 
then the inserted item must have been moved by a 
delete operation to the root of the heap. The insert 
operation is complete. 
If the tag of the current node is not equal to the op- 
eration'spid, then the inserted item must have been 
moved upwards by a delete operation. The insert 
operation moves upward in pursuit of the inserted 
item. 
In some definitions of heaps [ 2 ] ,  all nodes in the last 

level of the heap to the left of the last item have to be 
non-empty. Since this is not required by priority queue 
semantics, in the new algorithm we chose to relax 
this restriction to reduce lock contention, and thereby 
permit more concurrency. Under our relaxed model, 
consecutive insertions traverse different sub-trees by 
using a "bit-reversal" technique similar to that of an 
FFT computation [ 2 ] .  For example, in the third level 
of a heap (nodes 8-15, where node 1 is the root), eight 
consecutive insertions would start from the nodes 8, 
12, 10, 14,9, 13, 11, and 15, respectively. Notice that 
for any two consecutive insertions, the two paths from 
each of the bottom level nodes to the root of the heap 
have no common nodes other than the root. This lack 
of overlap serves to reduce contention for node locks. 
Consecutive deletions from the heap follow the same 
pattern, but in reverse order. The relation between the 
indices of parents and children remains as it is in heaps 
without bit reversal. The children of node i  are nodes 
2i and 2i + I, and the parent of node i  > 1 is node 
i / 2 .  Moreover, if a node has only one child, it is still 
2i, never 2i + 1. 

Since insertions in the new algorithm do not have 
to traverse the whole height of the heap, they have a 
lower bound of 0 (  1 ) time, while the algorithm due to 
Rao and Kumar requires 0 (log M) time for insertions 
(top-down) in a heap of size M, as insertions have 

record dataitem 
lock := FREE, tag := EMPTY; priority := 0 

record heap 
lock := FREE; bit-reversed-counter size; dataitem i t e m  

define LOCK(x)  as lock(heap.items [d .lock) 
define UNLOCK(x) as unlock( heap.items[x 1 .lock) 
define TAG(^) as heap.items[x] .tag 
define PRIORITY ( x )  as heapitems [ x ]  .priority 

procedure concurrentinsert(prioriiy, heap) 
I /  Insert new item at bottom o f  the heap. 
lock(heap.lock); i := bit-reversedincrement(heap.size) 
LOCK(i)  ; unlock(heap.lock) ; PRIORITY ( i )  := priority 
TAG( i )  := pi4 UNLOCKS) 

/ 1 Move item towards top o f  heap while it has higher priority 
/ I than parent. 
while i > 1 do 

parent := i/2; LOCK(parent); LOCK(i)  
if TAG(parent) = AVAILABLE and TAG(i )  = pid then 

if PRIORITY ( i )  > PRIORITY (parent) then 
swapitems(i,  parent); i := parent 

else 
TAG(i )  := AVAILABLE; i := 0 

else if TAG(parent) = EMPTY then 
i := 0 

else if TAG(i )  # pid then 
i := parent 

UNLOCK(i)  ; UNLOCK(parent) 
enddo 
if i = 1 then 

LOCK(()  
if TAG(i )  = pid then 

TAG(i )  := AVAILABLE 
UNLOCK( i )  

Fig. 1 .  Concurrent insert operation. For conciseness, we  treat 
priority as i f  it were the only datum in each dataitem. 

to traverse the entire height of the heap. In addition to 
reducing traversal overhead, the bottom-up insertion 
approach of the new algorithm reduces contention on 
topmost nodes. 

We next consider the space requirements for algo- 
rithms under consideration. Let M be the maximum 
number of nodes in the heap, and P the maximum 
number of processes operating on the heap. Assume 
that each lock requires one bit of memory. The new 
algorithm requires 1 bit for the lock on the heap size 
variable, 3 log M bit-reversal bits, and 1 + log P lock 
and tag bits per node, for a total of 1 + 3 log M + ( 1 + 
log P) M bits of memory. The single lock algorithm 
requires 1 bit of memory for the single lock. Rao and 
Kumar's algorithm requires 3 bits per node for a total 
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function concurrent-delete(heap) 
/ /  Grab item from bottom o f  heap to replace to-be-deleted 
/ / top item. 
lock( heaplock) 
bottom := bit-reversedJdecrement(heap.size); 
LOCK(bottom); unlock(11eap.lock) 
priority := PRIORITY(bottom) 
TAG(bottom) := EMPTY; UNLOCK(bottorn) 

/ /  Lock first item. Stop i f  it was the only item in the heap. 
LOCK( I ) ;  if TAG(1)  = EMPTY then UNLOCK(1) 
return priority 

/ /  Replace the top item with the item stored from 
/ /  the bottom. 
swap(priority, PRIORITY( 1 ) ) ; TAG( I )  := AVAILABLE 

/ /  Adjust heap starting at top. Always hold lock on item 
/ / being adjusted. 
i := 1 
while ( i  < MAX-SIZE / 2 )  do 

left := i * 2; right := i * 2 + 1 ;  LOCK(1eft); LOCK(righ2) 
if TAG(1eft) = EMPTY then 

UNLOCK(rig1zt) ; UNLOCK( left) ; break 
else if TAG(rig1zt) = EMPTY 
or PRIORITY (left) > PRIORITY ( right) then 

UNLOCK(righ2); child := left 
else 

UNLOCK(1eft); child := right 

/ /  I f  child has higher priority than parent then swap. 
/ /  I f  not, stop. 
if PRIORITY (child) > PRIORITY ( i )  then 

swapitems(child, i ) ;  UNLOCK(i);  i := child 
else 

UNLOCK(chi1d) ; break 
enddo 
UNLOCK( i )  
return priority 

Fig. 2. Concurrent delete operation. 

of 3M bits of memory. If bit reversal were added to 
Rao and Kumar's algorithm, it would require 3 log M 
extra bits, for a total of 3 log M + 3M bits of mem- 
ory. The single lock algorithm is significantly more 
space efficient than the multiple lock algorithms. Rao 
and Kumar's algorithm requires less space than the 
new algorithm (@(M) for the former compared to 
@(M\og P) for the latter). In practice, however, bit 
packing results in false sharing in cache-coherent sys- 
tems, and should therefore be avoided. If overhead bits 
for different nodes occupy different memory words, 
and if the number of processes operating on the heap 
does not exceed 2" - 2, where n is the number of 

record bit-reversedsounter 
counter := 0 ;  reversed := 0 ;  highhit := - 1 

function bit-reversedincrement(c) 
c.counter := c.counter + 1 
for bit := c.high-bit - 1 to 0 step - 1 

c.reversed := not(c.reversed, bit) 
if test(c.reversed, bit) = TRUE then 

break 
if bit < 0 then 

c.reversed := c.counter; c.highhit := c.high-bit + I 
return c.reversed 

function bit-reverseddecrement(c) 
c.counter := c.counter - 1 
for bit := c.highhit - 1 to 0 step - 1  

c.reversed := not(c.reversed, bit) 
if test(c,reversed, bit) = FALSE then 

break 
if bit < 0 then 

c.reversed := c.counter; c.highhit := c.high-bit - 1 
return c.reversed 

Fig. 3. A bit-reverse counter. 

bits per memory word, then the space overhead of the 
new algorithm is the same as that of Rao and Kumar's 
algorithm, except for three words for the bit-reverse 
counter. 

Figs. 1 and 2 present pseudo code for the insert and 
delete operations of the new algorithm, respectively. 
Initially, all locks are free, all node tags are set to 
EMPTY, and the number of elements in the heap is zero. 

Bit reversals can easily be calculated in O(n) time, 
where n is the number of bits to be reversed. For long 
sequences of increments only or decrements only, we 
can improve this bound to an amortized time of 0( 1 ) 
by remembering the high-order bit (see Fig. 3). Al- 
ternating increments and decrements may still require 
O(n) time. 

3. Experimental methodology 

We use a 12-processor Silicon Graphics Challenge 
multiprocessor to compare the performance of the 
new algorithm, the single-lock algorithm, and Rao and 
Kumar's algorithm. We tried the latter both with and 
without adding our bit-reversal technique, in order to 
determine if it suffices to improve performance. For 
mutual exclusion we used test-and-test-and-set locks 
with backoff using the MIPS R4000 load-linked 
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17 level 100,000 ins 17 level 100,000 del 

new multi-lock -+ 

R&K multi-lock + 

R&K multi-lock w/ bit-rev 0 

single lock * 

1 2 3 4 5 6 7 8 9 1 0 1 1  
processors 

new multi-lock - 
R&K multi-lock -+--- 

R&K multi-lock wl bit-rev e - 
single lock 

1 2 3 4 5 6 7 8 9 1 0 1 1  
processors 

Fig. 4. Performance results for (a) 100,000 insertions and (b) 100,000 deletions. 

and store-condit ional instructions. On small- 
scale multiprocessors like the Challenge, these locks 
have low overhead compared to other more scalable 
locks [4].  

To evaluate the performance of the algorithms under 
different levels of contention, we varied the number 
of processes in our experiments. Each process runs on 
a dedicated processor in a tight loop that repeatedly 
updates a shared heap. Thus, in our experiments the 
number of processors corresponds to the level of con- 
tention. We believe these results to be comparable to 
what would be achieved with a much larger number 
of processes, each of which was doing significant real 
work between queue operations. In all experiments, 
processors are equally loaded. We studied the perfor- 
mance under workloads of insertions only, deletions 
only, and various mixed insertldelete distributions. We 
also varied the initial number of full levels in the heap 
before starting time measurements to identify perfor- 
mance differences with different heap sizes. For the 
experiments we used workloads of around 100,000 to 
200,000 heap operations. Experiments with smaller 
workloads are too fast to time. Inserted item priori- 
ties were chosen from a uniform distribution on the 
domain of 32-bit integers. 

The sources for all the algorithms were carefully 
hand-optimized. For example in the multiple-lock al- 
gorithms we changed the data layout to reduce the ef- 
fect of false sharing. This was not applied to the single 
lock algorithm as it does not support concurrent ac- 
cess; aligning data to cache lines would only increase 
the total number of cache misses. We believe we have 

empty 10,000 (1 0 ins 10 del) 

new multi-lock -+ 

R&K multi-lock 
R&K multi-lock w/ bit-rev a 

6 single lock 

" 
1 2 3 4 5 6 7 8 9 1 0 1 1  

processors 

Fig. 5. Performance results for 10,000 sets of 10 insertions and 
10 deletions on an empty heap. 

implemented each algorithm as well as is reasonably 
possible, resulting in fair comparisons. 

Figs. 4(a) and 4(b) show the time taken to perform 
100,000 insertions and deletions on a heap with 17 
full levels. Fig. 5 shows the time taken to perform 
10,000 sets of 10 insertions and 10 deletions on an 
empty heap. Figs. 6(a) and 6(b) show the time taken 
to perform 100,000 insertldelete pairs on a 7-level- 
full heap and a 17-level-full heap. 

In the case of insertions only (Fig. 4(a)),  the 
single-lock and the new algorithm have better per- 
formance because insertions do not have to traverse 
the whole height of the tree (as they do in Rao and 

3The programs are accessible at ftp://ftp.cs.rochester.edu/ 
pub [packages /concurrent-heap 
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7 levels 100,000 (1 ins 1 del) 17 levels 100,000 (1 ins 1 del) 
, , . . , . . , , .  

new multi-lock - 
R&K multi-lock -+---- 

R&K multi-lock w/ bit-rev 0 

single lock * 

1 2 3 4 5 6 7 8 9 1 0 1 1  
processors 

Â¥* ,' ~, new multi-lock +- 

/ a,  '.,~ . . .  R&K multi-lock ~ + ~ +  ,, ; ., ~, 
;; , .  , , . '  

R&K multi-lock w/bit-rev e . . 
*,: .,,, 
; ' Â  \ 

single lock 

1 2 3 4 5 6 7 8 9 1 0 1 1  
processors 

Fig. 6 .  Performance results for ( a )  100,000 insert/delete pairs on a 7-level-full heap and ( b )  100,000 insert/delete pairs on a 17-level-full 
heap 

Kumar's algorithm), and most inserted items settle in 
the two bottom-most levels of the heap. Insert oper- 
ations for the single-lock algorithm in this case are 
fast enough that greater potential for concurrency in 
the new multi-lock algorithm does not help much. 

In the case of deletions only (Fig. 4(b) ), the multi- 
lock algorithms outperform the single-lock algorithm. 
This is because most deletions have to traverse the 
whole height of the tree and may not traverse the same 
path each time. As a result, the concurrency permitted 
in the multi-lock algorithms is higher and outweighs 
the overhead of locking, since there is little contention 
along the paths. Deletions in the new algorithm pro- 
ceed top-down, similar to deletions in Rao and Ku- 
mar's algorithm; therefore the two algorithms display 
similar performance. 

In the case of alternating insertions and deletions on 
an initially empty heap (Fig. 5),  the height of the heap 
is very small. The single-lock algorithm outperforms 
the other algorithms because it has low overhead and 
there is little opportunity for the multi-lock algorithms 
to exploit concurrency. Comparing the new algorithm 
with that of Rao and Kumar, we find that the new 
algorithm yields better performance as it suffers less 
from contention on the topmost nodes of the heap. 
Note that after several insertldelete cycles, the items 
remaining in the heap tend to have low priorities, so 
new insertions have to traverse most of the path to 
the root in the new algorithm. This means that the 
performance advantage of the new algorithm over that 
of Rao and Kumar in this case is due more to reduced 

contention for the topmost nodes of the tree (due to 
opposite directions for insertion and deletion) than to 
shorter traversals. 

In the case of alternating insertions and deletions 
on a 7-level-full heap (Fig. 6(a) ), the heap height 
remains almost constant. The single-lock algorithm 
outperforms the others due to its low overhead, but the 
difference between it and the new algorithm narrows as 
the level of contention increases, since 7 levels provide 
the new algorithm with reasonable opportunities for 
concurrency. Rao and Kumar's algorithm suffers from 
high contention on the topmost nodes. 

In the case of alternating insertions and deletions on 
a 17-level-full heap (Fig. 6(b)) ,  the larger heap height 
makes concurrency, rather than locking overhead, the 
dominant factor in performance. The multi-lock algo- 
rithms therefore perform better than the single-lock 
algorithm. As in the case of the empty and 7-level-full 
heaps, new insertions tend to have higher priorities 
than the items already in the heap, and tend to settle 
near the top of the heap. In spite of this, the new al- 
gorithm outperforms that of Rao and Kumar because 
of reduced contention on the topmost nodes. 

4. Conclusions 

We have presented a new algorithm that uses multi- 
ple mutual exclusion locks to allow consistent concur- 
rent access to array-based priority queue heaps. The 
new algorithm avoids deadlock among concurrent ac- 
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cesses without forcing insertions to proceed top-down 
[7] ,  or introducing a work queue and extra processes 
[ 1 ] . Bottom-up insertions reduce contention for the 
topmost nodes of the heap, and avoid th~e need for 
a full-height traversal in many cases. The new algo- 
rithm also uses bit-reversal to increase concurrency 
among consecutive insertions, allowing them to fol- 
low mostly-disjoint paths. Empirical results, compar- 
ing the new algorithm, the single-lock algorithm, and 
Rao and Kumar's top-down insertion algorithm [7] 
on an SGI Challenge, show that the new algorithm 
provides reasonable performance on small heaps, and 
significantly superior performance on large heaps un- 
der high levels of contention. 
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