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Abstract

Most multiprocessors are multiprogrammed in order to achieve acceptable response time and to increase utilization.
Unfortunately, inopportune preemption may significantly degrade the performance of synchronized parallel applica-
tions. To address this problem, researchers have developed two principal strategies for concurrent, atomic update of
shared data structures: preemption-safe locking and non-blocking (lock-free) algorithms. Preemption-safe locking
requires kernel support. Non-blocking algorithms generally require a universal atomic primitive such as compare
and swap or load linked/store conditional.

We focus in our study on four simple but important concurrent data structures—stacks, FIFO queues, priority
queues and counters—in synthetic kernels and real applications on a 12-processor SGI Challenge multiprocessor. Our
results indicate that efficient, data-structure-specific non-blocking algorithms, which exist for stacks, FIFO queues
and counters, outperform both preemption-safe and ordinary locks by 20–40% in real applications and 40–55% in
synthetic kernels on both multiprogrammed and dedicated systems (general-purpose non-blocking techniques do not
yet appear to be practical). At the same time, preemption-safe locks outperform conventional locks by significant
margins on multiprogrammed systems. The clear conclusion is that data-structure-specific non-blocking algorithms
should be used whenever possible. For data structures for which such algorithms are not known, operating systems for
multiprogrammed parallel machines should provide preemption-safe locks.
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1 Introduction

On shared memory multiprocessors, processes communicate using shared data structures. To ensure the consis-
tency of these data structures, processes perform synchronized concurrent update operations, mostly using critical
sections protected by mutual exclusion locks. In order to achieve acceptable response time and high utilization,
most multiprocessors are multiprogrammed by time-slicing processors among processes. The performance of mutual
exclusion locks in parallel applications degrades on time-slicing multiprogrammed systems [29] due to preemption of
processes holding locks. Any other processes busy-waiting on the lock are then unable to perform useful work until
the preempted process is rescheduled and subsequently releases the lock.

Alternative multiprogramming schemes to time-slicing have been proposed in order to avoid the adverse effect
of time-slicing on the performance of synchronization operations. However, each has limited applicability and/or
reduces the utilization of the multiprocessor. Coscheduling, proposed by Ousterhout [18], ensures that all processes
of an application run together. It has the disadvantage of reducing the utilization of the multiprocessor if applications
have a variable amount of parallelism, or if processes cannot be evenly assigned to time-slices of the multiprocessor.
Another alternative is hardware partitioning, under which no two applications share a processor. This scheme has
the disadvantage of requiring applications to be able to adjust their number of processes as new applications join the
system. Otherwise, processes from the same application might have to share the same processor, allowing one to be
preempted while holding a mutual exclusion lock. Traditional time-slicing remains the most widely used scheme of
multiprogramming on multiprocessor systems.

For time-sliced systems, researchers have proposed two principal strategies to avoid inopportune preemption:
preemption safe locking and non-blocking algorithms. Most preemption-safe locking techniques require a widening
of the kernel interface, to facilitate cooperation between the application and the kernel. Generally, these techniques try
either to recover from the preemption of lock-holding processes (or processes waiting on queued locks), or to avoid
preempting processes while holding locks. Further discussion of this direction is presented in section 2.

An implementation of a data structure is non-blocking (also known as lock-free) if it guarantees that at least
one process of those trying to concurrently update the data structure will succeed in completing its operation within
a bounded amount of time, assuming that at least one process is active, regardless of the state of other processes.
Non-blocking algorithms do not require any communication with the kernel and by definition they cannot use mutual
exclusion. Rather, they generally rely on hardware support for a universal1 atomic primitives such as compare and
swap2 or the pair load linked and store conditional,3 while mutual exclusion locks can be implemented
using weaker atomic primitives such astest and set,fetch and increment, orfetch and store. Further
discussion of non-blocking implementations is presented in section 3.

Few of the above mentioned techniques have been evaluated experimentally, and then only in comparison to
ordinary mutual exclusion locks. Our contribution is to evaluate the relative performance of preemption-safe and
non-blocking atomic update on multiprogrammed (time-sliced) systems. We focus on four simple but important data
structures: counters, queues, stacks, and priority queues. Our experiments employ both synthetic kernels and real
applications, on a 12-processor Silicon Graphics Challenge multiprocessor. We describe our methodology and results
in section 4. We find that efficient (data-structure-specific) non-blocking algorithms clearly outperform both ordinary
and preemption-safe lock-based alternatives, not only on time-sliced systems, but on dedicated machines as well. At
the same time, preemption-safe algorithms outperform ordinary locks on time-sliced systems, and should therefore
be supported by multiprocessor operating systems. We do not examine general-purpose non-blocking techniques in
detail; previous work indicates that they are highly inefficient (though they provide a level of fault tolerance unavailable
with locks). We summarize our conclusions and recommendations in section 5.

1Herlihy [9] presented a hierarchy of non-blocking objects that also applies to atomic primitives. A primitive is in level � of the
hierarchy if it can provide a non-blocking solution to a consensus problem for up to � processors. Primitives in higher levels of
the hierarchy can provide non-blocking implementations of those in lower levels, while the reverse is impossible. Compare and
swap and the pair load linked and store conditional are universal primitives as they are in level � of the hierarchy.
Widely supported primitives such as test and set, fetch and add, and fetch and storeare in level 2.

2Compare and swap, introduced on the IBM System 370, takes as arguments the address of a shared memory location, an
expected value, and a new value. If the shared location currently holds the expected value, it is assigned the new value atomically.
A Boolean return value indicates whether the replacement occurred.

3Load linked and store conditional, proposed by Jensen et al. [11], must be used together to read, modify, and write
a shared location. Load linked returns the value stored at the shared location. Store conditional checks if any other
processor has since written to that location. If not then the location is updated and the operation returns success, otherwise it returns
failure. Load linked/store conditional is supported (on bus-based multiprocessors) by the MIPS II, PowerPC, and Alpha
architectures.
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2 Preemption-Safe Locking
For simple mutual exclusion locks (e.g. test and set), preemption-safe locking techniques allow the system

either to avoid or to recover from the preemption of processes holding locks. Edler et al.’s Symunix system [7] provides
an avoidance technique: a process may set a flag requesting that the kernel not preempt it because it is holding a lock.
The kernel will honor the request up to a pre-defined time limit, setting a second flag to indicate that it did so, and
deducting any extra execution time from the beginning of the process’s next quantum. A process should yield the
processor if it finds, upon leaving a critical seciton, that it was granted an extension.

The first-class threads of Marsh et al.’s Psyche system [14] provide a different avoidance technique: they require
the kernel to warn an application process a fixed amount of time in advance of preemption, by setting a flag that is
visible in user space. If a process verifies that the flag if unset before entering a critical section (and if critical sections
are short), then it is guaranteed to be able to complete its operation in the current quantum. If it finds the flag is set, it
can voluntarily yield the processor.

Black’s work on Mach [6] includes a recovery technique: a process may suggest to the kernel that it be descheduled
in favor of some specific other process (presumably the one that is holding a desired lock). The scheduler activations of
Anderson et al. [4] also support recovery: when a processor is taken from an application, another processor belonging
to the same application is informed via software interrupt. If the preempted thread was holding a lock, the interrupted
processor can perform a context switch to the preempted thread and push it through the critical section.

Simple preemption-avoidance techniques rely on the fact that processes acquire a test and set lock in non-
deterministic order. Unfortunately, test and set locks do not scale well to large machines. Queue-based locks
scale well, but impose a deterministic order on lock acquisitions, forcing a preemption-avoidance technique to deal with
preemption not only of the process holding a lock, but of processes waiting in the lock’s queue as well. Preempting
and scheduling processes in an order inconsistent with their order in the lock’s queue can degrade performance
dramatically. Kontothanassis et al. [12, 27, 28] present scheduler-conscious versions of the ticket lock, the MCS
lock [15], and Krieger et al.’s reader-writer lock [13]. These algorithms detect the descheduling of critical processes
using handshaking and/or a widened kernel-user interface.

The proposals of Black and of Anderson et al. require the application to recognize the preemption of lock-holding
processes and to deal with the problem. By performing recovery on a processor other than the one on which the
preempted process last ran, they also sacrifice cache footprint. The proposal of Marsh et al. requires the application to
estimate the maximum duration of a critical section, which is not always possible. To represent the preemption-safe
approach in our experiments, we employ test-and-test and set locks with exponential backoff, based on the kernel
interface of Edler et al. For machines the size of ours (12 processors), the results of Kontothanassis et al. indicate that
these will out-perform queue-based locks.

3 Non-Blocking Implementations
Several non-blocking concurrent implementations of widely used data structures as well as general methodologies

for developing such implementations systematically have been proposed in the literature. These implementations and
methodologies were motivated in large part by the performance degradation of mutual exclusion locks as a result of
arbitrary process delays, particularly those due to preemption on a multiprogrammed system.

Herlihy [8, 10] presented a general methodology for transforming sequential implementations of data structures to
concurrent non-blocking implementations using compare and swap or load linked/store conditional.
The basic methodology requires copying the whole data structure on every update. Herlihy also proposed an optimiza-
tion by which the programmer can avoid some fraction of the copying for certain data structures; he illustrated this
optimization in a non-blocking implementation of a skew-heap-based priority queue. Alemany and Felten [1] proposed
several techniques to reduce unnecessary copying and useless parallelism associated with Herlihy’s methodologies
using extra communication between the operating system kernel and application processes. Barnes [5] presented a
similar general methodology in which processes record and timestamp their modifications to the shared object, and
cooperate whenever conflicts arise. Turek et al. [23] and Prakash et al. [20] presented methodologies for transforming
multiple lock concurrent objects into lock-free concurrent objects.

In comparison to data-structure-specific non-blocking algorithms, these general methodologies tend to be ineffi-
cient, with significant overheads for copying and/or logging of operational steps. Many of the papers present their
algorithms without experimental results. In general, the performance of non-blockingalgorithmsresulting from general
methodologies is acknowledged to be significantly inferior to that of the corresponding lock-based implementations.

Prakash et al. [19, 21], Valois [24, 25], and Michael and Scott [17] proposed non-blocking implementations of
concurrent link-based queues. Treiber [22] proposed a non-blocking implementation of concurrent link-based stacks.
Valois [26] proposed a non-blocking implementation of linked lists. Anderson and Woll [3] proposed a non-blocking
solution to the union-find problem. Simple non-blocking centralized counters can be implemented using a fetch
and add atomic primitive (if supported by hardware), or a read-modify-check-write cycle using compare and
swap or load linked/store conditional.

3



Performance results were reported for only a few of these algorithms [17, 21, 24]. The results of Michael and
Scott indicate that their non-blocking implementation of link-based queues outperforms all other non-blocking and
lock-based implementations, on both multiprogrammed and dedicated multiprocessors. The queue of Prakash et
al. outperforms lock-based implementations in the case of multiprogramming.

No performance results were reported for non-blocking stacks. However, Treiber’s stack is very simple and can
be expected to be quite efficient. We also observe that a stack derived from Herlihy’s general methodology, with
unnecessary copying removed, seems to be simple enough to compete with lock-based implementations.

No practical non-blocking implementations for array-based stacks or circular queues have been proposed. The
general methodologies can be used, but the resulting implementations would be very inefficient. For these data
structures lock-based implementations seem to be the only option. However, many applications use link-based
queues and stacks; if the data size is more than few bytes, then the time overhead of copying data in an array-based
implementation is likely to overshadow the space overhead of links.

As representatives of the best available non-blocking algorithms on simple data structures, we use the following in
our experiments: the non-blocking link-based queues of Michael and Scott [17] and Prakash et al. [21], the non-blocking
link-based stack of Treiber [22], an optimized version of a stack resulting from applying Herlihy’s methodology [10],
a skew heap implementation due to Herlihy using his general methodology with optimized copying [10], and a load
linked/store conditional implementation of counters.

4 Experimental Results
We use a 12-processor Silicon Graphics Challenge multiprocessor to compare the performance of the best non-

blocking, ordinary lock-based, and preemption-safe lock-based implementations of counters and of link-based queues,
stacks, and skew heaps. We use synthetic kernels to compare the performance of the alternative implementations under
various levels of contention. We also use two versions of a parallel quicksort application, together with a parallel solution
to the traveling salesman problem, to compare the performance of the implementations when used in a real application. C
code for all the synthetic kernels and the real application can be obtained from ftp://ftp.cs.rochester.edu/
pub/packages/s ched conscious synch/multiprogramming.

To ensure the accuracy of our results, we prevented other users from accessing the multiprocessor during the
experiments. To evaluate the performance of the algorithms under different levels of multiprogramming, we used a
feature of the Challenge’s Irix operating system that allows programmers to pin processes to processors. We then used
one of the processors to serve as a pseudo-scheduler. Whenever a process is due for preemption, the pseudo-scheduler
interrupts it, forcing it into a signal handler. The handler spins on a flag which the pseudo-scheduler sets when the
process can continue computation. The time spent executing the handler represents the time during which the processor
is taken from the process and handed over to a process that belongs to another application.

All ordinary and preemption-safe locks used in the experiments are test-and-test and set locks with bounded
exponential backoff. All non-blocking implementations also use bounded exponential backoff. The effectiveness of
backoff in reducing contention on locks and synchronization data is demonstrated in the literature [2, 15]. The backoff
was chosen to yield good overall performance for all implementations, and not to exceed 30 � s. Higher backoff
delays sometimes appear to improve the performance of the synthetic kernels in the case of high contention, but this
is only because they allow one process to perform a large number of operations without suffering any cache misses or
interference from other processors, something that rarely happens in real applications.

In the figures, multiprogramming level represents the number of applications sharing the machine, with one process
per processor per application. A multiprogramming level of 1 (the top graph in each figure) therefore represents a
dedicated machine; a multiprogramming level of 3 (the bottom graph in each figure) represents a system with a process
from each of three different applications on each processor.

4.1 Queues
Figure 1 shows performance results for six queue implementations on a dedicated system (no multiprogramming),

and on multiprogrammed systems with 2 and 3 processes per processor. The six implementations are: the usual single-
lock implementation using both ordinary and preemption-safe locks; an implementation due to Michael and Scott [17]
that uses a pair of locks to protect the head and the tail of the queue, again using both ordinary and preemption-safe
locks; and non-blocking implementations due to Michael and Scott [17] and Prakash et al. [21].

The horizontal axes of the graphs represent the number of processors. The vertical axes represent execution time
normalized to that of the preemption-safe single lock implementation. This implementation was chosen as the basis
of normalization because it yields the median performance among the set of implementation. We use normalized time
in order to show the difference in performance between the implementations uniformly across different number of
processors. If we were to use absolute time, the vertical axes would have to be extended to cover the high absolute
execution time on a single processor, making the graph too small to read for larger numbers of processors. The
absolute times in seconds for the preemption-safe single-lock implementation on one and 11 processors, with 1, 2, and
3 processes per processor, are 18.2 and 15.6, 38.8 and 15.4, and 57.6 and 16.3, respectively.
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Figure 1: Normalized execution time for one million enqueue/dequeue pairs on a multipro-
grammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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The execution time is the time taken by all processors to perform one million pairs of enqueues and dequeues to an
initiallyempty queue (each process performs 1,000,000/� enqueue/dequeue pairs, where � is the number of processors).
Every process spends 6 � s spinning in an empty loop after performing every enqueue or dequeue operation (total 12
� s per iteration). This time is meant to represent “real” computation. It prevents one process from dominating the data
structure and finishing all its operations while other processes are starved by caching effects and backoff.

The results show that as the level of multiprogramming increases the performance of ordinary locks degrades sig-
nificantly, while the performance of preemption-safe locks and non-blocking algorithms remains relatively unchanged.
Absolute time increases roughly linearly with increasing levels of multiprogramming. The “bump” at two processors
is primarily due to cache misses, which do not occur on one processor.

The two-lock implementation outperforms the single-lock in the case of high contention, but it suffers more
with multiprogramming when using ordinary locks, as the chances are larger that a process will be preempted while
holding a lock needed by other processes. The non-blocking implementations provide added concurrency without
being vulnerable to the effect of multiprogramming.

The non-blocking implementation of Michael and Scott yields the best overall performance even on dedicated
systems. It outperforms the single-lock preemption-safe implementation by more than 40% on 11 processors with
various levels of multiprogramming.
4.2 Stacks

Figure 2 shows performance results for four stack implementations on a dedicated system, and on multiprogrammed
systems with 2 and 3 processes per processor. The four implementations are: the usual single lock implementation
using ordinary and preemption-safe locks, a non-blocking implementations due to Treiber [22], and an optimized
non-blocking implementation based on Herlihy’s general methodology [10].

The axes in the graphs have the same semantics as those for the queue graphs. Execution time is normalized to that
of the preemption-safe single lock implementation. The absolute times in seconds for the preemption-safe lock-based
implementation on one and 11 processors, with 1, 2, and 3 processes per processor, are 18.9 and 20.3, 40.8 and 20.7,
and 60.2 and 21.6, respectively. As in the synthetic application for queues, each process executes 1,000,000/� push/pop
pairs on an initially empty stack, with a 6 � s delay between operations.

As the level of multiprogramming increases, the performance of ordinary locks degrades, while the performance
of the preemption-safe and non-blocking implementations remains relatively unchanged. Treiber’s implementation
outperforms all the others even on dedicated systems. It outperforms the preemption-safe implementation by over 45%
on 11 processors with various levels of multiprogramming.
4.3 Heaps

Figure 3 shows performance results for three heap implementations on a dedicated system, and on multiprogrammed
systems with 2 and 3 processes per processor. The three implementations are: the usual single-lock implementation
using ordinary and preemption-safe locks, and an optimized non-blocking implementation due to Herlihy [10].

The axes in the graphs have the same semantics as those for the queue and stack graphs. Execution time
is normalized to that of the preemption-safe single lock implementation. The absolute times in seconds for the
preemption-safe lock-based implementation on one and 11 processors, with 1, 2, and 3 processes per processor, are
21.0 and 27.7, 43.1 and 27.4, and 65.0 and 27.6, respectively. Each process executes 1,000,000/� insert/delete min
pairs on an initially empty heap with a 6 � s delay between operations. Experiments with non-empty heaps resulted in
relative performance similar to that reported in the graphs.

As the level of multiprogramming increases the performance of ordinary locks degrades, while the performance
of the preemption-safe and non-blocking implementations remains relatively unchanged. The degradation of the
ordinary locks is larger than that suffered by the locks in the queue and stack implementations, because the heap
operations are more complex and result in higher levels of contention. Unlike the case for queues and stacks, the
non-blocking implementation of heaps is quite complex. It cannot match the performance of the preemption-safe
lock implementation on either dedicated or multiprogrammed systems. Heap implementations resulting from general
non-blocking methodologies (without data-structure-specific elimination of copying) are even more complex, and
could be expected to perform worse.
4.4 Counters

Figure 4 shows performance results for three implementations of counters on a dedicated system, and on multipro-
grammed systems with 2 and 3 processes per processor. The three implementations are: the usual single lock imple-
mentation using ordinary and preemption-safe locks, and the standard implementations usingload linked/store
conditional (compare and swap could be used instead).

The axes in the graphs have the same semantics to those for the previous graphs. Execution time is normalized
to that of the preemption-safe single lock implementation. The absolute times in seconds for the preemption-safe
lock-based implementation on one and 11 processors, with 1, 2, and 3 processes per processor, are 17.7 and 10.8, 35.0
and 11.3, and 50.6 and 10.9, respectively. Each process executes 1,000,000/� increments on a shared counter with a 6
� s delay between successive operations.
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Figure 2: Normalized execution time for one million push/pop pairs on a multiprogrammed
system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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grammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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Figure 4: Normalized execution time for one million atomic increments on a multipro-
grammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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The results are similar to those observed for queues and stacks, but are even more pronounced. The non-blocking
implementation outperforms the preemption-safe lock-based counter by more than 55% on 11 processors with levels
of multiprogramming. The performance of a fetch and add atomic primitive would be even better [16].

4.5 Quicksort Application
We performed experiments on two versions of a parallel quicksort application, one that uses a link-based queue,

and another that uses a link-based stack for distributing items to be sorted among the cooperating processes. We used
three implementations for each of the queue and the stack: the usual single lock implementation using ordinary and
preemption-safe locks, and the non-blocking implementations of Michael and Scott, and Treiber, respectively. In each
execution, the processes cooperate in sorting an array of 500 pseudo-random numbers using quicksort for intervals of
more than 20 elements, and insertion sort for smaller intervals.

Figure 5 shows the performance results for the three queue-based versions; figure 6 shows the performance
results for the three stack-based versions. Execution times are normalized to those of the preemption-safe lock-based
implementations. The absolute times in seconds for the preemption-safe lock-based implementation on one and 11
processors, with 1, 2, and 3 processes per processor, are 4.0 and 1.6, 7.9 and 2.3, and 11.6 and 3.3, respectively for a
shared queue, and 3.4 and 1.5, 7.0 and 2.3, and 10.2 and 3.1, respectively for a shared stack.

The results confirm our observations from experiments on synthetic applications. Performance with ordinary locks
degrades under multiprogramming, though not as severely as before, since more work is being done between atomic
operations. Simple non-blocking implementations yield superior performance even on dedicated systems, making
them the implementation of choice under any level of contention or multiprogramming.

4.6 Traveling Salesman Application
We performed experiments on a parallel implementation of a solution to the traveling salesman problem. The

program uses a shared heap, stack, and counters. We used three implementations for each of the heap, stack, and
counters: the usual single lock implementation using ordinary and preemption-safe locks, and the best respective
non-blocking implementations (Herlihy–optimized, Treiber, and load linked/store conditional). In each
execution, the processes cooperate to find the shortest tour in a 17-city graph. The processes use the priority queue
heap to share information about the most promising tours, and the stack to keep track of the tours that are yet to be
computed. We ran experiments with each of the three implementations of the data structures. In addition, we ran
experiments with a “hybrid” program that uses the version of each data structure that ran the fastest for the synthetic
applications: non-blocking stacks and counters, and a preemption-safe priority queue.

Figure 7 shows the performance results for the four different implementations. Execution times are normalized
to those of the preemption-safe lock-based implementation. The absolute times in seconds for the preemption-safe
lock-based implementation on one and 11 processors, with 1, 2, and 3 processes per processor, are 34.9 and 14.3, 71.7
and 15.7, and 108.0 and 18.5, respectively. As expected, the implementation based on ordinary locks suffer under
multiprogramming. The hybrid implementation yields the best performance.

5 Conclusions
For atomic update of a shared data structure, the programmer may ensure consistency using a (1) single lock,

(2) multiple locks, (3) a general-purpose non-blocking technique, or (4) a special-purpose (data-structure-specific)
non-blocking algorithm. The locks in (1) and (2) may or may not be preemption-safe.

Options (1) and (3) are easy to generate, given code for a sequential version of the data structure, but options (2)
and (4) must be developed individually for each different data structure. Good data-structure-specific multi-lock and
non-blocking algorithms are sufficiently tricky to devise that each has tended to constitute an individual publishable
result.

Our experiments indicate that for simple data structures, special-purpose non-blocking atomic update algo-
rithms will outperform all alternatives, not only on multiprogrammed systems, but on dedicated machines as well.
Given the availability of a universal atomic hardware primitive (compare and swap or load linked/store
conditional), there seems to be no reason to use any other version of a stack, a queue, or a small, fixed-sized
object like a counter.

For less trivial data structures, however, or for machines without appropriate primitives, preemption-safe algorithms
are clearly important. Preemption-safe locks impose a modest performance penalty on dedicated systems (up to 20%
in our traveling salesman results; less than 5% in the other experiments), but provide dramatic savings on time-sliced
systems. Further research in general-purpose non-blocking techniques is clearly warranted, though we doubt that the
results will ever match the performance of preemption-safe locks.

For the designers of future systems, we recommend (1) that hardware always include a universal atomic primitive,
and (2) that kernel interfaces provide a mechanism for preemption-safe locking. For small-scale machines, the Synunix
interface appears to work well [7]. For larger machines, a more elaborate interface may be appropriate [12].
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Figure 5: Normalized execution time for quicksort of 500 items using a shared queue on
a multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3
(bottom).
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Quicksort – stack
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Figure 6: Normalized execution time for quicksort of 500 items using a shared stack on
a multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3
(bottom).
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TSP
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Figure 7: Normalized execution time for a 17-city traveling salesman problem using a shared
priority queue, stack and counters on a multiprogrammed system, with multiprogramming
levels of 1 (top), 2 (middle), and 3 (bottom).
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