
Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS
DEC Cambridge Research Laboratory
ROBERT W. WISNIEWSKI
Silicon Graphics, Inc.
and
MICHAEL L. SCOTT
University of Rochester

Efficient synchronization is important for achieving good performance in parallel programs,
especially on large-scale multiprocessors. Most synchronization algorithms have been de-
signed to run on a dedicated machine, with one application process per processor, and can
suffer serious performance degradation in the presence of multiprogramming. Problems arise
when running processes block or, worse, busy-wait for action on the part of a process that the
scheduler has chosen not to run. We show that these problems are particularly severe for
scalable synchronization algorithms based on distributed data structures. We then describe
and evaluate a set of algorithms that perform well in the presence of multiprogramming while
maintaining good performance on dedicated machines. We consider both large and small ma-
chines, with a particular focus on scalability, and examine mutual-exclusion locks, reader-writer
locks, and barriers. Our algorithms vary in the degree of support required from the kernel
scheduler. We find that while it is possible to avoid pathological performance problems using
previously proposed kernel mechanisms, a modest additional widening of the kernel/user interface
can make scheduler-conscious synchronization algorithms significantly simpler and faster, with
performance on dedicated machines comparable to that of scheduler-oblivious algorithms.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Pro-

This work was supported in part by National Science Foundation grants CCR-9319445 and
CDA-8822724, by ONR contract N00014-92-J-1801 (in conjunction with the ARPA Research in
Information Science and Technology–High Performance Computing, Software Science and
Technical program, ARPA order no 8930), and by ARPA research grant MDA972-92-J-1012. R.
Wisniewski was supported in part by an ARPA Fellowship in High Performance Computing
administered by the Institute for Advanced Computer Studies, University of Maryland.
Experimental results were obtained in part through use of resources at the Cornell Theory
Center, which receives major funding from NSF and New York State; additional funding
comes from ARPA, the NIH, IBM Corp., and other members of the Center’s Corporate
Research Institute. The U.S. Government has certain rights in this material.
Authors’ addresses: L. I. Kontothanassis, DEC Cambridge Research Laboratory, One Kendall
Square, Cambridge, MA 02139; email: kthanasi@crl.dec.com; R. W. Wisniewski, Silicon
Graphics, Inc., 2011 North Shoreline Boulevard, Mailstop 8U 500, Mountain View, CA 94043;
email: bobw@engr.sgi.com; M. L. Scott, Computer Science Department, University of Roches-
ter, Rochester, NY 14627-0226; email: scott@cs.rochester.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0734-2071/97/0200–0003 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997, Pages 3–40.

gramming—parallel programming; D.4.1 [Operating Systems]: Process Management—mul-
tiprocessing/multiprogramming

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Barriers, busy-waiting, kernel-user interaction, locks,
mutual exclusion, preemption, scalability, scheduling, synchronization

1. INTRODUCTION

One of the most basic questions for any synchronization mechanism is
whether a process that is unable to continue should spin—repeatedly
testing the desired condition—or block—yielding the processor to another,
runnable process. Spinning makes sense when the expected wait time of a
synchronization operation is less than twice the context switch time, or
when the spinning processor has nothing else useful to do. Researchers
have developed a wealth of busy-wait (spinning) mechanisms, including
mutual-exclusion locks, reader-writer locks (which allow concurrent access
among readers, but guarantee exclusive access by writers), and barriers
(which guarantee that no process continues past a given point in a
computation until all other processes have reached that point). Of particu-
lar interest in recent years have been scalable synchronization algorithms,
which employ backoff or distributed data structures to minimize contention
[Anderson 1990; Graunke and Thakkar 1990; Hensgen et al. 1988; Krieger
et al. 1993; Lee 1990; Lubachevsky 1989; Magnussen et al. 1994; Mellor-
Crummey and Scott 1991a; 1991b; Scott and Mellor-Crummey 1994; Yang
and Anderson 1993; Yew et al. 1987].

Unfortunately, busy-waiting in user-level code tends to work well only if
each process runs on a separate physical processor. If the total number of
processes in the system exceeds the number of processors, them some
processors will have to be multiprogrammed. The processes on a given
processor may be from different applications or, if the scheduler partitions
the machine, from a single application. In either case, serious performance
problems can arise when the order in which the scheduler chooses to run
processes is different from the order required by the application’s synchro-
nization operations.

Several research groups have addressed one or more aspects of the
interaction between scheduling and synchronization. Some have shown
how to avoid preempting a process that holds a test_and_set lock [Edler et
al. 1988; Marsh et al. 1991], or to recover from this preemption if it occurs
[Anderson et al. 1992; Black 1990]. Others have developed heuristics that
allow a process to guess whether it would be better to relinquish the
processor, rather than spin, while waiting for a lock or barrier [Karlin et al.
1991; Lim and Agarwal 1993; Ousterhout 1982].

Our work builds on these previous efforts in three specific ways:

(1) We demonstrate that interactions between scheduling and synchroniza-
tion are a much more serious problem for scalable synchronization

4 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

algorithms than they are for small-scale, centralized algorithms. More-
over, existing proposals to address the small-scale problem do not
generalize to the large-scale case. In our experiments, algorithms that
provide excellent performance in the absence of multiprogramming
sometimes perform orders of magnitude worse when multiprogramming
is introduced.

(2) We propose minor extensions to the user-kernel interface that allow an
application to interact with the scheduler more effectively. We distin-
guish between preemption-safe algorithms, in which a process commu-
nicates with the scheduler regarding its own state only, and scheduler-
conscious algorithms, in which a process can also determine and modify
the state of its peers. We find that scheduler-conscious synchronization
algorithms can often be substantially simpler and faster than those
that are (merely) preemption safe.

(3) We present six new synchronization algorithms: a preemption-safe
ticket lock, a preemption-safe queue lock, a scheduler-conscious queue
lock, a scheduler-conscious queued reader-writer lock, a scheduler-
conscious small-scale barrier, and a scheduler-conscious scalable bar-
rier. We evaluate these algorithms via experiments on Silicon Graphics
and Kendall Square multiprocessors, and we identify the circumstances
under which each algorithm is beneficial.

In Section 2 we explain why scalable synchronization algorithms make it
particularly difficult, from a conceptual point of view, to deal with untimely
preemption. We then present our kernel extensions in Section 3 and our
algorithms in Section 4. Section 5 contains empirical results. These quan-
tify the impact of preemption on scheduler-oblivious algorithms and dem-
onstrate the value of preemption-safe and scheduler-conscious alternatives.

For barrier-based applications, our centralized and scalable scheduler-
conscious barriers are clearly the mechanisms of choice. For lock-based
applications the conclusion is less clear. Multiprogramming effectively
reduces contention by reducing the number of processes from a given
application that actually run in parallel, thereby weakening the argument
for queue-based locks. As a result, while our algorithms allow queue locks
to perform acceptably on a multiprogrammed system, we find that simpler,
preemption-safe centralized locks (with backoff) often run a little faster. On
larger machines (beyond what was available for our experiments) we would
expect the balance to tip back toward queue-based locks.

2. SCHEDULING AND SCALABLE SYNCHRONIZATION

The basic problem with scheduling and scalable synchronization is that
scalable synchronization algorithms tend to perform operations in different
processes in deterministic order, and this order may differ from the order in
which the scheduler chooses to run the processes. Scheduling is less of a
problem for simple synchronization algorithms because they are less deter-
ministic.

Scheduler-Conscious Synchronization • 5

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

2.1 Locks

The simplest busy-wait locks are variants on test_and_set: every process
that wants to acquire a lock attempts repeatedly to change the lock’s state
from free to busy. While the lock is busy, the attempts accomplish nothing.
The moment the lock is freed by its current owner, one of the next few
attempts succeeds; which one depends on details of machine architecture
and timing. Unfortunately, unsuccessful attempts to acquire the lock cause
contention for communication and memory resources. This contention can
be enormous on large machines [Anderson 1990; Mellor-Crummey and
Scott 1991a]. There are two possible ways to deal with the problem: reduce
contention via backoff, or redesign the algorithm to place waiting processes
in a queue. Backoff works well in practice, though it still admits a
significant amount of unnecessary network traffic [Mellor-Crummey and
Scott 1991a], and thus it may be problematic on very large machines.
Queuing eliminates contention by allowing each process to spin on a
separate location [Anderson 1990; Graunke and Thakkar 1990; Mellor-
Crummey and Scott 1991a].

With a nondeterministic lock, performance can suffer if a process is
preempted while in the critical section. Several solutions to this problem
are known (see Section 6). The solutions fall into two rough camps: those
that bound the time that may be spent in a critical section, by temporarily
disabling preemption or recovering if it occurs, and those in which waiting
processes “give up” and block if they think that the process holding the lock
has been preempted.

Unfortunately, neither type of solution works for scalable, deterministic
locks. The problem is that we must worry not only about preemption of a
process in the critical section, but also about preemption of processes that
are currently “waiting in line.” Otherwise when a lock is released we may
give it to a process that has already been preempted, while processes later
in line are actively spinning. We cannot bound the time that a process
spends waiting in line, since this depends on the number of processes, and
we cannot simply “give up” if we wait too long, because we are linked into a
deterministic queue. Our experiments show clearly (Section 5) that it is not
sufficient with deterministic locks to cope with preemption only in the
critical section: the resulting performance can be orders of magnitude
worse in the presence of multiprogramming than it is with one process per
processor. We present solutions in Sections 4.1 and 4.2 that link a process
out of the queue whenever it is preempted.

2.2 Barriers

The simplest busy-wait barriers employ a central counter, incremented via
an atomic hardware primitive or protected by a lock. Each process as it
arrives at the barrier increments the counter and then spins on a single,
shared completion flag. The order in which processes arrive depends on
timing details of the application and machine. The last-arriving process
(which realizes it is last from the value of the counter) flips the flag,

6 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

allowing all of the processes to proceed. As with test_and_set locks, compet-
ing attempts to increment the counter can incur significant contention,
particularly on large machines. In addition, even in the absence of conten-
tion, serial counter updates imply an asymptotic running time of O(p),
which becomes unacceptable as the number of processes p grows large.
Several researchers have shown how to increase scalability by building
barriers based on log-depth tree or FFT-like patterns of point-to-point
notifications among processes (see Section 6).

On a multiprogrammed machine, performance can suffer at a barrier if
processes spin uselessly, waiting for preempted peers that have not yet
reached the barrier. Avoiding or recovering from this preemption is not an
option, because there is no a priori bound on the time it will take a process
to reach the next barrier. Solutions are therefore limited to determining
when a waiting process should spin and when it should block. For small,
nondeterministic barriers, we present an algorithm in Section 4.3 that
makes an optimal decision, blocking when and only when some other
process could make better use of the processor.

Unfortunately, the deterministic notification patterns of scalable barriers
may require that processes run in a different order from the one chosen by
the scheduler. If blocked processes simply yield the processor, remaining in
the ready list, then the scheduler may cycle through the entire list a
logarithmic number of times, one for each level of the barrier’s tree or
network [Crovella et al. 1991]. On the assumption that processes will
seldom migrate among processors on a large machine, we present a solution
in Section 4.3 that makes an optimal spin-versus-block decision within
processors and employs a scalable busy-wait barrier among processors. We
assume that the scheduler partitions the machine among the current
applications; the barrier adapts dynamically to changes in the number of
available processors.

3. SOLUTION STRUCTURE

Our work is based on the assumption that deterministic ordering is
essential for scalability and that synchronization algorithms must there-
fore cooperate with the scheduler to decide what the order will be.

Because it is ultimately responsible for the fair allocation of resources
among competing applications, a kernel-level scheduler cannot in general
afford to accept arbitrary directives from user-level code. Our algorithms
assume that a process can influence the behavior of the scheduler enough
to prevent itself from being preempted in the middle of a (short) critical
section. This capability suffices for small-scale (nondeterministic) locks and
need not compromise fairness or security (see below). Over longer periods of
time, we assume that it is the application’s responsibility to cope with the
decisions of the scheduler. For barriers and for scalable locks, a process
must be able to obtain information about the status of other processes and
about the set of processors available to the application. This information
may be (1) guessed via past experience using heuristics, (2) deduced

Scheduler-Conscious Synchronization • 7

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

through interaction with other processes, e.g., via “handshaking,” or (3)
provided by the kernel itself. In order, these options provide information of
increasing accuracy and thus result in simpler algorithms and better
performance.

Experience-based heuristics can be successful to the extent that the
present and future resemble the past. They form the basis of the competi-
tive lock algorithms of Karlin et al. [1991] and of the heuristic barriers we
describe near the beginning of Section 4.3. For locks, the goal is to block if
the wait time will be longer than twice the context switch time and to spin
if it will be shorter. For barriers, the goal is to block if some preempted
process could use the current processor to make progress toward the
barrier, and to spin otherwise. In both cases, the algorithm can determine
by reading the clock whether blocking or spinning would have been a better
policy at the most recent synchronization operation. If it finds it made the
wrong decision, it biases its decision in favor of the other alternative the
next time around. Whether this sort of adaptation works better than a
simple static choice appears to depend on the relative costs of bookkeeping
and context switching; Karlin et al. [1991] and Lim and Agarwal [1993]
reach different conclusions.

Interaction with peer processes can provide better information about the
peers’ status, provided that they respond promptly to enquiries (when
running). In Section 4.1 we use a “handshaking” technique in two of our
mutual exclusion algorithms. To hand a peer a lock, a process sets a flag on
which the peer is expected to be spinning and then waits for the peer to set
an acknowledgment flag. If the acknowledgment does not appear within a
certain amount of time, the signaling process assumes that the peer is
currently preempted. There is an inherent inefficiency to this approach: if
the signaling process does not wait long enough, it will too often skip over a
running peer by mistake. Any time it waits, however, is lost to computa-
tion.

We have found heuristics and handshaking to be expensive both in
implementation and execution cost. Algorithms based on kernel-provided
information are simpler and easier to design. They generally provide
superior performance, in part because the information from the kernel is
more accurate than user-level estimates and in part because the kernel can
collect the information more efficiently than user-level code can guess it.

3.1 Kernel Extensions

Our kernel extensions appear in Figure 1. They build upon ideas proposed
by the Symunix project at NYU [Edler et al. 1988]. Similar extensions could
be based on the kernel interfaces of Psyche [Marsh et al. 1991] or Scheduler
Activations [Anderson et al. 1992] (see Section 6). The state field of a
context_block is readable and writable in user space; the remaining fields
of both the context_block and partition_block records are readable in user
space, but writable only by the kernel.

To control its own preemption, a process uses the preemptable and
unpreemptable_self values of context_block.state and the context_block.

8 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

warning flag. These fields are borrowed directly from Symunix. Before
entering a critical section, a process sets its state to unpreemptable_self to
request to the kernel scheduler that it not be preempted. The kernel will
honor this request precisely once per quantum and for a fixed amount of
time (the length of this “grace period” is known to applications, which must
ensure that critical sections can normally be finished in a smaller amount
of time).1 When it passes over a process, the kernel sets the warning flag.
When it leaves a critical section, a process should check this flag and
voluntarily yield the processor if the flag is set. If the process does not yield
before the end of the grace period, the kernel will preempt it anyway. In
either case (yield or preempt), the kernel resets the warning flag and
subtracts any extra time the process received from the beginning of its next
quantum.

We call an algorithm preemption-safe if (1) it never spins for more than a
constant amount of time when some other process could profitably be using
the processor and (2) it employs no kernel extensions other than those
required to avoid its own preemption in critical sections (in our work,
context_block.warning and the preemptable and unpreemptable_self values
of context_block.state). We refer to an algorithm as scheduler-conscious if it
interacts with the scheduler to determine or alter the states of other
processes or to determine the set of processors available to the application.
In our work, scheduler-conscious algorithms use the preempted and unpre-
emptable_other values of context_block.state and/or the various fields of
partition_block. These fields are a generalization of the interface described
in our work on small-scale scheduler-conscious barriers [Kontothanassis
and Wisniewski 1993]. They also resemble the “magic page” of information
provided by the Psyche kernel [Scott et al. 1990]. The preempted and
unpreemptable_other states allow one process to pass a lock to another
and to make the other unpreemptable, atomically. The information in a

1The possibility of page faults means that we cannot in general provide a guarantee against
inopportune preemption. The best we can hope to do in any of our algorithms is to minimize
the chance that such preemption will occur. To provide real guarantees (e.g., for a real-time
system), the kernel would need to ensure that a process that sets its state variable to
unpreemptable_self will always be able to execute some minimum number of instructions
within a small bounded period of time.

Fig. 1. Pseudocode declarations for the kernel-application interface.

Scheduler-Conscious Synchronization • 9

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

partition_block allows a barrier to determine which processes share which
processors and to track changes in this information over time.

None of the extensions requires the kernel to maintain any new informa-
tion, to access any user-level code or data structures, to understand the
particular synchronization algorithm(s) being used by the application, or to
do anything more often than once per quantum. Overall system correctness
never depends on correct use of fields by applications, though the perfor-
mance of a particular application may suffer if it uses the fields incorrectly.

3.2 Hardware Support

We assume the availability of special instructions that allow a process to
read, modify, and write a shared variable as a single atomic operation. In
several cases, for example, we must change a state field to unpreempta-
ble_self or unpreemptable_other, if and only if it was preemptable before. All
of our atomic instructions can be emulated efficiently by load-linked and
store-conditional.

Some multiprocessors, especially the larger ones, provide more sophisti-
cated hardware support for synchronization. Examples include the queue-
based locks of the Stanford Dash machine [Lenoski et al. 1992], the QOLB
(queue-on-lock-bit) operation of the IEEE Scalable Coherent Interface
[Aboulenein et al. 1994], and the near-constant-time barriers of the Think-
ing Machines CM-5 and the Cray Research T3D/E. Hardware queued locks
and barriers are faster than software alternatives, but cannot be custom-
ized, e.g., to avoid the scheduling problems described in Section 2. Hard-
ware barriers provide an asymptotic performance improvement that almost
certainly makes them worthwhile on large machines. For hardware queued
locks, the tradeoffs among cost, performance, and flexibility are less clear.

Our scalable barrier and queue locks arrange for processors to spin only
on local locations, on which no other processor spins. In most cases, we
ensure that those locations will be local not only on cache-coherent ma-
chines (on which they migrate to the spinning processor), but also on
machines that lack hardware cache coherence. On these latter, NCC-
NUMA machines (non-cache-coherent, nonuniform memory access), vari-
ables on which processes spin must be allocated statically in the local
memory of the spinning processor; spins are terminated by a single
uncached remote write by another processor.

4. ALGORITHMS

In this section we present several new preemption-safe and scheduler-
conscious synchronization algorithms. We consider mutual exclusion, read-
er-writer locks, and barriers. Space constraints preclude the inclusion of
actual code. Readers are encouraged to access pseudocode at http://www.
cs.rochester.edu/u/scott/synch_pseudocode/ps_and_sc.html. Earlier ver-
sions appear in the technical report version of this article [Kontothanassis
et al. 1994]. Both pseudocode and C source code are available from
ftp://ftp.cs.rochester.edu/pub/packages/sched_conscious_synch.

10 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

All of our algorithms work well in a dynamic hardware-partitioned
environment—an environment widely believed to provide the best combina-
tion of throughput and response time for large-scale multiprocessors [Crov-
ella et al. 1991; Leutenegger and Vernon 1990; Tucker and Gupta 1989;
Zahorjan and McCann 1990]. (Note that multiprogramming is still an issue
on a partitioned machine, since an application with P processes may be
forced to run in a partition with N , P processors.) Except for the barriers,
which require partition information, all of the algorithms will also work
well under ordinary time sharing. For a coscheduled environment the
additional complexity of preemption-safe and scheduler-conscious algo-
rithms is not necessary, but does not introduce much overhead.

4.1 Mutual Exclusion

In this section we present two variants of the MCS queue-based lock
[Mellor-Crummey and Scott 1991a]: one preemption-safe, the other sched-
uler-conscious. We also present a preemption-safe variant of the ticket lock.
Because they awaken processes in a deterministic order, all three locks
must address preemption not only within critical sections, but also while
waiting in line.

Our preemption-safe queue lock (Queue-HS in the figures of Section 5)
uses handshaking to determine the status of other processes (Figure 2).
When releasing a lock, a process notifies its successor in the queue that it
(the successor) is now the holder of the lock. The successor must then
acknowledge receipt of the lock by setting another flag. If this acknowledg-
ment is not received within a fixed amount of time, the releasing process
assumes that its successor is preempted, rescinds its notification, and
proceeds to the following process. Throughout this period the releasing
process is unpreemptable. We use atomic fetch_and_store instructions to
avoid a timing window: without them a releaser might conclude that its
successor was preempted and proceed to give the lock to another process,

Fig. 2. The simple case in the Queue-HS lock. Process A sets its next_done flag (lower right
box) to false and changes B’s status field (lower left box) to can_go. B responds by changing its
status to got_it and flipping A’s next_done flag. A acknowledges by changing B’s status to ack,
and then both can proceed.

Scheduler-Conscious Synchronization • 11

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

while the successor thinks that it has acquired the lock and proceeds to the
critical section.

The Queue-HS lock solves the preemption problem but unfortunately
adds significant overhead to the common case. Processes need to interact
several times when a lock is released. To address this limitation, we have
designed a scheduler-conscious algorithm (Smart-Q in the figures) in
which the releasing process examines its successor’s state variable, which is
kept up-to-date by the kernel. If the successor is preempted, the releaser
proceeds to other candidates later in the queue (Figure 3). If the successor
is running, the releaser uses an atomic instruction to change the succes-
sor’s state to other_unpreemptable. If the change is successful the lock is
passed to the successor. The atomic instruction resolves a potential race
between the releaser and the kernel: after determining that the successor
is not preempted, we must make it unpreemptable without giving the
kernel an opportunity to preempt it.

One of the problems with queue-based locks is high overhead in the
absence of contention. On small-scale machines and for low-contention
locks a test_and_set or ticket lock with backoff may be preferable [Mellor-
Crummey and Scott 1991a]. The ticket lock guarantees FIFO service; the
test_and_set lock is nondeterministic. The two locks also use different
atomic instructions, making them appropriate on different machines.

When a process wishes to acquire a ticket lock, it performs an atomic
fetch_and_increment on a “next available number” variable. It then spins
until a “now serving” variable matches the value returned by the atomic
instruction. To avoid contention on large-scale machines, a process should
wait between reads of the “now serving” variable for a period of time equal
to the difference between the last read value and the value returned by the
fetch_and_increment of the “next available number” variable, times the
minimum length of a critical section. (We call this technique “proportional

Fig. 3. Passing over a preempted process in the Smart-Q lock. When it sees that B’s state is
preempted, A changes B’s status field (lower box) to failure. It then changes C’s state to
unpreemptable_other and changes C’s status to success, allowing C to proceed.

12 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

backoff”; it works equally well on dedicated and multiprogrammed ma-
chines.) To release the lock, a process increments the “now serving”
variable.

Our preemption-safe, handshaking version of the ticket lock (Ticket-PS
in the figures) uses one additional “acknowledgment” variable, which
contains the number of the last granted but unacknowledged ticket. A
releasing process increments both the additional variable and the “now
serving” variable. If these are different from the “next available number”
variable, then at least one process is waiting, in which case the releaser
waits (spinning) for the next acquiring process to update the acknowledg-
ment variable. If the update does not occur within a fixed amount of time,
the releaser attempts to withdraw its grant of the lock by performing the
update itself. Both the acquirer and the releaser use compare_and_swap, so
there is never any doubt as to which of them has succeeded. If it success-
fully withdraws its grant of the lock, the releaser sets the acknowledgment
variable and the “now serving” variable to the next higher value and
repeats. We assume that the “now serving” variable does not have the
opportunity to wrap all the way around and reach a value it previously had,
while a process remains preempted. For 32-bit integers, a 1GHz processor,
and an empty critical section, a process would have to be preempted for
more than three minutes before correctness would be lost. Going to 64-bit
integers would extend this time to over 16,000 years.

There is no obvious way to develop a scheduler-conscious version of the
ticket lock without exporting lock code into the kernel. The problem is that
the lock does not keep track of the identities of waiting processes. The
releaser of a lock is therefore unable to determine the status of its
successor: it does not know who the successor is.

A caveat with all three of our modified locks is that they give up the
FIFO ordering of the scheduler-oblivious version. It is thus possible
(though highly unlikely, and with probability lower than the probability of
starvation with a test_and_set lock) that a series of adverse scheduling
decisions could cause a process to starve. We have considered algorithms
that leave preempted processes in the queue so that they only lose their
turn while they are preempted. Markatos [1991] adopted a similar ap-
proach in his real-time queue lock, where the emphasis was on passing
access to the highest-priority waiting process. For simple unprioritized
mutual exclusion, leaving preempted processes in the queue makes the
common case more expensive: processes releasing a lock have to skip over
their preempted peers repeatedly. We consider the (unlikely) possibility of
starvation insignificant in comparison to this overhead.

The algorithms described in this section work only for singly nested
locks. For multiply nested locks, a process should make itself preemptable
only after releasing the outermost lock. It can accomplish this by incre-
menting a local “nesting level” variable on acquires and decrementing it on
releases. The state flag should be set to preemptable only when the level
reaches zero.

Scheduler-Conscious Synchronization • 13

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

4.2 Reader-Writer Locks

Reader-writer locks are a refinement of mutual exclusion locks. They
provide exclusive access to a shared data structure on the part of writers
(processes making changes to the data), but allow concurrent access by any
number of readers. There are several versions of reader-writer locks,
distinguished by the policy they use to arbitrate among competing requests
from both readers and writers. Our scheduler-conscious reader-writer lock
(RW-Smart-Q in the figures) is based on a fair, scalable reader-writer lock
devised by Krieger et al. [1993]. When a writer releases a lock for which
both readers and writers are waiting, and the longest-waiting unpreempted
process is a reader, the code grants access to all readers that have been
waiting longer than any writers. (An alternative interpretation of fairness
would grant access in the same situation to all currently waiting unpre-
empted readers.) Like the Smart-Q lock, the RW-Smart-Q lock uses all four
values of context_block.state.

Requests for the lock are inserted in a doubly linked list. A reader
arriving at the lock checks the status of the previous request. If the
previous request is an active reader or if there is no previous request, then
the newly arriving reader marks itself as an active reader and proceeds. In
all other cases the newly arriving process spins, waiting to be released by
its predecessor. A process releasing a lock must first remove itself from the
queue. If the process is a writer this is an easy task, since it has no
predecessor in the queue and since the procedure is similar to the one
followed in the Smart-Q lock. If it is a reader however, then the process
may have to remove itself from the middle of the queue (Figure 4). To
ensure correct manipulation of the linked-list data structure, a reader
process locks both its own list node and that of its predecessor. It then
updates the link pointers to reflect the new state of the list. The locks
protecting individual list elements use test_and_set. We have opted for this
type of lock because (1) the critical sections are short and (2) the maximum

Fig. 4. Two of many possible scenarios in the RW-Smart-Q lock. On the left side of the figure,
processes A and B are active readers, and process B finishes its critical section first. When it
discovers that it still has a predecessor, it locks A’s queue node and its own, links itself out of
the queue, and releases the locks. On the right side of the figure, A finishes its critical section.
When A discovers that it has no predecessor, it changes C’s state to unpreemptable_other and
changes C’s status (lower left box) to success, allowing C to proceed.

14 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

number of contending processes is three. When an unlocking reader ac-
quires the test_and_set lock on its predecessor’s list element, it double-
checks the identity of the predecessor and backs out if it has changed.
Change is possible if the predecessor removed itself from the list after the
reader established the predecessor’s identity, but before the reader man-
aged to acquire the lock.

After a process has linked itself out of the queue, it must wake up its
successor if there is one. The procedure is similar to the one followed in the
Smart-Q lock. The releasing process checks the state of its successor and
attempts to set that state to unpreemptable_other. If the attempt is success-
ful, the releasing process proceeds to notify its successor that it has been
granted the lock. If the attempt fails, it notifies its successor of failure by
setting a flag in the successor’s node and proceeds to the next process in the
queue. When notified that it has been granted the lock, a reader uses this
same procedure to release its own successor, if that successor is also a
reader.

4.3 Barriers

In this section we present two scheduler-conscious barriers. The first is
designed for bus-based multiprocessors, or for small partitions on larger
machines, in which migration is assumed to be relatively inexpensive. It
uses partition_block.num_processors to make an optimal spin-versus-block
decision in each individual process. The second barrier is designed for
large-scale multiprocessors, on which migration is assumed to be an
expensive, uncommon event. This barrier makes optimal spin-versus-block
decisions within each processor (or within each cluster of a machine in
which migration is inexpensive among small sets of processors), uses a
logarithmic-time scalable barrier across processors/clusters, and adapts
dynamically to changes in the allocation of processes to processors or
processors to applications.

Inspired by the work of Karlin et al. [1991] for locks, we have also
experimented with small-scale (nondeterministic) barriers in which a pro-
cess attempts to guess whether it is running in a multiprogrammed
environment based on how long it had to wait during previous barrier
episodes [Kontothanassis and Wisniewski 1993]. Our results for these
barriers are mainly negative and are consistent with the findings of Lim
and Agarwal [1993]: the performance of various spin-then-block heuristics
is virtually indistinguishable from that of “always block.” We include
results for the simplest heuristic (B-sp-blk—spin for a while, then block) in
the figures in Section 5.

The problem with heuristics is that they lead to a uniform policy for all
processes: either all will spin, or all will block. On a small machine, our
Scheduler Information barrier (B-sched in the figures) makes an optimal
spin-versus-block decision in each individual process: on a system with N
processes and P processors (and inexpensive migration) the first N 2 P
processes to reach the barrier will block while the remaining P will spin. P

Scheduler-Conscious Synchronization • 15

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

is simply context_block.num_processors. N is easily built into the code. And
since centralized barriers already keep a count of how many processes have
arrived, each process can tell whether it should spin or block.

For large machines, our scalable scheduler-conscious barrier (Scal-SC in
the figures) assumes that a process should block only if its processor could
be used by another local process. Within each processor or bus-based
cluster we use the Scheduler Information barrier. The last-arriving process
in each processor/cluster then participates in a global instance of Mellor-
Crummey and Scott’s scalable tree barrier [Mellor-Crummey and Scott
1991a]. The trickiest part of the code copes with the possibility that the
kernel may change the number of processors available to the application, or
the mapping of processes to processors, during execution. If it does so, it
will update the contents of the partition_block and in particular the gener-
ation count.

The barrier algorithm keeps a shadow copy of this generation count. The
process at the root of the interprocessor barrier checks the shadow against
the value in the partition_block. If the two are different, processes within
each new processor/cluster elect a representative, and the representatives
then go through a barrier reorganization phase, initializing tree pointers
appropriately.2 This approach has the property that barrier data structures
can be reorganized only at a barrier departure point. As a result, processes
may go through one episode of the barrier using outdated information.
While this does not affect correctness it could have an impact on perfor-
mance. If repartitioning were a frequent event, then processes would use
old information too often, and performance would suffer. However, we
consider it unlikely that repartitioning would occur more than a few times
per second on a large-scale, high-performance machine, in which case the
impact of using out-of-date barrier data structures would be negligible.

5. RESULTS

This section presents a performance evaluation of different preemption-safe
and scheduler-conscious synchronization algorithms, including a compari-
son to the best-known scheduler-oblivious algorithms. We begin by describ-
ing our experimental methodology. We then consider mutual exclusion,
reader-writer locks, and barriers in turn.

5.1 Methodology

We have tested our algorithms on two different architectures. For an
example of a small-scale bus-based machine we use a 12-processor,
100MHz Silicon Graphics Challenge. For an example of a large-scale
distributed-memory machine we use a 64-processor partition of a 20MHz
Kendall Square KSR 1. We have used both synthetic and real applications.

2Note that the representative for the reorganization phase is not necessarily the process that
will participate in the interprocessor phase of subsequent barriers; this latter role is played by
the last process to arrive at each intraprocessor barrier.

16 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

The synthetic applications allow us to thoroughly explore the parameters
that may affect synchronization performance, including the ratio between
the lengths of critical and noncritical sections, the degree of multiprogram-
ming, the quantum size, and others. The real applications allow us to
validate our findings in the context of a larger computation, potentially
capturing effects that are missing in the synthetic applications, and provid-
ing a measure of the impact of the synchronization algorithms on overall
system performance. We have chosen applications that make heavy use of
synchronization constructs to ensure that synchronization time is a signif-
icant portion of program runtime. For applications that make little use of
synchronization constructs, we expect that the choice of the synchroniza-
tion algorithm will have little effect on performance.

Our synchronization algorithms employ atomic operations not available
on either of the two target architectures. We have implemented software
versions of these instructions using load_linked and store_conditional on the
Challenge and using small critical sections bracketed by the native syn-
chronization primitive (get_subpage and free_subpage) on the KSR. Our
approach for the KSR adds overhead to the algorithms, but this overhead is
small. Moreover, because we are running scalable algorithms, in which
processes use backoff or spin only on local locations, competition is essen-
tially nonexistent for the critical sections that implement the “atomic”
operations and does not result in any significant increase in overall levels
of network and memory contention. Our results for the nonnative locks are
therefore slightly higher in absolute time, but qualitatively very close in
character, to what would be achieved with hardware-supported fetch_and_F
instructions.

The multiprogramming level reported in the experiments indicates the
average number of processes per processor. For the lock-based experiments,
one of these processes belongs to the application program; the others are
assumed to belong to other applications. For the barrier-based experi-
ments, multiple application processes reside on each processor and partici-
pate in all the barriers. The reason for the difference in methodology is that
for lock-based applications we are principally concerned about processes
being preempted while holding a critical resource, while for barrier-based
applications we are principally concerned about processes wasting proces-
sor resources while their peers could be doing useful work. Our lock
algorithms are designed to work in any multiprogrammed environment; the
barriers assume that processors are partitioned among applications.

For the sake of simplicity, we employ a user-level scheduler in our
experiments. One processor is dedicated to running the scheduler. While
the kernel interface described in Section 3 would not be hard to implement,
it was not needed for our experiments, and we lacked the authorization to
make kernel changes on the KSR. For the lock experiments, the scheduler
simulates preemption by sending a signal to an application process. The
handler for this signal spins on a flag that the scheduler process sets at the
beginning of the process’ next quantum. The time spent spinning is meant
to represent execution by one or more processes belonging to other, unre-

Scheduler-Conscious Synchronization • 17

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

lated applications. We would expect a kernel-level implementation of our
mechanisms to provide performance indistinguishable from that of the
experimental environment.

For the barriers experiments, we simulate multiprogramming by multi-
plexing one or more application processes on the same processor. Both the
SGI and KSR operating systems allow us to do this by binding processes to
processors. The centralized barrier experiments require process migration.
On the SGI we can restrict processors (prevent processes from executing on
them). Restricting a processor increases the multiprogramming level on the
remaining processors. Processes are allowed to migrate among the unre-
stricted processors. The KSR operating system does not provide an ana-
logue of the SGI restrict operation, so we were unable to control the
number of processors available to migrating processes. For this reason we
do not report results for the centralized barriers on the KSR.

In most respects we believe that performance results on a real implemen-
tation of our kernel extensions would be indistinguishable from those
reported here; the scheduler itself does very little work and does it only
once per quantum. The one exception arises in the lock experiments, where
simulation of preemption via spinning in a signal handler fails to capture
any delays due to loss of cache, TLB, or memory footprint during preemp-
tion. Since these effects are inherently dependent on the memory reference
characteristics of whatever unrelated processes happen to be running on
the machine, they would be difficult to model in any experimental setting.

5.2 Mutual Exclusion

We implemented ten different mutual-exclusion algorithms:

(1) TAS-B: A standard test-and-test_and_set lock with bounded exponen-
tial backoff. This algorithm repeatedly reads a central flag until it
appears to be unset, then attempts to set it atomically in order to
acquire the lock. On the SGI Challenge, this is the native lock,
augmented with backoff. (The backoff bound is not critical. In our
experiments, it is about 1000 cycles.)

(2) TAS-B-PS: The same as TAS-B, but avoids preemption in critical
sections by using the Symunix kernel interface.

(3) Queue: The MCS list-based queue lock [Mellor-Crummey and Scott
1991a].

(4) Queue-NP: An extension to the MCS lock that avoids preemption in
critical sections, also using the Symunix kernel interface. This algo-
rithm does not avoid passing the lock to a process that has been
preempted while waiting in line.

(5) Queue-HS: An extension to the Queue-NP lock that uses handshaking
to ensure that the lock is not transferred to a preempted process. This
is the first algorithm described in Section 4.1.

(6) Smart-Q: An alternative extension to the Queue-NP lock that uses all
four values of context_block.state to obtain simpler code and lower

18 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

overhead than in the Queue-HS lock. This is the second algorithm
described in Section 4.1.

(7) Ticket: The standard ticket lock with proportional backoff, but with no
special handling of preemption in the critical section or the queue.

(8) Ticket-PS: A preemption-safe ticket lock with backoff, using the
Symunix interface to avoid preemption in the critical section and
handshaking to pass over preempted processes in line. This is the third
algorithm described in Section 4.1.

(9) Native: A lock employing machine-specific hardware. This is the stan-
dard lock that would be used by a programmer familiar with the
machine’s capabilities. It does not incorporate backoff.

(10) Native-PS: An extension to the native lock that uses the Symunix
interface to avoid preemption while in the critical section.

The Native lock on the SGI Challenge is a test-and-test_and_set lock
implemented using the load_linked and store_conditional instructions of the
R4400 microprocessor. The Native lock on the KSR 1 employs a cache line
locking mechanism that provides the equivalent of queue locks in hard-
ware. The queuing is based on physical proximity in a ring-based intercon-
nection network, rather than on the chronological order of requests.3 We
would expect the Native-PS locks to outperform all other options on these
two machines, not only because they make use of special hardware, but
because the atomic operations in all the other locks are built on top of
them. Our experiments confirm this expectation.

Our synthetic application executes a simple loop consisting of a critical
section and a noncritical section. To prevent the critical section from
becoming a bottleneck, we set the ratio of the lengths of the critical and
noncritical sections on both machines to slightly less than the inverse of the
maximum number of processors. Absolute quantum length (in cycles or
microseconds) had no significant effect on performance. We therefore
concentrate here on the remaining variables in the synthetic application:
multiprogramming level and number of processors.

Figures 5 and 6 plot execution time of the synthetic application against
multiprogramming level for a fixed number of processors (11 on the SGI
and 63 on the KSR). On the SGI, the scheduling quantum is fixed at 20ms.
To avoid serialization on the critical section, we set the execution time ratio
of the critical and noncritical sections at 1:14. We used a random-number
generator to vary the length of the critical section within a narrow range, to
more closely approximate the behavior of real applications and to avoid
possible lock-stepping of the different processes. The Queue, Queue-NP,
and Ticket locks show the worst performance degradation, because pro-
cesses queue up behind preempted peers. Preventing preemption in the
critical section helps a little, but not much: preemption of processes waiting
in the queue is the dominant problem.

3We use the KSR’s gspnwt instruction in a loop, rather than gspwt. Counterintuitively, the
latter does not perform well when there are more than a handful of contending processors.

Scheduler-Conscious Synchronization • 19

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

Considerably better behavior is obtained by preventing critical-section
preemption and ensuring that the lock is not given to a blocked process
waiting in the queue: the Queue-HS, Smart-Q, and Ticket-PS locks perform
far better than the other scalable locks and outperform the Native and
TAS-B locks at multiprogramming levels greater than 2. The Native-PS
and TAS-B-PS locks display the best results, though past work [Mellor-
Crummey and Scott 1991a] suggests that they will generate more bus
traffic than the scalable locks and would interfere more with ordinary
memory accesses in other processes or applications.4

On the KSR, the scheduling quantum is fixed at 50ms, and the ratio of
critical to noncritical section lengths is 1:65. The results show slightly
different behavior from that on the SGI. The Queue, Queue-NP, and Ticket
locks suffer an even greater performance loss as the multiprogramming
level increases. The Queue-HS lock improves performance considerably,

4The synthetic application does not capture this effect; it operates almost entirely out of
registers during its critical and noncritical sections. The impact on data access traffic can be
seen in our experiments with real applications.

Fig. 5. Varying multiprogramming level on an 11-processor SGI Challenge.

Fig. 6. Varying multiprogramming level on a 63-processor KSR 1.

20 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

since it eliminates both the critical section and queue preemption problems.
Unfortunately, it requires a significant number of high-latency remote
references, resulting in a high, steady level of overhead. The Smart-Q lock
lowers this level by a third, but it is still a little slower than the TAS-B-PS
lock. The best nonnative lock is Ticket-PS.

The Native-PS lock provides the best overall performance. Since all the
nonnative locks use native locks internally to implement atomic operations,
this is expected behavior. The TAS-B and Native locks perform well when
the multiprogramming level is low, but deteriorate as it increases. If the
necessary atomic operations (fetch_and_add, swap, etc.) were available on
the KSR 1, we would expect the queue and ticket locks to perform better
than they do by a small constant factor. The closeness with which those
locks follow the performance of KSR’s relatively complex built-in primitive
suggests that that primitive is probably not cost effective.

Increasing the number of processors working in parallel can result in a
significant amount of contention, especially if the program needs to syn-
chronize frequently. Previous work has shown that queue locks improve

Fig. 7. Varying the number of processors on the SGI Challenge with a multiprogramming
level of 2.

Fig. 8. Varying the number of processors on the KSR 1 with a multiprogramming level of 2.

Scheduler-Conscious Synchronization • 21

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

performance in such an environment, but as indicated by the graphs in
Figures 5 and 6 they experience difficulties under multiprogramming. The
graphs in Figures 7 and 8 show the effect of increasing the number of
processors on the different locks at a multiprogramming level of 2.

The synthetic program runs a total number of loop iterations propor-
tional to the number of processors, so execution time should not decrease as
processors are added. Ideally, it would remain constant, but contention and
scheduler interference will cause it to increase. With quantum size and
critical-to-noncritical ratio fixed as before, results on the SGI again show
the Queue, Queue-NP, and Ticket locks performing poorly, as a result of
untimely preemption. The performance of the TAS-B and Native locks also
degrades with additional processors, because of increased contention. The
Smart-Q and Ticket-PS locks degrade more slowly, but also appear to
experience higher overheads. Increasing the number of processors does not
affect the TAS-B-PS and Native-PS locks until there are more than about
eight processors active (the point at which bus contention becomes an
issue).

The results on the KSR indicate that contention effects are important for
larger numbers of processors. The native lock, with our modification to
avoid critical section preemption, is roughly twice as fast as the nearest
competition, because of the hardware queuing effect. Among the all-
software locks, Ticket-PS performs the best, but TAS-B-PS and Smart-Q
are still reasonably close.

Fig. 9. Completion time (in seconds) for Cholesky on the SGI using 11 processors (multipro-
gramming level 5 2).

Fig. 10. Completion time (in seconds) for Cholesky on the KSR using 63 processors (multi-
programming level 5 2).

22 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

Backoff constants for the TAS-B and Ticket locks were determined by
trial and error. The best values differ from machine to machine, and even
from program to program. The queue locks are more portable. As noted
above, contention on both machines becomes a serious problem sooner if the
code in the critical and noncritical sections generates memory traffic.
Results from real applications indicate that the queue locks suffer less from
this effect.

To verify the results obtained from the synthetic program, and to
investigate the effect of memory traffic generated by data accesses, we
measured the performance of three real applications: the Cholesky program
from the Stanford SPLASH suite [Singh et al. 1992] running on matrix
bccstk15, a multiprocessor version of Quicksort on 2 million integers, and a
program that solves the traveling salesperson (TSP) problem for a 17-city
fully connected graph. These programs contain no barriers; they synchro-
nize only with locks. Due to lack of space we have omitted the graphs for
TSP; its behavior is qualitatively similar to that of Quicksort. Figures 9
through 12 show the completion times for the remaining two applications,
in seconds, when run with a multiprogramming level of 2 using 11
processors on the SGI and 63 processors on the KSR. As with the synthetic
program, multiprogramming was simulated by spinning in a signal handler
when other applications were supposed to be running. Again we see that
scheduler-oblivious queuing of preemptable processes is disastrous. This
time, however, with real computation going on, the Ticket-PS and Smart-Q

Fig. 11. Completion time (in seconds) for Quicksort on the SGI using 11 processors (multi-
programming level 5 2).

Fig. 12. Completion time (in seconds) for Quicksort on the KSR using 63 processors
(multiprogramming level 5 2).

Scheduler-Conscious Synchronization • 23

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

locks match the performance of the TAS-B-PS and Native-PS locks on the
SGI and outperform TAS-B-PS in Quicksort on the KSR. We also ran
experiments with a multiprogramming level of 1. Results (not shown)
indicate that Quicksort and TSP run about 10% slower when using the
Queue-HS lock than they do with the regular Queue lock. Otherwise,
performance differences between applications with preemption-safe or
scheduler-conscious locks and applications with the corresponding schedul-
er-oblivious locks were negligible.5

We have also collected single-process latency numbers (i.e., the time to
acquire and release a lock in the absence of competition for the lock) to
establish the performance overhead of the preemption-safe and scheduler-
conscious algorithms with respect to their scheduler-oblivious counter-
parts.6 Results appear in Table I. They were collected by having a single
process acquire the lock repeatedly in a loop. As a result, they do not count
the time required to bring the lock into the cache if it was most recently
accessed by a different processor.

In their original scheduler-oblivious form, queue locks have roughly an
additional 8% overhead over centralized (ticket or test-and-test_and_set)
locks. Adding code to avoid inopportune preemption adds no more than 9%
to the cost of the queue locks, but significantly raises the cost of the
centralized locks, not only because they are faster to begin with, but also
because they must pay the overhead of scheduler consciousness in all cases,

5In addition to a lock-protected work queue, TSP uses five atomic counters, which we
implemented with fetch_and_add. Implementing them with critical sections instead dramati-
cally increases the impact of synchronization on program runtime. In this case, TSP runs an
additional 10% slower when using the Queue-HS or Smart-Q locks than it does with the
regular Queue lock.
6At the time we collected the latency numbers, the KSR had been decommissioned, so we were
able to collect them only on the SGI. However, since these are single-processor experiments we
do not believe that the KSR numbers would have added anything significant to the under-
standing of the algorithms.

Table I. Latency (acquire 1 release) for Mutual Exclusion Locks on the SGI

Lock Latency (ms)

TAS-B 2.10
TAS-B-PS 2.47 0.37 5 18%
Ticket 2.10
Ticket-PS 2.87 0.77 5 36%
Queue 2.26
Queue-HS 2.46 0.20 5 9%
Smart-Q 2.44 0.18 5 8%

Native 2.04
Native-PS 2.39 0.35 5 17%

The extra numbers in the right-hand column indicate the absolute and percentage increase in
latency of the preemption-safe and scheduler-conscious locks with respect to their scheduler-
oblivious counterparts.

24 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

while the queue locks are able to skip most of the special-purpose code
when the queue of waiting processes is empty.

5.3 Reader-Writer Locks

We implemented six different reader-writer locks:

(1) RW-TAS-B: A centralized reader-writer lock based on a standard
test-and-test_and_set lock with exponential backoff.

(2) RW-TAS-B-PS: The same as RW-TAS-B, but with avoidance of pre-
emption in critical sections, using the Symunix kernel interface.

(3) RW-Queue: A scalable reader-writer lock based on the lock by Krieger
et al. [1993].

(4) RW-Smart-Q: An extension to the RW-Queue lock that uses all four
values of context_block.state to avoid preemption in the critical section
and to avoid passing the lock to a preempted process. This is the
algorithm described in Section 4.2.

(5) RW-Native: A reader-writer lock based on the native synchronization
primitive. On the SGI this is identical to the RW-TAS-B lock.

(6) RW-Native-PS: The same as RW-Native, but with avoidance of pre-
emption in critical sections, using the Symunix kernel interface. On the
SGI this is identical to the RW-TAS-B-PS lock.

Figures 13 and 14 show the performance of the various reader-writer
locks under varying levels of multiprogramming on the SGI (11 processors)
and KSR (63 processors), respectively. Figures 15 and 16 show performance
on varying numbers of processors, at a multiprogramming level of 2.

Reader-writer locks display behavior similar to that of mutual exclusion
locks. The RW-Native-PS lock outperforms all the others in a multipro-
grammed environment. The RW-Smart-Q lock is a close second. The
algorithms that do not cope with preemption behave increasingly worse as
the multiprogramming level increases, though this effect is less pronounced
than it was in the case of mutual exclusion. Five percent of the critical
sections in the results reported here acquire a writer lock; the rest acquire
a reader lock and can proceed in parallel with other readers. Preempting a
process that holds a lock usually means preempting a reader, not a writer,
so other readers can still proceed (so long as a writer is not yet in line). For
completeness, we ran experiments with 1, 5, and 50% writers. Larger
numbers of writers cause a higher degree of contention—expected since
there is less concurrency available—and degrade the performance of the
RW-TAS-B and RW-TAS-B-PS locks.

As in the case of mutual exclusion, the centralized RW-TAS-B and
RW-TAS-B-PS locks still suffer from contention on large numbers of
processors. Contention effects are more pronounced than they were for
mutual exclusion. With the ratio of critical to noncritical work the same as
in the mutual exclusion experiments, we expected that the additional

Scheduler-Conscious Synchronization • 25

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

parallelism available due to the concurrency of readers would reduce the
observed contention, but this turned out not to be the case. Figure 14 shows
that the centralized RW-TAS-B-PS lock actually improves in performance
as multiprogramming increases. With fewer processes running in parallel,
reductions in contention allow lock operations to complete faster, even
though there are fewer total cycles available to the application per unit of
time.

We have also collected single-process latency numbers for both the reader
and writer parts of the locks. Results appear in Table II. They were
collected by having a single process acquire and release the lock repeatedly
in a loop. As a result, they do not count the time required to bring the lock
into the cache if it was most recently accessed by a different processor.
Most of the additional complexity of the preemption-safe and scheduler-
conscious versions of the reader locks appears in the code for writers,
rather than readers. Moreover, since the scheduler-oblivious overhead for

Fig. 13. Varying the multiprogramming level for the reader-writer lock on the SGI (11
processors, 5% writers).

Fig. 14. Varying the multiprogramming level for the reader-writer lock on the KSR (63
processors, 5% writers).

26 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

readers is already nearly 50% higher than the cost of a mutual exclusion
lock, the percentage increase in latency for readers when moving to a
preemption-safe or scheduler-conscious lock is insignificant. The increase
in latency for writers is on the order of 20%.

Fig. 15. Varying the number of processors for the reader-writer lock on the SGI (multipro-
gramming level 5 2, 5% writers).

Fig. 16. Varying the number of processors for the reader-writer lock on the KSR (multipro-
gramming level 5 2, 5% writers).

Table II. Latency (acquire 1 release) for Reader-Writer Locks on the SGI

Lock R-Latency (ms) W-Latency (ms)

RW-TAS-B 3.13 2.10
RW-TAS-B-PS 3.15 0.02 5 0% 2.52 0.42 5 20%
RW-Queue 5.28 2.21
RW-Smart-Q 5.48 0.20 5 4% 2.67 0.46 5 21%

The extra numbers in the right-hand columns indicate the absolute and percentage increase in
latency of the preemption-safe and scheduler-conscious locks with respect to their scheduler-
oblivious counterparts.

Scheduler-Conscious Synchronization • 27

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

5.4 Barriers

We present results on barrier synchronization in two sections: one for
small-scale machines such as the SGI Challenge (these results also apply to
small partitions of a larger machine) and one for large-scale machines such
as the KSR 1.

5.4.1 Small-Scale Barriers. For small-scale, centralized barriers, we
report results for four different algorithms:

(1) B-spin: All processes spin while waiting for their peers to reach the
barrier.

(2) B-block: Processes never spin; if they need to wait, they place them-
selves on a semaphore queue. The last process to arrive at the barrier
wakes up its peers by performing V operations on the semaphore.

(3) B-sp-blk: Processes spin for a bounded amount of time equal to the
cost of a context switch. If the bound expires before the barrier is
achieved, then the process yields the processor by performing a P
operation on a semaphore. The last process to arrive at the barrier
checks the semaphore queue and wakes up any processes that are
blocked.

(4) B-sched: The Scheduler Information barrier of Section 4.3, which
makes an optimal spin-versus-block decision based on the number of
available processors (partition_block.num_processors) and the number
of processes that have yet to reach the barrier.

We also experimented with three heuristics that attempt to guess whether
the machine/partition is multiprogrammed [Kontothanassis and Wisniewski
1993], but found their performance to be virtually indistinguishable from
that of B-sp-blk.

Our synthetic barrier application is just a simple loop: all it does between
barriers is increment a counter. Figure 17 shows the performance of this
application on the SGI Challenge when using different barrier implemen-
tations, as the multiprogramming level increases. Our experiments assume
a dynamic hardware-partitioned environment, where the number of proces-

Fig. 17. Performance of the small-scale barriers for the synthetic program on the SGI (11
processors).

28 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

sors available to the application varies between 5 and 11, with an average
of 7.9. The multiprogramming level is calculated based on the average
number of processors and the number of processes used by the application.
The kernel scheduler moves processes among processors in order to balance
load. Processes running on the same processor are multiprogrammed with
a quantum length of 30ms, the default value used by the IRIX kernel
scheduler.

In the absence of multiprogramming, the B-sched barrier performs as
well as the B-spin barrier—its overhead is low—and significantly better
than B-sp-blk. As the multiprogramming level increases, the spinning
barrier’s performance degrades sharply, while the B-sched barrier retains
its good performance. It never spins when other processes could make use
of the current processor, and it avoids the overhead of blocking in the last P
processes to arrive at the barrier. At very high multiprogramming levels,
B-sched is only slightly faster than B-sp-blk and B-block: as the number of
processes per processor increases it becomes less important to avoid block-
ing in the final process on each processor.

To validate the results obtained with the synthetic application, we
experimented with two real applications: Gaussian Elimination and Suc-
cessive Over-Relaxation (SOR). Gauss solves a 6403640 problem without
pivoting; SOR works on an 8003800 matrix for 20 iterations. Both applica-
tions use 11 processes on 5–11 processors, with a quantum length of 30ms
and a repartition operation (a random change in the number of processors)
every 80ms.

The main difference we observed with respect to the synthetic results is a
decrease in the impact of synchronization on overall performance, since it is

Fig. 18. Gaussian Elimination runtime for different barrier implementations (multiprogram-
ming level 5 1).

Fig. 19. Gaussian Elimination runtime for different barrier implementations (multiprogram-
ming level 5 2).

Scheduler-Conscious Synchronization • 29

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

combined with the time spent in real computation. Figures 18 and 19 show
the completion time of Gaussian Elimination at multiprogramming levels
of 1 and 2 respectively; the corresponding results for SOR appear in
Figures 20 and 21. Overall the B-sched barrier provides the best perfor-
mance.

As with mutual exclusion and reader-writer locks, we experimented with
a variety of other values for each of the experimental parameters. To save
space, results are not shown here. The only parameter (other than multi-
programming level and number of processors) to display a noticeable
impact on performance was the frequency of repartitioning decisions. As
the time between repartitions increases, the performance of the heuristic
barriers improves to some extent, since they need time to adapt to a change
in partition size, and an increase in the time between repartitions allows
them to amortize their adaptation cost over a larger number of episodes.
The performance of the blocking and spinning barriers is essentially
independent of the time between repartitions.

We were initially surprised to see a small but steady improvement in the
performance of the B-sched barrier as the time between repartitions
increased. The explanation is that it is possible for the algorithm to err
when a repartitioning decision occurs at the same time that the application
is going through a barrier. In this case, some threads will use old informa-
tion to guide their decision and thus may decide suboptimally. When the
time between scheduling decisions is large, suboptimal decisions happen
less frequently, resulting in a small performance improvement.

5.4.2 Scalable Barriers. For large-scale machines we implemented and
tested three barriers on the KSR:

Fig. 21. Successive Over-Relaxation runtime for different barrier implementations (multipro-
gramming level 5 2).

Fig. 20. Successive Over-Relaxation runtime for different barrier implementations (multipro-
gramming level 5 1).

30 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

(1) Tree: Mellor-Crummey and Scott’s tree barrier with flag wakeup [Mellor-
Crummey and Scott 1991a] associates processes with nodes (both inter-
nal and leaves) in a static 4-ary fan-in tree. After waiting for their
children (if any) and signaling their parent (if any) in the arrival tree,
processes spin on locally cached copies of a single, global wakeup flag.
The last arriving process sets this flag. On KSR’s ring-based topology,
the resulting invalidations and reloads approximate hardware broad-
cast.

(2) Com-tree: A heuristic variant of the Tree barrier, in which processes
spin for only a bounded amount of time, as in the B-sp-blk algorithm of
the previous section.

(3) Scal-SC: A scalable scheduler-conscious barrier that uses the B-sched
barrier among the processes on a given processor and a scalable tree
barrier across processors. This is the final algorithm presented in
Section 4.3.

Barriers based on a centralized counter do not scale well to larger
machines for two reasons. First, their critical path length is linear in the
number of processors; second, the centralized counter can become a signif-
icant source of contention. Given that processes do not migrate among
processors/clusters, the Scal-SC algorithm avoids these problems while
making optimal spin-versus-block decisions.

Figure 22 compares the performance of the various barriers in our
synthetic application on the KSR 1, with a multiprogramming level of two
and with varying numbers of processors. Repartitioning decisions were
made at one-second intervals. As can be seen from the graph, the Tree
barrier is rendered useless with the introduction of multiprogramming. Its
performance degrades due to the large number of context switches required
in order to go through a barrier episode and the amount of time wasted
before each context switch—equal to the scheduling quantum. It is surpris-
ing to see that even the “spin then block” heuristic of the Com-tree barrier

Fig. 22. Varying the number of processors for the barriers on the KSR (multiprogramming
level 5 2).

Scheduler-Conscious Synchronization • 31

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

performs quite badly in the presence of multiprogramming. While processes
do not have to waste a quantum before yielding their processors they still
have to suffer the large number of context switches that degrade perfor-
mance. The Scal-SC barrier improves performance by an order of magni-
tude compared to the Com-tree barrier. It requires the minimum possible
number of context switches, while still maintaining the logarithmic path
length and low-contention properties of the Tree barrier.

As we mentioned in Section 4, the Scal-SC barrier can be sensitive to the
frequency of scheduling decisions. We ran experiments to determine the
level of sensitivity. Figure 23 shows that if the time between repartition
decisions is very small, performance degrades quite sharply. We believe,
however, that repartitioning will be a rare event on large machines—as
rare as the arrival and departure of jobs from the system. For repartition
intervals greater than 500ms, the Scal-SC barrier performs well.

To validate the synthetic results, we ran a barrier-based version of
Gaussian elimination on 57 KSR processors.7 The results appear in Figures

7We used pthreads to express parallelism in our barrier experiments. Due to limitations in the
pthreads environment on the KSR, only 57 of the 64 processors in the partition could be
utilized.

Fig. 23. Varying the frequency of repartitioning decisions for the barriers on the KSR (57
processors).

Fig. 24. Gaussian Elimination runtime on the KSR using 57 processors (multiprogramming
level 5 1).

32 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

24 and 25. In the absence of multiprogramming the Scal-SC barrier is only
slightly worse than the Tree barrier and significantly better than the
Com-tree barrier. The introduction of multiprogramming renders the Tree
barrier useless; its performance degrades by at least an order of magnitude.
At the same time, the Scal-SC barrier outperforms Com-tree by more than
50%.

6. RELATED WORK

6.1 Preemption-Safe Small-Scale Locks

It has long been recognized that performance can suffer greatly when a
process is preempted while holding a lock. Ousterhout [1982] introduced
spin-then-block locks that attempt to minimize the impact of preemption (or
other sources of delay) in critical sections by having a waiting process spin
for a small amount of time and then, if unsuccessful, block. Karlin et al.
[1991] present and evaluate a richer set of spin-then-block alternatives,
including competitive techniques that adjust the spin time based on past
experience.8 Their goal is to adapt to variability in the length of critical
sections, rather than to cope with preemption. Competitive spinning works
best when the behavior of a lock does not change rapidly with time, so that
past behavior is an appropriate indicator of future behavior. Lim and
Agarwal [1993] present a detailed analytical and experimental study of
spin-then-block alternatives on a large-scale machine in which context
switch times are relatively low compared to communication costs. In this
environment, they find that blocking without spinning works reasonably
well. Better results can be obtained by choosing a spin duration statically,
based on analysis of the application.

Zahorjan et al. [1988; 1991] present a formal model of spin-wait times.
They also describe the problem that occurs when a process is preempted
while waiting in line for a queue-based lock. For lock-based applications in
which all processes on a given processor belong to the same application,
they show that performance problems can be avoided if the operating

8A competitive algorithm is one whose worst-case performance can be proven to be within a
constant factor of optimal worst-case performance.

Fig. 25. Gaussian Elimination runtime on the KSR using 57 processors (multiprogramming
level 5 2).

Scheduler-Conscious Synchronization • 33

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

system limits its role to partitioning processes among the processors,
allowing the application to make its own intraprocessor scheduling deci-
sions (and never preempting a process with a lock).

Several groups have proposed extensions to the kernel-user interface
that allow a system to avoid adverse scheduler/lock interactions while still
doing scheduling in the kernel. The Scheduler Activation proposal of
Anderson et al. [1992] allows a parallel application to recover from un-
timely preemption. When a processor is taken away from an application,
another processor in the same application is given a software interrupt,
informing it of the preemption. The second processor can then perform a
context switch to the preempted process if desired, e.g., to push it through
its critical section. In a similar vein, Black’s work on Mach [Black 1990]
allows a process to suggest to the scheduler that it be descheduled in favor
of some specific other process, e.g., the holder of a desired lock. Both of
these proposals assume that process migration is relatively cheap.

Rather than recover from untimely preemption, the Symunix system of
Edler et al. [1988] and the Psyche system of Marsh et al. [1991] provide
mechanisms to avoid or prevent it. The Symunix scheduler allows a process
to request that it not be preempted during a critical section and will honor
that request, within reason. The Psyche scheduler provides a “two-minute
warning”9 that allows a process to estimate whether it has enough time
remaining in its quantum to complete a critical section. If time is insuffi-
cient, the process can yield its processor voluntarily, rather than start
something that it may not be able to finish.

If we were building our algorithms on top of Psyche, we would replace
code that sets the context_block.state variable to unpreemptable_self with
code that blocks if the “two-minute warning” is in effect; we would delete
code that resets context_block.state and blocks when context_block.warning
is set. Rather than change another process’ state variable to unpreempta-
ble_other, we would inspect its warning flag and treat it as preempted if set.
If we were building on top of Scheduler Activations, we would have the
user-level scheduler that receives notice of kernel-initiated preemptions
treat the state and warning variables just as the kernel does in our
Symunix-based proposal; it would need to resume execution of any “unpre-
emptable” process. Alternatively, we could have the user-level scheduler
perform some synchronization algorithm-specific recovery, such as linking
a process out of a queue, but this introduces additional complexity, because
with Scheduler Activations the user-level scheduler itself can be pre-
empted.

6.2 Scalable Locks

The queue-based spin locks of Anderson [1990] and of Graunke and
Thakkar [1990] minimize active sharing on coherently cached machines by

9In American football, a “two-minute warning” is a special game timeout called by the officials
during the first and second halves of a game. It is designed to give either team fair notice that
game time is about to expire.

34 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

arranging for every waiting processor to spin on a different element of an
array. Each element of the array lies in a separate, dynamically chosen
cache line, which migrates to the spinning processor. The MCS lock
[Mellor-Crummey and Scott 1991a] represents its queue with a distributed
linked list in which each process tracks the identity of its successor, rather
than its predecessor. Because the list is “linked backward,” each process
spins on a location of its own choosing and can arrange for that location to
lie in local memory even on machines without coherent caches. Magnussen
et al. [1994] have shown how to modify the MCS lock to minimize interpro-
cessor communication on a coherently cached machine. Lim has shown how
to build a reactive lock that switches between test_and_set and MCS,
depending on observed contention [Lim and Agarwal 1994]. Markatos
[1991] uses a variant of the MCS queue to pass a lock to the highest-
priority waiting process in real-time systems. Our Smart-Q lock first
appeared at IPPS in 1994 [Wisniewski et al. 1994]. Craig [1993] and
Takada and Sakamura [1994] have adapted this lock for use in real-time
systems.

6.3 Alternative Approaches to Atomic Update

Alternatives to the use of preemption-safe or scheduler-conscious locks
include nonblocking and wait-free data structures and remote invocation of
object methods.

Herlihy [1991; 1993] has led the development of nonblocking and wait-
free data structures. The algorithms are designed in such a way as to
guarantee both atomicity and forward progress, despite arbitrary delays on
the part of individual processes. The key idea in most cases is to modify a
copy of (a portion of) the data structure and then swap it for the original in
one atomic step (assuming the original has not been modified since the copy
was created). Nonblocking algorithms guarantee that some process will
make forward progress in a bounded number of time steps. Wait-free
algorithms guarantee that every process will do so. Tolerance of arbitrary
delays means that nonblocking and wait-free data structures are immune
to the performance effects of inopportune preemption. It also means that
they can tolerate some page faults and even certain kinds of hardware
failure. Unfortunately, the current state of the art in general-purpose non-
blocking and wait-free synchronization incurs substantial performance over-
head, even when there is no competition for access to the data structure.

A second way to avoid the use of locks is to create a manager process that
is responsible for all operations on the “shared” data structure and to
require other processes to send messages to the manager. This sort of
organization is common in distributed systems. It can be cast as a natural
interpretation of monitors or as function shipping [Lindsay et al. 1984;
Stamos and Gifford 1990] to a common destination. Several recent ma-
chines provide hardware support for very fast invocation of functions on
remote processors [Kranz et al. 1993; Noakes et al. 1993]. Even on more
conventional hardware, programming techniques such as active messages

Scheduler-Conscious Synchronization • 35

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

[von Eicken et al. 1992] can make remote invocation very fast. Because
computation is centralized and requests are processed serially, remote
invocation provides implicit synchronization. On the other hand, it does not
permit concurrency and can only be used when the manager is not a bottle-
neck.

6.4 Barriers

Small-scale barriers are generally based on centralized counters. As with
centralized locks, contention for counters creates serious performance
problems on large machines. Scalable barriers, generally based on log-
depth tree or FFT-like patterns of point-to-point notifications among pro-
cesses, have received significant attention [Arenstorf and Jordan 1989;
Hensgen et al. 1988; Lee 1990; Lubachevsky 1989; Mellor-Crummey and
Scott 1991a; Scott and Mellor-Crummey 1994; Yew et al. 1987].

Comparatively little work has addressed the interaction of scheduling
and barriers, possibly because barrier-based applications tend to be used
with a one-process-per-processor system model. Much of the work on
spin-then-block techniques (e.g., that of Ousterhout [1982] and of Lim and
Agarwal [1993]) applies to barriers as well as to locks. Lim and Agarwal
note that waiting time at barriers could be reduced if the application knew
how many of its processes had already reached the barrier (and presumably
how many processors it was using), but they dismiss this possibility as
being unreasonably communication intensive on a large-scale machine. Our
scalable combination barrier tracks the number of processes at the barrier
only within each processor or cluster.

With a scalable busy-wait barrier, Markatos et al. [1991] have shown
that the scheduler may need to cycle through the entire ready list a
logarithmic number of times (with a full quantum’s worth of spinning
between context switches) in order to achieve the barrier. To avoid this
problem, they suggest (without an implementation) that blocking synchro-
nization be used among the processes on a given processor, with a scalable
busy-wait barrier among processors. Such combination barriers were origi-
nally suggested by Axelrod [1986] to minimize resource needs in barriers
constructed from OS-provided locks. Our scalable combination barrier
builds on these earlier proposals by using scheduler information to make
an optimal spin-versus-block decision within processors and to adapt to
partitioning changes at runtime.

7. CONCLUSIONS

In this article we presented solutions to the problem of synchronization on
multiprogrammed multiprocessors, for both small and large-scale ma-
chines. We identified the main sources of performance loss for the two most
common types of synchronization algorithms: locks and barriers. We also
demonstrated that the scalable versions of synchronization algorithms
based on distributed data structures are particularly sensitive to multipro-
gramming. Using a slightly extended kernel interface, in which processes

36 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

are able to defer preemption briefly, we examined several heuristic tech-
niques—preemption-safe test_and_set locks (developed by previous re-
searchers), “handshaking” queue and ticket locks, and various spin-then-
block barriers—that avoid the worst performance anomalies in multi-
programmed systems.

To provide improved performance, we defined an extended kernel inter-
face that allows a process to determine the state of its peers, inspect the
mapping of processes to processors, and defer the preemption of peers. We
used this interface to construct scheduler-conscious algorithms: the
Smart-Q mutual-exclusion and reader-writer locks, the Scheduler Infor-
mation small-scale barrier, and the scheduler-conscious scalable barrier.
We demonstrated that these algorithms perform well on dedicated ma-
chines and provide significant performance advantages over their schedul-
er-oblivious counterparts in a multiprogrammed environment. The perfor-
mance gains come from three sources: avoiding preemption when holding a
lock, never passing a lock to a process that is currently preempted, and
giving up the processor at a barrier when and only when some other
process could use that processor productively.

For barrier-based applications, the Scheduler Information barrier and
the scheduler-conscious scalable barrier clearly outperform both the heuris-
tic spin-then-block barriers and the scheduler-oblivious alternatives. For
lock-based applications the choice between preemption-safe centralized
(test_and_set or ticket) locks and scheduler-conscious queue locks is less
clear. Increasing the multiprogramming level decreases the contention
observed by the application, since the number of processes accessing a
synchronization variable concurrently is reduced. As a result, scheduler-
conscious queue locks were often (though not always) inferior to the
centralized alternatives in our experiments. As future increases in machine
size increase the number of contending processors in multiprogrammed
environments, the balance should tip back toward queue-based algorithms.
Moreover, it is likely that coherence protocols on future machines will lack
the ability to efficiently keep track of a large number of processors sharing
a common variable. As a result, the cost of coherence management for the
data structures of centralized synchronization algorithms is likely to be
unacceptably high. This will again argue in favor of queue-based algo-
rithms, in which no two processes spin on the same location.

As in previous papers [Mellor-Crummey and Scott 1991a; Scott and
Mellor-Crummey 1994], we find that good performance can be achieved
without exotic synchronization hardware. All of our algorithms can be
constructed using a universal atomic primitive such as compare_and_store
or load_linked/store_conditional. The closeness with which the various soft-
ware queued locks follow the performance of the native lock on the KSR 1
suggests that the native lock may not be cost effective. For future ma-
chines, we suspect that barrier hardware will continue to prove worth-
while, but that hardware locks will not, unless they are very inexpensive.
Moreover, any hardware synchronization mechanisms will need to be

Scheduler-Conscious Synchronization • 37

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

carefully designed to maximize their flexibility and generality, e.g., for use
on multiprogrammed systems.

Further extensions to the kernel-user interface might improve the perfor-
mance of scheduler-conscious algorithms. Such extensions might include
allowing the kernel to run user-supplied functions in response to particular
kernel events or choosing the partition size based on the application’s
characteristics. For example, it does not make sense to remove a single
processor from a 64-processor barrier-based application: the application
would run almost as fast on 32 processors. We believe that as large-scale
multiprocessors become more common they will inevitably be multipro-
grammed, and the importance of exchanging information across the kernel-
user boundary will increase.

ACKNOWLEDGMENTS

Our thanks to Hiroaki Takada and to Injong Rhee and Chi-Yung Lee for
discovering timing windows in the Smart-Q algorithm. Thanks also to
Donna Bergmark and the Cornell Theory Center for their help with the
KSR 1, to Maged Michael and the anonymous referees for their careful
reading and helpful suggestions, and to Ken Birman for pushing us a little
when we needed it.

REFERENCES

ABOULENEIN, N. M., GOODMAN, J. R., GJESSING, S., AND WOEST, P. J. 1994. Hardware support
for synchronization in the Scalable Coherent Interface (SCI). In Proceedings of the 8th
International Parallel Processing Symposium. IEEE, New York, 141–150.

ANDERSON, T. E. 1990. The performance of spin lock alternatives for shared-memory multi-
processors. IEEE Trans. Parallel Distrib. Syst. 1, 1 (Jan.), 6–16.

ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND LEVY, H. M. 1992. Scheduler
activations: Effective kernel support for the user-level management of parallelism. ACM
Trans. Comput. Syst. 10, 1 (Feb.), 53–79.

ARENSTORF, N. S. AND JORDAN, H. 1989. Comparing barrier algorithms. Parallel Comput. 12,
157–170.

AXELROD, T. S. 1986. Effects of synchronization barriers on multiprocessor performance.
Parallel Comput. 3, 129–140.

BLACK, D. L. 1990. Scheduling support for concurrency and parallelism in the Mach
operating system. IEEE Comput. 23, 5 (May), 35–43.

CRAIG, T. S. 1993. Queuing spin lock algorithms to support timing predictability. In
Proceedings of the 14th IEEE Real-Time Systems Symposium. IEEE, New York, 148–157.

CROVELLA, M., DAS, P., DUBNICKI, C., LEBLANC, T., AND MARKATOS, E. 1991. Multiprogram-
ming on multiprocessors. In Proceedings of the 3rd IEEE Symposium on Parallel and
Distributed Processing. IEEE, New York, 590–597.

EDLER, J., LIPKIS, J., AND SCHONBERG, E. 1988. Process management for highly parallel
UNIX systems. In Proceedings of the USENIX Workshop on Unix and Supercomputers.
USENIX Assoc., Berkeley, Calif.

GRAUNKE, G. AND THAKKAR, S. 1990. Synchronization algorithms for shared-memory multi-
processors. IEEE Comput. 23, 6 (June), 60–69.

HENSGEN, D., FINKEL, R., AND MANBER, U. 1988. Two algorithms for barrier synchronization.
Int. J. Parallel Program. 17, 1, 1–17.

HERLIHY, M. 1993. A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst. 15, 5 (Nov.), 745–770.

38 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

KARLIN, A. R., LI, K., MANASSE, M. S., AND OWICKI, S. 1991. Empirical studies of competitive
spinning for a shared-memory multiprocessor. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles. ACM, New York, 41–55.

KONTOTHANASSIS, L. AND WISNIEWSKI, R. 1993. Using scheduler information to achieve
optimal barrier synchronization performance. In Proceedings of the 4th ACM Symposium on
Principles and Practice of Parallel Programming. ACM, New York, 64–72.

KONTOTHANASSIS, L. I., WISNIEWSKI, R. W., AND SCOTT, M. L. 1994. Scheduler-conscious
synchronization. Tech. Rep. 550, Computer Science Dept., Univ. of Rochester, Rochester, N.Y.

KRANZ, D., JOHNSON, K., AGARWAL, A., KUBIATOWICZ, J., AND LIM, B.-H. 1993. Integrating
message-passing and shared-memory: Early experience. In Proceedings of the 4th ACM
Symposium on Principles and Practice of Parallel Programming. ACM, New York, 54–63.

KRIEGER, O., STUMM, M., AND UNRAU, R. 1993. A fair fast scalable reader-writer lock. In
Proceedings of the 1993 International Conference on Parallel Processing. CRC Press, Boca
Raton, Fla., II: 201–204.

LEE, C. A. 1990. Barrier synchronization over multistage interconnection networks. In
Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing. IEEE, New
York, 130–133.

LENOSKI, D., LAUDON, J., GHARACHORLOO, K., WEBER, W.-D., GUPTA, A., HENNESSY, J., HORWITZ,
M., AND LAM, M. S. 1992. The Stanford Dash multiprocessor. IEEE Comput. 25, 3 (Mar.),
63–79.

LEUTENEGGER, S. T. AND VERNON, M. K. 1990. Performance of multiprogrammed multipro-
cessor scheduling algorithms. In Proceedings of the 1990 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. ACM, New York, 226–236.

LIM, B.-H. AND AGARWAL, A. 1993. Waiting algorithms for synchronization in large-scale
multiprocessors. ACM Trans. Comput. Syst. 11, 3 (Aug.), 253–294.

LIM, B.-H. AND AGARWAL, A. 1994. Reactive synchronization algorithms for multiprocessors.
In Proceedings of the 6th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, New York, 25–35.

LINDSAY, B. G., HAAS, L. M., MOHAN, C., WILMS, P. F., AND YOST, R. A. 1984. Computation
and communication in R*: A distributed database manager. ACM Trans. Comput. Syst. 2, 1
(Feb.), 24–28.

LUBACHEVSKY, B. 1989. Synchronization barrier and related tools for shared memory paral-
lel programming. In Proceedings of the 1989 International Conference on Parallel Process-
ing. Penn State University Press, University Park, Pa., II:175–179.

MAGNUSSEN, P., LANDIN, A., AND HAGERSTEN, E. 1994. Queue locks on cache coherent
multiprocessors. In Proceedings of the 8th International Parallel Processing Symposium.
IEEE, New York, 165–171.

MARKATOS, E., CROVELLA, M., DAS, P., DUBNICKI, C., AND LEBLANC, T. 1991. The effects of
multiprogramming on barrier synchronization. In Proceedings of the 3rd IEEE Symposium
on Parallel and Distributed Processing. IEEE, New York, 662–669.

MARKATOS, E. P. 1991. Multiprocessor synchronization primitives with priorities. In Pro-
ceedings of the 8th IEEE Workshop on Real-Time Operating Systems and Software. IEEE,
New York, 1–7.

MARSH, B. D., SCOTT, M. L., LEBLANC, T. J., AND MARKATOS, E. P. 1991. First-class user-level
threads. In Proceedings of the 13th ACM Symposium on Operating Systems Principles. ACM,
New York, 110–121.

MELLOR-CRUMMEY, J. M. AND SCOTT, M. L. 1991a. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb.), 21–65.

MELLOR-CRUMMEY, J. M. AND SCOTT, M. L. 1991b. Scalable reader-writer synchronization on
shared-memory multiprocessors. In Proceedings of the 3rd ACM Symposium on Principles
and Practice of Parallel Programming. ACM, New York, 106–113.

NOAKES, M., WALLACH, D., AND DALLY, W. 1993. The J-machine multicomputer: An architec-
ture evaluation. In Proceedings of the 20th International Symposium on Computer Architecture.
ACM, New York, 224–235.

Scheduler-Conscious Synchronization • 39

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

OUSTERHOUT, J. K. 1982. Scheduling techniques for concurrent systems. In Proceedings of
the 3rd International Conference on Distributed Computing Systems. IEEE, New York,
22–30.

SCOTT, M. L. AND MELLOR-CRUMMEY, J. M. 1994. Fast, contention-free combining tree
barriers. Int. J. Parallel Program, 22, 4 (Aug.), 449–481.

SCOTT, M. L., LEBLANC, T. J., AND MARSH, B. D. 1990. Multi-model parallel programming in
Psyche. In Proceedings of the 2nd ACM Symposium on Principles and Practice of Parallel
Programming. ACM, New York, 70–78.

SINGH, J. P., WEBER, W.-D., AND GUPTA, A. 1992. SPLASH: Stanford parallel applications for
shared-memory. ACM SIGARCH Comput. Arch. News 20, 1 (Mar.), 5–44.

STAMOS, J. W. AND GIFFORD, D. K. 1990. Remote evaluation. ACM Trans. Program. Lang.
Syst. 12, 4 (Oct.), 537–565.

TAKADA, H. AND SAKAMURA, K. 1994. Predictable spin lock algorithms with preemption. In
Proceedings of the 11th IEEE Workshop on Real-Time Operating Systems and Software.
IEEE, New York, 2–6.

TUCKER, A. AND GUPTA, A. 1989. Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles. ACM, New York, 159–166.

VON EICKEN, T., CULLER, D. E., GOLDSTEIN, S. C., AND SCHAUSER, K. E. 1992. Active
messages: A mechanism for integrated communication and computation. In Proceedings of
the 19th International Symposium on Computer Architecture. ACM, New York, 256–266.

WISNIEWSKI, R. W., KONTOTHANASSIS, L., AND SCOTT, M. L. 1994. Scalable spin locks for
multiprogrammed systems. In Proceedings of the 8th International Parallel Processing
Symposium. IEEE, New York, 583–589.

YANG, H.-H. AND ANDERSON, J. H. 1993. Fast, scalable synchronization with minimal
hardware support (extended abstract). In Proceedings of the 12th ACM Symposium on
Principles of Distributed Computing. ACM, New York, 171–182.

YEW, P.-C., TZENG, H.-F., AND LAWRIE, D. H. 1987. Distributing hot-spot addressing in
large-scale multiprocessors. IEEE Trans. Comput. C-36, 4 (Apr.), 388–395.

ZAHORJAN, J. AND MCCANN, C. 1990. Processor scheduling in shared memory multiproces-
sors. In Proceedings of the 1990 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems. ACM, New York, 214–225.

ZAHORJAN, J., LAZOWSKA, E. D., AND EAGER, D. L. 1991. The effect of scheduling discipline on
spin overhead in shared memory parallel systems. IEEE Trans. Parallel Distrib. Syst. 2, 2
(Apr.), 180–198.

Received January 1995; revised October 1995; accepted October 1996

40 • Leonidas I. Kontothanassis et al.

ACM Transactions on Computer Systems, Vol. 15, No. 1, February 1997.

