
17

tural Support for Programming Languages and Operating Systems, Boston, MA, October 1996.
[3] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and M. L. Scott.

CSM-2L: Software Coherent Shared Memory on a Clustered Remote-Write Network. In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, Saint Malo, France, October 1997.

6.   Comparative Evaluation of Fine- and Coarse-Grain Approaches for Software
Distributed Shared Memory

 Sandhya Dwarkadas, Kourosh Gharachorloo, Leonidas Kontothanassis,
Dan Scales, Michael Scott, and Robert Stets

Univ. of Rochester, DEC WRL and DEC CRL

Hardware cache-coherent multiprocessors offer good performance and provide a simple shared-memory
model of computing for application programmers. Multicomputers, or collections of networked machines, can
potentially provide more cost-effective performance, but require additional programmer effort to write message-
passing programs. Software distributed shared memory (S-DSM) attempts to ease the burden of programming
distributed machines by presenting the illusion of shared memory on top of distributed hardware using a software
run-time layer between the application and the hardware.

Early S-DSM systems were primarily based on virtual memory. They used pages as the unit of coherence,
and used page faults to trigger copy and invalidation operations. This approach can yield excellent performance
for ``well-behaved’’ programs. Unfortunately, it tends to be very slow for programs with any fine-grain sharing
of data within a single page.

Recent systems employ relaxed consistency models that allow a page to be written by multiple processes
concurrently, and limit the impact of false sharing to the points at which programs synchronize. Page-based sys-
tems may still experience overhead due to synchronization, sharing at a fine granularity, and metadata mainte-
nance. Furthermore, their use of relaxed consistency models introduces a departure from the standard SMP
shared-memory programming model that can limit portability for certain applications developed on hardware
DSM.

Alternatively, some S-DSM systems rely on binary instrumentation of applications to catch access faults at a
fine grain. Such systems provide the highest degree of shared memory transparency since they can efficiently run
programs developed for hardware consistency models. However, the overhead of the added code can sometimes
limit performance.

This paper attempts to identify the fundamental tradeoffs between these two S-DSM approaches; coarse-
grain, VM-based vs.\ fine-grain, instrumentation-based. Our study compares two relatively mature but very dif-
ferent S-DSM systems running on identical hardware that are representative of the fine- and coarse-grain
approaches: Shasta and Cashmere. Both systems run on clusters of Alpha SMPs connected by DEC’s Memory
Channel (MC) remote-write network.

We compare the performance of Shasta and Cashmere on thirteen applications running on a 16-processor, 4-
node AlphaServer SMP cluster connected by the Memory Channel. Eight of the applications are from the
SPLASH-2 application suite and have been tuned for hardware multiprocessors, while five are existing applica-
tions that have been shown in the past to perform well on software (and hardware) shared-memory multiproces-
sors.

We have chosen our experimental environment as representative of the way one might build an inexpensive
but high-end cluster. Four-way SMP nodes provide a sweet-spot in the price/performance spectrum, while Mem-
ory Channel is a very low-latency, high-bandwidth commercial network that connects to the industry-standard
PCI interface. Our environment is quite different from that used in a recent study~\cite{zhou-iftode-wood-
ppopp-1997} that also examines performance tradeoffs between fine- and coarse-grain software coherence. This
previous study uses custom hardware to provide fine-grain access checks with no instrumentation overhead, and
uses a lower performance network (almost an order of magnitude performance difference in latency and a factor

mls

mls
SSMM '98 (abstract only; no proceedings)



18

of two in bandwidth). In addition, their study uses a cluster of uniprocessors, whereas we use a cluster of SMPs
and protocols designed to take advantage of SMP nodes. Our end results are similar to the ones reported by the
previous study, with a few surprising exceptions that are affected by the two-level nature of our system.

Our study clearly illustrates the tradeoffs between fine-grain and VM-based S-DSM on an aggressive hard-
ware environment. A fine-grain system such as Shasta has more robust (and often better) performance for pro-
grams developed on a hardware DSM (H-DSM). It supports H-DSM memory models, and is better able to
tolerate fine-grain synchronization. Cashmere has a performance edge for applications with coarse-grain data
access and synchronization. With program modifications that take coherence granularity into account, the perfor-
mance gap between the two systems can be bridged. Remaining performance differences are dependent on pro-
gram structure: a high degree of false sharing at a granularity larger than a cache line favors Shasta since the
smaller coherence block brings in less useless data; large amounts of mostly private data favors Cashmere, since
there is no virtual memory overhead unless there is active sharing. Fine-grain false sharing also favors Cashmere
due to its ability to delay and aggregate protocol operations.

One surprising result of our study has been the good performance of page-based S-DSM on certain applica-
tions known to have a high degree of page-level write-write false sharing. The clustering inherent with SMP
nodes eliminates the software overhead from false sharing within nodes since coherence within nodes is managed
by hardware. Moreover, for applications with regular (e.g.\ cyclic) data layout, cross-node data boundaries can
end up aligned, eliminating inter-node false sharing as well.

7.  Implementation and Performance of Shared Virtual Memory Protocols on
SHRIMP

Liviu Iftode, Matthias Blumrich, Cezary Dubnicki, David Oppenheimer,
Jaswinder Pal Singh and Kai Li

Princeton University

This presentation reports the evaluation of several shared virtual memory home-based protocols on
SHRIMP[1,2], a PC-based multicomputer built at Princeton. It extends the study presented in the SHRIMP paper
at ISCA’98[2] with a more detailed analysis of the impact of virtual memory-mapped communication[3] and
automatic update[1] on the performance of shared virtual memory protocols.

Shared virtual memory (SVM) systems provide the abstraction of a shared address space on top of a mes-
sage-passing communication architecture. The overall performance of an SVM system depends on both the raw
performance of the underlying communication mechanism and the efficiency with which the SVM protocol uses
that mechanism. Recently, several protocols have been proposed to take advantage of memory-mapped commu-
nication that supports fine-grained remote writes[4,6,8,9]. The AURC protocol[4] was the first proposal to take
advantage of memory-mapped communication for implementing a lazy release consistency (LRC) protocol[7].
AURC uses memory-mapped communication in two ways. First, it maps non-home copies of a shared page to
the home page. Once these mappings are established, the network interface ensures that writes performed to the
local copy of the page are transparently propagated to the home copy by the automatic update mechanism. Sec-
ond, it uses memory-mapped communication to transfer data from the home page to a non-home page directly in
order to bring the non-home copy up-to-date. Such a data transfer requires very little software overhead, no
memory copy, and no additional overhead at the receiving node.

In a previous paper we compared the AURC protocol with a traditional LRC protocol[5] using a simulator,
but this evaluation had two limitations from the viewpoint of evaluating memory mapped communication and
automatic update support. First, the protocols it compares differ not only in the update propagation mechanism
used (diffs versus hardware-supported automatic update), but also in the type of multiple-writer scheme used
(distributed versus home-based). As a result, the contribution of the automatic update support to the improve-
ment in performance cannot be isolated from the contribution of the different scheme used for merging updates

mls




