
The Effect of Network Total Order, Broadcast, and Remote-Write
Capability on Network-Based Shared Memory Computing1

Robert Stets, Sandhya Dwarkadas, Leonidas Kontothanassis2,
Umit Rencuzogullari, Michael L. Scott

Department of Computer Science2 Compaq Cambridge Research Lab
University of Rochester One Kendall Sq., Bldg. 700

Rochester, NY 14627–0226 Cambridge, MA 02139

1This work was supported in part by NSF grants CDA–9401142, CCR–9702466, and CCR–9705594; and an
external research grant from Compaq.

mls
URCS Tech. Rep. 711, Aug. 1999



Abstract

Emerging system-area networks provide a variety of features that can dramatically reduce network
communication overhead. Such features include reduced latency, protected remote memory access,
cheap broadcast, and ordering guarantees. In this paper, we evaluate the impactof these features on
the implementation of Software Distributed Shared Memory (SDSM), and onthe Cashmere system in
particular. Cashmere has been implemented on the Compaq Memory Channel network,which supports
remote memory writes, inexpensive broadcast, and total ordering of network packets.

We evaluate the performance impact of these special network features on the three kinds of SDSM
protocol communication: shared data propagation, protocol metadata maintenance, and synchroniza-
tion, using an 8-node, 32-processor system. Among other things, we compare our base protocol, which
leverages all of Memory Channel’s special features, to a protocol based solely on reliable point-to-point
messages. We found that the special features improved performance by 18–44% for three of our appli-
cations, but less than 12% for our other seven applications. The message-based protocol has the added
benefit of allowing shared memory size to grow beyond the addressing limits of thenetwork interface.
Moreover, it enables us to implement ahome node migration optimization that sometimes more than
offsets the advantages of the protocol that fully leverages the Memory Channel features, improving
performance by as much as 67%. These results suggest that for systems of modest size, low latency is
much more important for SDSM performance than are remote writes, broadcast,or total ordering. At
the same time, results on an emulated 32-node system indicate that broadcast based on remote writes of
widely-shared data may improve performance by up to 56% for some applications. Ifhardware broad-
cast or multicast facilities can be made to scale, they can be beneficial in future system-area networks.



1 Introduction

Recent technological advances have led to the commercial availability of inexpensive system area net-
works (SANs) on which a processor can access the memory of a remote node safelyfrom user space [5,
6, 15]. These memory-mapped network interfaces provide users with high bandwidth (>75MB/s), low
latency (2–3�s) communication. This latency is two to three decimal orders of magnitude lowerthan
that of traditional networks. In addition, these SANs sometimes also provide reliable, inexpensive
broadcast and total ordering of packets [10, 15, 16].

In comparison to the traditional network of (uniprocessor) workstations, a cluster of symmetric mul-
tiprocessor (SMP) nodes on a high-performance SAN can see much lower communication overhead.
Communication within the same node can occur through shared memory, while cross-SMP communi-
cation overhead can be ameliorated by the high performance network. Severalgroups have developed
software distributed shared memory (SDSM) protocols that exploit low-latency networks [18, 22, 24,
28].

In this paper, we examine the impact of advanced networking features on the performance of the
state-of-the-art Cashmere-2L [28] protocol. The Cashmere protocol uses the virtual memory subsys-
tem to track data accesses, allows multiple concurrent writers, employs home nodes (i.e. maintains one
master copy of each shared data page), a global page directory, and leverages shared memory within
SMPs to reduce protocol overhead. In practice, Cashmere-2L has been shown tohave very good per-
formance [12, 28].

Cashmere was originally designed to maximize performance by placing shared data directly in re-
motely writable memory, using remote-write and broadcast to replicate the page directory among nodes,
and relying on network total order and reliability to avoid acknowledging the receipt of metadata infor-
mation. This paper evaluates the performance implications of each of these design decisions.

Our investigation builds on earlier results from the GeNIMA SDSM [4]. TheGeNIMA researchers
examined the performance impact of remote-read, remote-write, and specialized locking suport in the
network interface. In our investigation, we examine remote-write, along with features for inexpensive
broadcast and network total order. In subsequent sections, we will explain how these features are
used by Cashmere and could be or are used by GeNIMA. We also examine two effective protocol
optimizations,home node migration andadaptive data broadcast, both of which affect the use of the
special network interface support.

In general, an SDSM protocol incurs three kinds of communication: thepropagation of shared data,
the maintenance of internal protocol data structures (called protocolmetadata), andsynchronization.
We have constructed several variants of the Cashmere protocol that allow us to isolate the impact of
Memory Channel features on communication in each of the above areas. Overall, we find that only
three of our ten benchmark applications can obtain significant performance improvements (more than
12%) from a protocol that takes full advantage of the Memory Channel’s special features in comparison
with an alternative protocol based entirely on point to point messages. The message-only protocol has
simpler hardware requirements, and allows the size of shared memory to grow beyond the addressing
limits of the network interface.1 It also enables us to implement variants of Cashmere that employ1Most current commodity remote access networks have a limited remotely-accessible memory space. Methods to elim-
inate this restriction are a focus of ongoing research [7, 30].

1



home node migration. These variants improve performance by as much as 67%, more thanoffsetting
the advantage of using the network interface support in the base protocol. These results suggest that for
systems of modest size (up to 8 nodes), low latency is much more important for SDSM performance
than are remote writes, broadcast, or total ordering. However, broadcastingusing remote writes, if it can
be scaled to larger numbers of nodes, can be beneficial for applications with widely shared data. Results
on an emulated 32-node system suggest that the availability of inexpensive broadcastcan improve the
performance of these applications by as much as 56%.

The next section discusses the Memory Channel and its special features, along with the Cashmere
protocol. Section 3 evaluates the impact of the Memory Channel features and the home node migration
optimization. Section 4 covers related work, and Section 5 outlines our conclusions.

2 Protocol Variants and Implementation

Cashmere was designed for SMP clusters connected by a high performance system area network, such
as Compaq’s Memory Channel network [15]. Earlier work on Cashmere [12, 28] and other systems [12,
14, 22, 23, 24] has quantified the benefits of SMP nodes to SDSM performance. In this paper, we will
examine the performance impact of the special network features.

We begin by providing an overview of the Memory Channel network and its programming interface.
Following this overview is a description of the Cashmere protocol and of its network communication in
particular. A discussion of the design decisions related to SMP nodes can be found in earlier work [28].

2.1 Memory Channel

The Memory Channel is a reliable, low-latency network with a memory-mapped,programmed I/O
interface. The hardware provides aremote-write capability, allowing processors to modify remote
memory without remote processor intervention. To use remote writes, a processor must firstattach to
Transmit or Receive regions in the Memory Channel’s address space. Transmit regions are mapped to
uncacheable I/O addresses on the Memory Channel’s PCI-based network adapter. Receive regions are
backed by physical memory.

An application sets up a message channel by logically connecting Transmit and Receive regions. A
store to a Transmit region passes from the host processor to the Memory Channel adapter,where
the data is placed into a packet and injected into the network. At the destination, the network adapter
removes the data from the packet and uses DMA to write the data to the corresponding Receive region
in main memory.

A store to a transmit region can optionally be reflected back to a Receive region on the source
node by instructing the source adaptor to useloopback mode for a given channel. A loopback message
goes out through the hub and back, and is then processed as a normal message.

By connecting a transmit region to multiple receive regions, nodes can make useof hardware broad-
cast. The network guarantees that broadcast messages will be observed in the same order by all re-
ceivers. It also guarantees that all messages from a single source will beobserved in the order sent.
Broadcast is more expensive than point-to-point messages, because it must “takeover” the crossbar-

2



based network hub. Broadcast and total ordering, along with loopback transmit regions, are useful in
implementing cluster-wide synchronization, as will be described in the next section.

2.2 Protocol Overview

Cashmere is anSMP-aware protocol. The protocol allows all data sharing within an SMP to occur
through the hardware coherence mechanism in the SMP. Software coherence overhead is incurred only
when sharing spans nodes.

Cashmere uses the virtual memory (VM) subsystem to track data accesses.The coherence unit is an
8KB VM page. Cashmere implements “moderately lazy” release consistency [17]. Modifications are
propagated (as invalidation messages) at release operations, but need not be incorporated until a subse-
quent acquire operation. Cashmere requires all applications to follow adata-race-free [1] programming
model. Simply stated, one process must synchronize with another in order to see itsmodifications, and
all synchronization primitives must be visible to the system.

In Cashmere, each page of shared memory has a single, distinguishedhome node and also an entry
in a globalpage directory. The home node maintains a master copy of the page. The directory entry
contains sharing set information and home node location.

The main protocol entry points are page faults and synchronization operations. On a page fault, the
protocol updates the sharing set information in the directory and obtains an up-to-datecopy of the page
from the home node. If the fault is due to a write access, the protocol will also create a pristine copy of
the page (called atwin) and add the page to thedirty list. As an optimization in the write fault handler,
a page that is shared by only one node is moved intoexclusive mode. In this case, the twin and dirty
list operations are skipped, and the page will incur no protocol overhead until another sharer emerges.

At a release operation, the protocol examines each page in the dirty list and compares the page to its
twin in order to identify the modifications. These modifications are collectedand either written directly
into the master copy at the home node (using remote writes) or, if the page is not mapped onto Memory
Channel space, sent to the home node in the form of adiff message, for local incorporation. After
applying diffs, the protocol downgrades permissions on the dirty pages and sendswrite notices to all
nodes in the sharing set. These write notices are accumulated into a list atthe destination and processed
at the node’s next acquire operation. All pages named by write notices are invalidated as part of the
acquire.

2.3 Protocol Variants

In order to isolate the effects of Memory Channel features on shared data propagation, protocol meta-
data maintenance, and synchronization, we evaluate seven variants of the Cashmere protocol, summa-
rized in Table 1. For each of the areas of protocol communication, the protocols either leverage the full
Memory Channel capabilities (i.e. remote write access, total ordering, and inexpensive broadcast) or
instead send explicit messages between processors. We assume a reliablenetwork (as is common in
current SANs). Since we wish to establish ordering, however, explicit messages require an acknowl-
edgement.

3



Protocol Name Data Metadata Synchronization Home Migration
CSM-DMS MC MC MC No
CSM-MS Explicit MC MC No
CSM-S Explicit Explicit MC No
CSM-None Explicit Explicit Explicit No
CSM-MS-Mg Explicit MC MC Yes
CSM-None-Mg Explicit Explicit Explicit Yes
CSM-ADB MC/ADB MC MC No

Table 1: These protocol variants have been chosen to isolate the performance impact of special network
features on the areas of SDSM communication. Use of special Memory Channel features is denoted by
a “MC” under the area of communication. Otherwise, explicit messages are used.The use of Memory
Channel features is also denoted in the protocol suffix (D, M, and/or S), as is the use of home node
migration (Mg). ADB (Adaptive Data Broadcast) indicates the use of broadcastfor communicating
widely shared data modifications.

Message Polling: All of our protocols rely in some part on efficient explicit messages. To mini-
mize delivery overhead [18], we arrange for each processor to poll for messages on every loop back
edge, branching to a handler if appropriate. The polling instructions are added to application binaries
automatically by an assembly language rewriting tool.

2.3.1 CSM-DMS: Data, Metadata, and Synchronization using Memory Channel

The base protocol, denoted CSM-DMS, is the Cashmere-2L protocol described in our study on the
effects of SMP clusters [28]. This protocol exploits the Memory Channel for all SDSM communication:
to propagate shareddata, to maintainmetadata, and forsynchronization.

Data: All shared data is mapped into the Memory Channel address space. Each page is assigned a
home node, which is chosen to be the first node to touch the page after initialization. The home node
creates a receive mapping for the page. All other nodes create a transmit mapping as well as a local copy
of the page. Shared data is fetched from the home node using messages. Fetches could beoptimized by
a remote read operation or by allowing the home node to write the data directly tothe working address
on the requesting node. Unfortunately, the first optimization is not available on theMemory Channel.
The second optimization is also effectively unavailable because it requires shared data to be mapped at
distinct Memory Channel addresses on each node. With only 128MBytes of Memory Channel address
space, this significantly limits the maximum dataset size. (For eight nodes, the maximum dataset would
be only about 16MBytes.)

Modifications are written back to the home node in the form of diffs.2 With home node copies kept in
Memory Channel space these diffs can be applied with remote writes, avoidingthe need for processor2An earlier Cashmere study [18] investigated using write-through to propagate data modifications. Diffs were found to
use bandwidth more efficiently than write-through, and to provide better performance.

4



intervention at the home. Address space limits still constrain dataset size, but the limit is reasonably
high (approximately 128MBytes).

To avoid race conditions, Cashmere must be sure all diffs are completed beforeexiting a Release
operation. To avoid the need for explicit acknowledgements, CSM-DMS writes all diffs to the Memory
Channel and then resets a synchronization location in Memory Channel space to complete the release.
Network total ordering ensures that the diffs will be complete before the completion of the Release is
observed.

Metadata: System-wide metadata in CSM-DMS consists of the page directory and write notice lists.
CSM-DMS replicates the page directory on each node and uses remote write to broadcast all changes.
It also uses remote-writes to deliver write notices to a list on eachnode. At an acquire, a node simply
reads its write notices from local memory. As with diffs, CSM-DMS takes advantage of network
ordering to avoid write notice acknowledgements.

Synchronization: Application locks, barriers, and flags all leverage the Memory Channel’s broadcast
and write ordering capabilities. Locks are represented by an 8-entry arrayin Memory Channel space,
and by a test-and-set flag on each node. A process first acquires the local test-and-set lock and then
asserts and broadcasts its node entry in the 8-entry array. The process waitsfor its write to appear via
loopback, and then reads the entire array. If no other entries are set, the lock is acquired; otherwise
the process resets its entry, backs off, and tries again. This lock implementation allows a processor
to acquire a lock without requiring any remote processor assistance. Barriers are represented by an
8-entry array, a “sense” variable in Memory Channel space, and a local counter on each node. The last
processor on each node to arrive at the barrier updates the node’s entry in the 8-entry array. A single
master processor waits for all nodes to arrive and then toggles the sense variable, on which the other
nodes are spinning. Flags are write-once notifications based on remote write and broadcast.

2.3.2 CSM-MS: Metadata and Synchronization using Memory Channel

CSM-MS does not place shared data in Memory Channel space and so avoids network-induced lim-
itations on dataset size. CSM-MS, however, cannot use remote-write diffs. Instead, diffs are sent
as explicit messages, which require processing assistance from the home node andexplicit acknowl-
edgements to establish ordering. In CSM-MS, metadata and synchronization still leverage all Memory
Channel features.

2.3.3 CSM-S: Synchronization using Memory Channel

CSM-S uses special network features only for synchronization. Explicit messages are used both to
propagate shared data and to maintain metadata. Instead of broadcasting a directory change, a process
must send the change to the home node in an explicit message. The home node updates the entry and
acknowledges the request. The home node is the only node guaranteed to have an up-to-date directory
entry.

Directory updates (or reads) can usually be piggybacked onto an existing message.For example,
a directory update is implicit in a page fetch request and so can be piggybacked. Also, write notices

5



always follow diff operations, so the home node can simply piggyback the sharing set (needed to
identify where to send write notices) onto the diff acknowledgement. In fact,an explicit directory
message is needed only when a page is invalidated.

2.3.4 CSM-None: No Use of Special Memory Channel Features

The fourth protocol,CSM-None, uses explicit messages (and acknowledgements) for all communi-
cation. This protocol variant relies only on low-latency messaging, and so couldeasily be ported to
other low-latency network architectures. Our message polling mechanism, described above, should
be considered independent of remote write; similarly efficient polling can be implemented on other
networks [10, 30].

2.3.5 CSM-MS-Mg and CSM-None-Mg: Home Node Migration

All of the above protocol variants use first-touch home node assignment [20]. Home assignment is
extremely important because processors on the home node write directly to the master copy and so do
not incur the overhead of twins and diffs. If a page has multiple writers during the course of execution,
protocol overhead can potentially be reduced by migrating the home node to an activewriter.

Migrating home nodes cannot be used when data is remotely accessible. The migration would force
a re-map of Memory Channel space that can only be accomplished through a global synchronization.
The synchronization would be necessary to ensure that no diffs or other remote-memory-accesses occur
while the migration is proceeding. Hence, home node migration cannot be combined with CSM-DMS.
In our experiments we incorporate it into CSM-MS and CSM-None, creating CSM-MS-Mg and CSM-
None-Mg. When a processor incurs a write fault, these protocols check the local copy of the directory
to see if the home is actively writing the page. If not, a migration request issent to the home. The
request is granted if received when the home is not writing the page. The home changesthe directory
entry to point to the new home. Since the new home node has touched the page, the transfer of data
occurs as part of the corresponding page update operation. The marginal cost of changing the home
node identity is therefore very low.

CSM-None-Mg uses a local copy of page directory information to see whether the home node is
writing the page. If this copy is out of date, useless migration requests can occur. We do not present
CSM-S-Mg because its performance does not differ significantly from that of CSM-S.

2.3.6 CSM-ADB: Adaptive Shared Data Broadcast

The protocol variants described in the previous sections all use invalidate-based coherence; data is
updated only when accessed. CSM-ADB uses Memory Channel broadcast to efficiently communicate
application data that is widely shared (read by multiple consumers). To build the protocol, we modified
the messaging system to create a new set of buffers, each of which is mappedfor transmit by a single
node and for receive by all nodes. Pages are written to these globally mapped buffers selectively, based
on the following heuristics: multiple requests for the same page are received simultaneously; multiple
requests for the same page are received within the same synchronization interval on the home node
(where a new interval is defined at each release); or there were more thantwo requests for the page in

6



Operation MC Features Explicit Messages
Diff (�secs) 31–129 70–245
Lock Acquire (�secs) 10 33
Barrier (�secs) 29 53

Table 2: Basic operation costs at 32-processors. Diff cost varies according to the size of the diff.

the previous interval. These heuristics enable us to capture multiple-consumer access patterns that are
repetitive, as well as those that are not. Pages in the broadcast buffers are invalidated at the time of a
release if the page has been modified in that interval (at the time at which the directory on the home
node is updated). Nodes that are about to update their copy of a page check the broadcast buffers for a
valid copy before requesting one from the home node. The goal is to reduce contention and bandwidth
consumption by eliminating multiple requests for the same data. In an attempt to assess the effects of
scaling, we also report CSM-ADB results using 32 processors on a one-level protocol (one that does
not leverage hardware shared memory for sharing within the node) described in earlier work [18].

3 Results

We begin this section with a brief description of our hardware platform and our application suite. Next,
we discuss the results of our investigation of the impact of Memory Channel features and the home
node migration optimization.

3.1 Platform and Basic Operation Costs

Our experimental environment is a set of eight AlphaServer 4100 5/600 servers, each with four 600
MHz 21164A processors, 8 MB direct-mapped 64-byte line size per-processor board-level cache, and
2 GBytes of memory. The 21164A has two levels of on-chip cache. The first level consists of 8 KB
each of direct-mapped 32-byte line size instruction and data (write-through) cache. The second level is
a combined 3-way set associative 96 KB cache, with a 64-byte line size. The servers are connected with
a Memory Channel II system area network, a PCI-based network with a peak point-to-point bandwidth
of 75 MBytes/sec and a one-way, cache-to-cache latency for a 64-bit remote-write operation of 3.3�secs.

Each AlphaServer runs Digital Unix 4.0F, with TruCluster v1.6 (Memory Channel) extensions. The
systems execute in multi-user mode, but with the exception of normal Unix daemonsno other processes
were active during the tests. In order to increase cache efficiency, application processes are pinned to
a processor at startup. No other processors are connected to the Memory Channel. Execution times
represent the lowest values of three runs.

In practice, the round-trip latency for a null message in Cashmere is 15�secs. This time includes
the transfer of the message header and the invocation of a null handler function. A page fetch operation
costs 220�secs, and a twin operation requires 68�secs.

As described earlier, Memory Channel features can be used to significantlyreduce the cost of diffs,

7



Program Problem Size Time (sec.)
Barnes 128K bodies (26Mbytes) 120.4
CLU 2048x2048 (33Mbytes) 75.4
LU 2500x2500 (50Mbytes) 143.8
EM3D 64000 nodes (52Mbytes) 30.6
Gauss 2048x2048 (33Mbytes) 234.8
Ilink CLP (15Mbytes) 212.7
SOR 3072x4096 (50Mbytes) 36.2
TSP 17 cities (1Mbyte) 1342.49
Water-nsquared 9261 mols. (6Mbytes) 332.6
Water-spatial 9261 mols. (16Mbytes) 20.2

Table 3: Data set sizes and sequential execution time of applications.

directory updates, write notice propagation, and synchronization. Table 2 shows the costs for diff op-
erations, lock acquires, and barriers, both when leveraging (MC Features) and not leveraging (Explicit
Messages) the Memory Channel features. The cost of diff operations varies according to thesize of
the diff. Directory updates, write notices, and flag synchronization all use theMemory Channel’s
remote-write and total ordering features. (Directory updates and flag synchronization also rely on the
inexpensive broadcast support.) Without these features, these operations are accomplished via explicit
messages. Directory updates are small messages with simple handlers, so their cost is only slightly
more than the cost of a null message. The cost of write notices will depend greatlyon the write notice
count and destinations. Write notices sent to different destinations can be overlapped, thus reducing
the operation’s overall latency. Flags are inherently broadcast operations, but again the flag update
messages to the processors can be overlapped so perceived latency should not bemuch more than that
of a null message.

3.2 Application Suite

Our applications are well-known benchmarks from the Splash [25, 31] and TreadMarks [2] suites. Due
to space limitations, we refer the reader to earlier descriptions [12]. The applications are Barnes, an
N-body simulation from the TreadMarks [2] distribution (and based on the same application in the
SPLASH-1 [25] suite); CLU and LU3 from the SPLASH-2 [31] suite, a lower and upper triangular
matrix factorization kernel with and without contiguous allocation of a single processor’s data, respec-
tively; EM3D, a program to simulate electromagnetic wave propagation through 3D objects [9]; Gauss,
a locally-developed solver for a system of linear equationsAx = B using Gaussian Elimination and
back-substitution; Ilink, a widely used genetic linkage analysis program from the FASTLINK 2.3P [11]
package that locates disease genes on chromosomes; SOR, a Red-Black Successive Over-Relaxation3Both CLU and LU tile the input matrix and assign each column of tiles to a contiguous set of processors. Due to its
different allocation strategy, LU incurs a large amount of false sharingacross tiles. To improve scalability, we have modified
LU to assign a column of tiles to only processors within an SMP. This limits the false sharing across SMP node boundaries,
improving scalability on an SMP-aware SDSM.

8



program, from the TreadMarks distribution; TSP, a traveling salesman problem, from the TreadMarks
distribution; and Water-spatial, another SPLASH-2 fluid flow simulation that solves the same problem
as Water-nsquared, but where the data is partitioned spatially.

The data set sizes and uniprocessor execution times for these applications arepresented in Table 3.
The size of shared memory space is listed in parentheses. Execution times were measured by running
each uninstrumented application sequentially without linking it to the protocol library.

3.3 Performance

Throughout this section, we will refer to Figure 1 and Table 4. Figure 1 shows a breakdown of execu-
tion time, normalized to that of the CSM-DMS protocol, for the first six protocols variants. Execution
time is broken down to show the time spent executing application code (User), executing protocol
code (Protocol), waiting on synchronization operations (Wait), and sending or receiving messages
(Message). Table 4 lists the speedups and statistics on protocol communication for each ofthe appli-
cations running on 32 processors. The statistics include the number of page transfers,invalidations, and
diff operations. The table also lists the number of home migrations, along with the number of migration
attempts (listed in parentheses).

3.3.1 The Impact of Memory Channel Features

This subsection begins by discussing the impact of Memory Channel support, in particular, remote-
write capabilities, inexpensive broadcast, and total-ordering properties, onthe three types of protocol
communication: shared data propagation, protocol metadata maintenance, and synchronization. All
protocols described in this subsection use a first-touch home node assignment.4

Five of our ten applications show measurable performance improvements running on CSM-DMS
(fully leveraging Memory Channel features) as opposed to CSM-None (using explicit messages). Barnes
runs 80% faster on CSM-DMS than it does on CSM-None, while EM3D and Water-Nsquared run 20-
25% faster. LU and Water-spatial run approximately 10% faster. CLU, Gauss, Ilink, SOR, and TSP
are not sensitive to the use of Memory Channel features and do not show any significant performance
differences across our protocols.

Barnes exhibits a high degree of sharing and incurs a large Wait time on all protocol variants (see
Figure 1). CSM-DMS runs roughly 40% faster than CSM-MS and 80% faster than CSM-Sand CSM-
None. This performance difference is due to the lower Message and Wait timesin CSM-DMS. In this
application, the Memory Channel features are very useful for optimizing data propagation and meta-
data maintenance. The optimized communication in these two areas reduces application perturbation,
resulting in reduced wait time. Due to the large amount of false sharing in this application, application
perturbation also results in large variations in the number of pages transferred. As is true with most of
our applications, the use of Memory Channel features to optimize synchronization characteristics has
little impact on overall performance. Synchronization time is affectedby software coherence protocol4In the case of multiple sharers per page, the timing differences between protocol variants can lead to first-touch differ-
ences. To eliminate these differences and isolate Memory Channel impact, we captured the first-touch assignments from
CSM-DMS and used them to explicitly assign home nodes in the other protocols.

9



overhead, and in general limits the performance of applications with activefine-grain synchronization
on SDSM.

At the given matrix size, LU incurs a large amount of protocol communication due to the write-
write false sharing at row boundaries. In this application, CSM-DMS performs 12% better than the
other protocols. The improvement is due primarily to optimized data propagation, asCSM-DMS uses
remote-write and total-ordering to reduce the diffing overhead. The Message time in CSM-DMS is
much lower than in the other protocols. In CSM-MS, CSM-S, and CSM-None, someof the increased
Message time is hidden by existing Wait time.

CSM-DMS also provides the best performance for EM3D, in particular, a 23% improvement over
the other protocols. Again, the advantage is due to the use of Memory Channel features tooptimize
data propagation. Unlike Barnes and LU, the major difference in performance of theprotocols is
in Wait time, instead of Message time. Performance of EM3D is extremely sensitive to higher data
propagation costs. The application exhibits a nearest neighbor sharing pattern, and on ourSMP-aware
protocol, diff operations in this application only occur between adjacent processorsspanning nodes.
These processors will perform diff operations when entering barriers, thus placing the diffs directly in
the critical synchronization path. Any increase in diff cost will directlyimpact the overall Wait time.
Figure 1 shows this effect, as Message time increases slightly from CSM-DMS to CSM-MS (18% and
24%, respectively), but Wait time increases dramatically (41% and 65% for CSM-DMS and CSM-MS,
respectively). This application provides an excellent example of the sensitivity of synchronization Wait
time to any protocol perturbation.

Water-nsquared obtains its best performance again on CSM-DMS. As can be seen in Figure 1, CSM-
MS, CSM-S, and CSM-None all have much higher Protocol times than CSM-DMS. Detailed instru-
mentation shows that the higher protocol times are due to increased time spent inwrite fault handlers.
The increase is due to contention for a set of per-page locks shared by the write fault and diff message
handlers. The average time spent acquiring these locks shows a four-fold increase from CSM-DMS
to CSM-MS. CSM-DMS does not experience this contention since it uses the MemoryChannel fea-
tures to deliver diffs and does not invoke a message handler for diffs. The MemoryChannel features
also produce noticeable performance improvement by optimizing synchronization operations in this
application. Water-nsquared uses per-molecule locks, and so performs a very large number of lock
operations. Overall, CSM-DMS performs 13% better than CSM-MS and CSM-S and 18% better than
CSM-None.

Similar to EM3D, Water-Spatial is also sensitive to the data propagation costs. The higher cost
of data propagation in CSM-MS, CSM-S, and CSM-None perturb the synchronization Wait time and
hurt overall performance. In this application, CSM-DMS produces a 10% improvement over the other
protocols considered.

CLU shows no significant difference in overall performance across the protocols. This application
has little communication that can be optimized. Any increased Message time is hidden by the existing
synchronization time. Ilink performs a large number of diffs, and might be expected to benefit signif-
icantly from remote-write support. However, 90% of the diffs are applied at the home node by idle
processors, so the extra overhead is somewhat hidden from application computation. Hence, the bene-
fits are negligible. Of the remaining applications, Gauss, SOR, and TSP are notnoticeably affected by
the underlying Memory Channel support.

10



Barnes

0

20

40

60

80

100

120

140

160

180

200

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

CLU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

LU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

EM3D

0

20

40

60

80

100

120

140

160

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Ilink

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Gauss

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)
SOR

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

TSP

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Water-Nsquared

0

20

40

60

80

100

120

140

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Water-Spatial

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Message

Wait

Protocol

User

Figure 1: Normalized execution time breakdown for the applications on the protocolsat 32 processors.
The suffix on the protocol name represents the areas of communication using Memory Channel features
(D: shared Data propagation, M: protocol Meta-data maintenance, S: Synchronization, None: No use
of Memory Channel features). Mg denotes a migrating home node policy.

11



Application CSM-DMS CSM-MS CSM-S CSM-None CSM-MS-Mg CSM-None-Mg
Barnes Speedup (32 procs) 7.6 5.5 4.2 4.2 6.3 5.9

Page Transfers (K) 66.0 63.4 96.8 96.1 69.1 78.5
Invalidations (K) 214.2 201.6 209.9 210.2 210.5 210.2
Diffs (K) 60.8 50.2 66.4 61.8 45.1 47.5
Migrations (K) 0 0 0 0 15.6 (15.6) 11.6 (67.4)

CLU Speedup (32 procs) 18.3 18.4 18.0 18.0 18.2 17.7
Page Transfers (K) 8.3 11.9 11.9 11.9 11.9 11.9
Invalidations (K) 0 0 0 0 1.3 8.6
Diffs (K) 0 0 0 0 0 0
Migrations (K) 0 0 0 0 3.5 (3.5) 3.5 (3.5)

LU Speedup (32 procs) 4.0 3.5 3.6 3.6 12.5 12.4
Page Transfers (K) 44.1 44.4 44.6 44.4 51.1 53.1
Invalidations (K) 32.6 33.3 31.8 32.5 124.0 91.0
Diffs (K) 285.6 278.06 278.9 277.4 1.1 1.1
Migrations (K) 0 0 0 0 5.5 (5.5) 5.5 (5.5)

EM3D Speedup (32 procs) 13.5 10.5 10.5 10.3 10.2 9.8
Page Transfers (K) 32.8 32.8 33.1 33.1 43.9 43.8
Invalidations (K) 33.1 33.1 33.4 33.4 41.0 40.9
Diffs (K) 7.1 7.1 7.1 7.1 0 0
Migrations (K) 0 0 0 0 1.9 (1.9) 1.9 (1.9)

Gauss Speedup (32 procs) 22.7 21.9 23.2 23.0 22.1 21.9
Page Transfers (K) 38.2 42.2 40.1 40.3 43.9 44.1
Invalidations (K) 59.6 74.7 64.4 63.8 73.4 78.7
Diffs (K) 3.6 3.6 3.6 3.6 0.5 0.1
Migrations (K) 0 0 0 0 4.5 (4.5) 4.6 (4.6)

Ilink Speedup (32 procs) 12.5 12.1 11.1 11.1 11.6 11.4
Page Transfers (K) 50.0 50.0 53.1 53.1 51.9 56.1
Invalidations (K) 199.6 199.6 196.0 196.0 206.8 204.9
Diffs (K) 12.0 12.2 12.4 12.4 8.7 8.6
Migrations (K) 0 0 0 0 1.9 (2.7) 1.9 (6.2)

SOR Speedup (32 procs) 31.2 30.1 30.1 29.9 31.2 30.9
Page Transfers (K) 0.3 0.3 0.3 0.3 0.7 0.7
Invalidations (K) 0.3 0.3 0.3 0.3 0.7 0.7
Diffs (K) 1.4 1.4 1.4 1.4 0 0
Migrations (K) 0 0 0 0 0 0

TSP Speedup (32 procs) 33.9 34.0 33.8 34.2 33.9 34.0
Page Transfers (K) 12.6 12.2 12.3 12.2 14.1 13.9
Invalidations (K) 16.2 15.7 15.9 15.8 18.3 18.0
Diffs (K) 8.0 7.8 7.8 7.8 0.1 0.1
Migrations (K) 0 0 0 0 5.0 (5.0) 5.0 (5.0)

Water-NSQ Speedup (32 procs) 20.6 18.0 17.8 17.0 19.6 19.3
Page Transfers (K) 31.5 29.8 29.4 22.9 28.3 32.9
Invalidations (K) 55.1 58.2 55.8 54.3 55.1 59.2
Diffs (K) 251.1 234.4 249.7 243.7 17.2 26.3
Migrations (K) 0 0 0 0 9.2 (9.3) 11.0 (11.7)

Water-SP Speedup (32 procs) 7.7 7.0 7.0 7.2 12.3 11.8
Page Transfers (K) 4.0 4.5 4.8 4.9 5.2 5.6
Invalidations (K) 11.8 11.8 11.7 11.8 17.6 17.4
Diffs (K) 6.2 6.2 6.4 6.4 0.1 0.1
Migrations (K) 0 0 0 0 0.3 (0.3) 0.3 (0.3)

Table 4: Application speedups and statistics at 32 processors.

12



3.3.2 Home Node Migration: Optimization for a Scalable Data Space

Home node migration can reduce the number of remote memory accesses by moving the homenode
to active writers. Our results show that this optimization is very effective. Of our ten applications, six
are affected by our migration optimization. Of the six, four perform better usinghome node migration
and explicit data propagation (CSM-MS-Mg) than using the first-touch counterpart (CSM-MS). Home
node migration can reduce protocol overhead by reducing the number of twin/diffs, invalidations, and
sometimes the amount of data transferred across the network. In fact, these benefits of migration are so
great that two of our applications obtain the best overall performance when using migration and explicit
messages forall protocol communication (CSM-None-Mg).5

LU and Water-spatial both benefit greatly from migration because the number of diff (and attendant
twin) operations is significantly reduced (see Table 4). In fact, for these applications, CSM-None-Mg,
which does not leverage the special Memory Channel features at all, outperformsthe full Memory
Channel protocol, CSM-DMS, reducing execution time by 67% in LU and 34% in Water-spatial. The
large improvement from migration in LU is due to a four-fold reduction in the amount of data trans-
ferred. Water-spatial, as mentioned in the last section, is very sensitive to data propagation overhead,
so the main performance improvement when using migration is due to the reductionof diff operations.
Figure 1 shows the dramatic reduction in protocol-related overhead in theseapplications when using
migration.

In Barnes and Water-nsquared, there are also benefits, albeit smaller, from using migration. In both of
these applications, CSM-MS-Mg and CSM-None-Mg outperform their first-touchcounterparts, CSM-
MS and CSM-None. Both of these applications show large reductions in diffs when using migration
(see Table 4). The smaller number of diffs (and twins) directly reduces Protocol time, and indirectly,
Wait time. Overall, in Barnes, the execution time for CSM-MS-Mg andCSM-None-Mg is lower by
12% and 27% compared to their first-touch counterparts, CSM-MS and CSM-None, bringing per-
formance to within 30% of CSM-DMS for CSM-None-Mg. Water-nsquared shows an 8%and 12%
improvement in CSM-MS-Mg and CSM-None-Mg, respectively, bringing performance to within 7%
of CSM-DMS for CSM-None-Mg.

Home migration hurts performance in EM3D and Ilink. The reduction in the number of diffoper-
ations comes at the expense of increased page transfers due to requests by the consumer, which was
originally the home node. Only a subset of the data in a page is modified. The net result is alarger
amount of data transferred, which negatively impacts performance. For EM3D, CSM-MS-Mg and
CSM-None-Mg perform 3% and 6% worse than CSM-MS and CSM-None, respectively. Similarly, for
Ilink, CSM-MS-Mg and CSM-None-Mg both perform 5% worse than their first-touchcounterparts.
Also, CSM-None-Mg suffers from a large number of unsuccessful migration requests (see Table 4).
These requests are denied because the home node is actively writing the page. In CSM-MS-Mg, the
home node’s writing status is globally available in the replicated page directory, so a migration request
can be skipped if inappropriate. In CSM-None-Mg, however, a remote node only cachesa copy of a
page’s directory entry, and may not always have current information concerning thehome node. Thus,
unnecessary migration requests can not be avoided.

Overall, the migration optimization improves performance for four of our applications, while hurting5As described earlier, migration can not be used when data is placed in remotely-accessible network address space (for
example, in CSM-DMS), because of the high cost of remapping.

13



8 Nodes

0

20

40

60

80

100

120

Barnes: C
SM-DMS

CSM-ADB

CLU: C
SM-DMS

CSM-ADB

LU: C
SM-DMS

CSM-ADB

Ilin
k: C

SM-DMS

CSM-ADB

Gauss: C
SM-DMS

CSM-ADB

SOR: C
SM-DMS

CSM-ADB

Ex
ec

uti
on

 Ti
me

 Br
ea

kd
ow

n (
%)

32 Nodes

0

20

40

60

80

100

120

Barnes: CSM-DMS

CSM-ADB

CLU: CSM-DMS

CSM-ADB

LU: CSM-DMS

CSM-ADB

Ilink: CSM-DMS

CSM-ADB

Gauss: CSM-DMS

CSM-ADB

SOR: CSM-DMS

CSM-ADB

Exe
cut

ion
 Tim

e B
rea

kdo
wn 

(%)

ADB
Message/Wait
Protocol
User

Figure 2: Normalized execution time breakdown for the applications using adaptive broadcast of data
(CSM-ADB) in comparison to CSM-DMS at 8 and 32 nodes.

performance in only two. (The other four applications are unaffected.) The performance loss is fairly
low, less than 5%, while the observed performance improvements can be up to 67%. A migration-based
protocol delivers very good performance, while avoiding the need to map shared data into the limited
amount of remotely addressable address space.

3.3.3 Selective Broadcast for Widely Shared Data

Selective use of broadcast for data that is accessed by multiple consumers can reduce the number of
messages and amount of data sent across the network, in addition to reducing contentionand protocol
overhead at the producer (home node). Our preliminary results (see Figure 2) show that our adaptive
protocol is effective in capturing and optimizing multiple-consumer behavior. However, at 8 nodes, the
performance improvement we see across all applications is a maximum of 9%. Inorder to determine
the effects on performance when using a larger cluster, we emulated a 32-node system by using a one-
level protocol where each processor is in effect a separate node, since it doesnot leverage hardware
shared memory for sharing within a node. Performance improvements at 32 processors jump to 52,
53 and 56% for LU, Gauss, and Ilink, respectively. Barnes and CLU also benefit from the use of
the adaptive broadcast protocol, but only by a small amount, since the data is not as widely shared.
The performance of other applications such as SOR, which exhibit only nearest-neighborpairwise
sharing, remain unaffected. The large gains for Ilink, LU, and Gauss come from a reduction in the
Communication and Wait time. The protocol is able to detect and optimize the communication of each
pivot row to the multiple consumers in the case of Gauss (181K out of a total of 189K page updates
are satisfied by the broadcast buffers, while 7K pages are actually placed in the buffers at 32 nodes).
In the case of Ilink, the protocol is once again able to capture the single-producer, multiple-consumer
access pattern (168K out of a total of 205K page updates are satisfied by the broadcast buffers, while
only 6.8K pages are placed in the broadcast buffers at 32 nodes). The number of consumers inLU
is not as large (170K out of a total of 1.1M page updates are satisfied by the broadcast buffers, while
30K pages are placed in the broadcast buffers). However, due to the large amount offalse sharing in

14



this application, the adaptive broadcast protocol is able to significantly reduce thesynchronization wait
time by reducing protocol perturbation.

4 Related Work

Bilas et al. [4] use their GeNIMA SDSM to examine the impact of special network featureson SDSM
performance. Their network has remote-write, remote-read, and specialized lock support, but no broad-
cast or total ordering. GeNIMA disseminates write notices through broadcast andso could benefit from
efficient network support. In base Cashmere, the lock implementation uses remote-write, broadcast, and
total ordering to obtain the same benefits as GeNIMA’s specialized lock support.

The GeNIMA results show that a combination of remote-write, remote-read,and synchronization
support help avoid the need for interrupts or polling and provide moderate improvementsin SDSM
performance. However, their base protocol uses inter-processor interrupts tosignal messaging delivery.
Interrupts on commodity machines are typically on the order of a hundred microseconds, and so largely
erase the benefits of a low-latency network [18]. Our evaluation here assumesthat messages can be
detected through a much more efficient polling mechanism, as is found with other SANs [10, 13], and
so each of our protocols benefits from the same low messaging latency. We also extend the GeNIMA
work by examining protocol optimizations that depend heavily on the use of the network interface
support. One of the protocol optimizations, home node migration, can not be used when shared data
is remotely accessible, while the other optimization, adpative data broadcast, relies on a very efficient
mapping of remotely accessible memory.

Speight and Bennett [26] evaluate the use of multicast and multithreading in the context of SDSM on
high-latency unreliable networks. Among the drawbacks of their environment is the needto interrupt
remote processors in order to process multicast messages, thereby resulting in higher penalties when
updates are unnecessary. In addition, while their adaptive protocol is purely history-based, we rely on
information about the current synchronization interval to predict requests for the same data by multiple
processors. This allows us to capture multiple-consumer access patterns that do not repeat.

Our home node migration policy is conceptually similar to a current page migration policy found in
some CC-NUMA multiprocessors [19, 29]. Both policies attempt to migrate pagesto active writers.
The respective mechanisms are very different, however. In the CC-NUMA multiprocessors, the system
will attempt to migrate the page only after remote write misses exceed athreshold. The hardware will
then invoke the OS to transfer the page to the new home node. In Cashmere, the migration occurs
on the first write to a page and also usually requires only an inexpensive directory change. The page
transfer has most likely already occurred on a processor’s previous (read) access to the page. Since the
migration mechanism is so lightweight, Cashmere can afford to be very aggressive.

Amza et al. [3] describe adaptive extensions to the TreadMarks [2] protocol that avoid twin/diff
operations on shared pages with only a single writer (pages with multiple writers still use twins and
diffs). In Cashmere, if a page has only a single writer, the home always migrates to that writer, and
so twin/diff operations are avoided. In the presence of multiple concurrent writers, our scheme will
always migrate to one of the multiple concurrent writers, thereby avoiding twin/diff overhead at one
node. Cashmere is also able to take advantage of the replicated directory when making migration
decisions (i.e. to determine if the home is currently writing the page). Adaptive DSM (ADSM [21]) also

15



describes a history-based sharing pattern characterization technique to adapt between single and multi-
writer modes, and between invalidate and update-based coherence. Our adaptive update mechanism
uses the initial request to detect sharing, and then uses broadcast to minimizeoverhead on the processor
responding to the request. As already stated, it also captures multiple-consumer access patterns that do
not repeat, in addition to history-based access patterns.

5 Conclusions

In this paper, we have studied the effect of advanced network features, in particular, remote writes,
inexpensive broadcast, and total packet ordering, on SDSM. Our evaluation used thestate-of-the-art
Cashmere protocol, which was designed with these network features specifically in mind.

We have found that these network features do indeed lead to a performance improvement. Two
applications improve by 18% and 23%. A third application improves by 44%. However,even after
improvement, the application only obtains a speedup of 7.6 on 32 processors. The remaining seven
applications improve by less than 12%. The network features have little impact on synchronization
overhead: the actual cost of a lock, barrier, or flag is typically dwarfed by that of the attendant software
coherence protocol operations. The features are somewhat more useful for protocol metadata main-
tenance. They are primarily useful, however, for data propagation. The direct application of diffs, in
particular, reduces synchronization wait time and the cost of communication due tofalse sharing, and
minimizes the extent to which protocol operations perturb application timing.

On the other hand, we found that home node migration, made possible by moving shared data out
of the network address space, is very effective at reducing the number of twin/diff operations and
the resulting protocol overhead. The mechanism is so effective, in fact, that the benefits sometimes
outweigh those of using advanced network features for shared data propagation. Moreover, by allowing
shared data to reside in private memory, we eliminate the need for page pinningand allow the size of
shared memory to exceed the addressing limits of the network interface, thereby increasing system
flexibility and scalability.

Overall, these results suggest that for systems of modest size, low latency is much more important for
SDSM performance than are remote writes, broadcast, or total ordering. On larger networks, however,
we found that an adaptive protocol capable of identifying widely-shared data can potentially make
effective use of broadcast with remote-writes.

In the future, we would like to examine the impact of other basic network issues onSDSM perfor-
mance. These issues include DMA versus programmed I/O interfaces, messaging latency, and band-
width. We are also interested in incorporating predictive migration mechanisms [8, 21, 27] into the
protocol. Such mechanisms would identify migratory pages and then trigger migration at the time of
an initial Read fault, thereby eliminating the overhead of a subsequent migration request.

16



References

[1] S. V. Adve and M. D. Hill. A Unified Formulation of Four Shared-Memory Models. IEEE
Transactions on Parallel and Distributed Systems, 4(6):613–624, June 1993.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Networks of Workstations.Computer, 29(2):18–
28, February 1996.

[3] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Software DSM Protocolsthat Adapt be-
tween Single Writer and Multiple Writer. InProceedings of the Third International Symposium
on High Performance Computer Architecture, San Antonio, TX, February 1997.

[4] A. Bilas, C. Liao, and J. P. Singh. Using Network Interface Support to Avoid Asynchronous
Protocol Processing in Shared Virtual Memory Systems. InProceedings of 26th International
Symposium on Computer Architecture, Atlanta, GA, May 1999.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. InProceedings of the Twenty-First Interna-
tional Symposium on Computer Architecture, pages 142–153, Chicago, IL, April 1994.

[6] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and J. Wilkes. An Implementation of the
Hamlyn Sender-Managed Interface Architecture. InProceedings of the Second Symposium on
Operating Systems Design and Implementation, Seattle, WA, October 1996.

[7] Y. Chen, A. Bilas, S. N. Damianakis, C. Dubnicki, and K. Li. UTLB: A Mechanism for Address
Translation on Network Interfaces. InProceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 193–203, San
Jose, CA, October 1998.

[8] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detecting Migratory Shared Data.
In Proceedings of the Twentieth International Symposium on Computer Architecture, San Diego,
CA, May 1993.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K.
Yelick. Parallel Programming in Split-C. InProceedings, Supercomputing ’93, pages 262–273,
Portland, OR, November 1993.

[10] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M.Merritt, E.
Gronke, and C. Dodd. The Virtual Interface Architecture.IEEE Micro, 18(2), March 1998.

[11] S. Dwarkadas, A. A. Schäffer, R. W. Cottingham Jr., A. L. Cox, P. Keleher, and W. Zwaenepoel.
Parallelization of General Linkage Analysis Problems.Human Heredity, 44:127–141, 1994.

[12] S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J. Scales, M. L. Scott, and R. Stets.
Comparative Evaluation of Fine- and Coarse-Grain Approaches for Software Distributed Shared
Memory. InProceedings of the Fifth International Symposium on High Performance Computer
Architecture, Orlando, FL, January 1999.

17



[13] T. v. Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network Interface for Par-
allel and Distributed Computing. InProceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, December 1995.

[14] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy. SoftFLASH: Analyzing the Perfor-
mance of Clustered Distributed Virtual Shared Memory. InProceedings of the Seventh In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, pages 210–220, Cambridge, MA, October 1996.

[15] R. Gillett. Memory Channel: An Optimized Cluster Interconnect.IEEE Micro, 16(2):12–18,
February 1996.

[16] R. W. Horst and D. Garcia. ServerNet SAN I/O Architecture. InProceedings of Hot Intercon-
nects V Symposium, Palo Alto, CA, August, 1997.

[17] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Distributed
Shared Memory. InProceedings of the Nineteenth International Symposium on Computer Ar-
chitecture, pages 13–21, Gold Coast, Australia, May 1992.

[18] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak, S.Parthasarathy, W. Meira,
S. Dwarkadas, and M. L. Scott. VM-Based Shared Memory on Low-Latency,Remote-Memory-
Access Networks. InProceedings of the Twenty-Fourth International Symposium on Computer
Architecture, pages 157–169, Denver, CO, June 1997.

[19] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.In Proceedings
of the Twenty-Fourth International Symposium on Computer Architecture, Denver, CO, June
1997.

[20] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. L. Scott. Using Simple Page Placement
Policies to Reduce the Cost of Cache Fills in Coherent Shared-Memory Systems. In Proceedings
of the Ninth International Parallel Processing Symposium, Santa Barbara, CA, April 1995.

[21] L. R. Monnerat and R. Bianchini. Efficiently Adapting to Sharing Patterns in Software DSMs.
In Proceedings of the Fourth International Symposium on High Performance Computer Archi-
tecture, February 1998.

[22] R. Samanta, A. Bilas, L. Iftode, and J. Singh. Home-Based SVM Protocolsfor SMP Clusters:
Design and Performance. InProceedings of Fourth International Symposium on High Perfor-
mance Computer Architecture, pages 113–124, February 1998.

[23] D. J. Scales and K. Gharachorloo. Towards Transparent and Efficient Software Distributed
Shared Memory. InProceedings of the Sixteenth ACM Symposium on Operating Systems Prin-
ciples, St. Malo, France, October 1997.

[24] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-Grain Software Distributed Shared Mem-
ory on SMP Clusters. InProceedings of the Fourth International Symposium on High Perfor-
mance Computer Architecture, Las Vegas, NV, February 1998.

18



[25] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-
Memory. ACM SIGARCH Computer Architecture News, 20(1):5–44, March 1992.

[26] E. Speight and J. K. Bennett. Using Multicast and Multithreading to Reduce Communication
in Software DSM Systems. InProceedings of the Fourth International Symposium on High
Performance Computer Architecture, Las Vegas, NV, February 1998.

[27] P. Stenström, M. Brorsson, and L. Sandberg. An Adaptive Cache Coherence Protocol Optimized
for Migratory Sharing. InProceedings of the Twentieth International Symposium on Computer
Architecture, San Diego, CA, May 1993.

[28] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and M.
Scott. Cashmere-2L: Software Coherent Shared Memory on a Clustered Remote-Write Network.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, St. Malo,
France, October 1997.

[29] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating System Support forImprov-
ing Data Locality on CC-NUMA Compute Servers. InProceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems, Cam-
bridge, MA, October 1996.

[30] M. Welsh, A. Basu, and T. von Eicken. A Comparison of ATM and Fast EthernetNetwork
Interfaces for User-level Communication. InProceedings of the Third International Symposium
on High Performance Computer Architecture, San Antonio, TX, February 1997.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological Considerations and
Characterization of the SPLASH-2 Parallel Application Suite. InProceedings of the Twenty-
Second International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June
1995.

19



A Appendix: Early Results

In this Appendix, we present early results of this study collected on a 16-processorplatform with an
older generation of hardware. In combination with Section 3, these results showthe performance dif-
ference of Cashmere executed on successive hardware generations, and the results also provide insights
into scalability issues in using the special network features.

A.1 First-Generation Platform

Our early experimental environment consisted of four DEC AlphaServer 2100 4/233 computers. Each
AlphaServer was equipped with four 21064A processors operating at 233 MHz and with 256MB of
shared memory, as well as a Memory Channel network interface. The 21064A has twoon-chip caches:
a 16K instruction cache and 16K data cache. The off-chip secondary cache size is 1 Mbyte. A cache
line is 64 bytes. Each AlphaServer runs Digital UNIX 4.0D with TruCluster v. 1.5(Memory Channel)
extensions.

The first-generation Memory Channel had a point-to-point bandwidth of approximately 33MBytes/sec.
One-way latency for a 64-bit remote-write operation is 4.3�secs. The round-trip latency for null mes-
sage in Cashmere is 39�secs.

A.2 Results on First-Generation Platform

The results in the Appendix use the same protocols and applications as described in Sections 2 and 3.
Table 6 presents the sequential execution time for each application. Figure 3 and Table 6 present the
execution time breakdown and important statistics, respectively, for each application running on the
Cashmere protocol variants.

Overall, our qualitative conclusions stated in Section 5 also hold for our early results. The special
network features provide very little performance improvement on a 16 processor platform. Improve-
ment is less than 11% on the applications. Home node migration improves performancesignificantly
in two applications (LU and Water-spatial). Together these observations support our conclusion that
low-latency messaging is the most important network feature.

We can not draw direct observations on scalability since the hardware platforms are so different.
(On our new platform, processor cycle time is three times faster and networkbandwidth is more than
doubled.) However, by examining the relative performance of protocol variants on thetwo platforms
separately, we can see the impact of increased false sharing as the numberof processors scale.

Barnes has a large amount of false sharing, and, as described in Section 3, the application runs 80%
faster on CSM-DMS than on CSM-None. The improvement is due to the reduced communication
overhead provided by fully leveraging the Memory Channel features. On 16 processors however, the
the performance difference between CSM-DMS and CSM-None is only 11% (see Figure 3). On the
smaller number of processors, the false sharing is less dramatic and so induces less communication.
Potential for improvement by optimizing communication is therefore smaller.

On our 32-processor platform, EM3D and Ilink both perform poorer on the migration-based proto-
cols (CSM-MS-Mg and CSM-None-Mg) than on their first-touch counterparts (CSM-MS and CSM-

20



Program Problem Size Time (sec.)
Barnes 128K bodies (26Mbytes) 469.4
CLU 2048x2048 (33Mbytes) 294.7
LU 2500x2500 (50Mbytes) 254.8
EM3D 64000 nodes (52Mbytes) 137.3
Gauss 2048x2048 (33Mbytes) 948.1
Ilink CLP (15Mbytes) 755.9
SOR 3072x4096 (50Mbytes) 194.8
TSP 17 cities (1Mbyte) 4036.24
Water-nsquared 9261 mols. (6Mbytes) 1120.6
Water-spatial 9261 mols. (16Mbytes) 74.0

Table 5: Data set sizes and sequential execution time of applications. Datasets are the same as those in
Section 3.

None). On 16 processors however, the opposite is true. Again, both EM3D and Ilink display false
sharing that increases in degree with the number of processors. The increased false sharing interacts
with the migration mechanism to degrade performance relative to the first-touch protocols. Both ap-
plications modify only small amounts of pages, and it may be beneficial to perform diffs (rather than
migration), especially on a 32-processor platform.

On the other hand, both LU and Water-spatial show larger improvement from migration on 32 pro-
cessors. For these applications, migration triggers a much larger reduction ofdiff operations at 32
processors. This reduction translates into a larger performance improvement.

21



Barnes

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

uti
on

 B
re

ak
do

wn
 (%

)

CLU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G
Ex

ec
ut

ion
 B

re
ak

do
wn

 (%
)

LU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

ut
ion

 B
re

ak
do

wn
 (%

)

EM3D

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

ut
ion

 B
re

ak
do

wn
 (%

)

Ilink

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

uti
on

 B
re

ak
do

wn
 (%

)

Gauss

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

ut
ion

 B
re

ak
do

wn
 (%

)
SOR

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

ut
ion

 B
re

ak
do

wn
 (%

)

TSP

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

G

CSM-N
one-M

G

Ex
ec

ut
ion

 B
re

ak
do

wn
 (%

)

Water-Nsquared

0

20

40

60

80

100

120

140

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Water-Spatial

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

Ex
ec

ut
ion

 T
im

e B
re

ak
do

wn
 (%

)

Message

Wait

Protocol

User

Figure 3: Normalized execution time breakdown for the applications on the protocolsat 16 processors
on the first-generation platform.

22



Application CSM-DMS CSM-MS CSM-S CSM-None CSM-MS-Mg CSM-None-Mg
Barnes Speedup (16 procs) 7.3 7.1 6.8 6.8 7.1 6.4

Page Transfers (K) 37.4 37.5 39.3 39.2 35.6 37.5
Invalidations (K) 100.6 100.8 94.0 94.0 87.6 87.0
Diffs (K) 31.6 31.1 32.1 32.2 25.6 24.0
Migrations (K) 0 0 0 0 5.8 6.5

CLU Speedup (16 procs) 12.4 12.7 12.5 12.5 12.6 12.4
Page Transfers (K) 9.3 9.3 9.3 9.3 9.3 9.3
Invalidations (K) 0 0 0 0 1.2 1.8
Diffs (K) 0 0 0 0 0 0
Migrations (K) 0 0 0 0 1.2 1.8

LU Speedup (16 procs) 6.7 6.2 6.0 6.0 10.2 10.2
Page Transfers (K) 21.0 21.3 21.7 21.6 22.7 23.0
Invalidations (K) 41.3 41.3 40.7 40.2 52.6 50.0
Diffs (K) 65.4 65.4 65.5 65.5 1.0 1.0
Migrations (K) 0 0 0 0 4.6 4.6

EM3D Speedup (16 procs) 6.2 6.2 5.7 5.8 6.4 6.2
Page Transfers (K) 35.3 35.2 35.2 35.2 41.7 41.7
Invalidations (K) 35.3 35.2 35.2 35.2 38.6 38.6
Diffs (K) 3.2 3.2 3.2 3.2 0 0
Migrations (K) 0 0 0 0 1.0 1.0

Gauss Speedup (16 procs) 12.1 12.0 11.7 11.7 11.5 11.6
Page Transfers (K) 17.2 17.3 17.5 17.6 20.6 21.9
Invalidations (K) 27.8 27.5 27.6 27.6 36.4 45.3
Diffs (K) 4.4 4.4 4.4 4.4 1.2 0.2
Migrations (K) 0 0 0 0 3.7 4.0

Ilink Speedup (16 procs) 8.3 8.3 8.4 8.5 8.5 8.2
Page Transfers (K) 20.2 20.2 22.1 22.1 21.0 22.8
Invalidations (K) 80.7 80.7 80.0 80.0 83.6 83.4
Diffs (K) 4.7 4.8 4.9 4.9 4.3 4.1
Migrations (K) 0 0 0 0 1.7 1.4

SOR Speedup (16 procs) 14.1 13.9 13.7 13.7 14.2 14.3
Page Transfers (K) 144 144 144 144 288 288
Invalidations (K) 144 144 144 144 288 288
Diffs (K) 960 960 960 960 0 0
Migrations (K) 0 0 0 0 0 0

TSP Speedup (16 procs) 14.4 14.3 14.2 14.1 14.3 14.1
Page Transfers (K) 7.3 7.3 7.3 7.4 9.7 9.7
Invalidations (K) 9.9 9.8 9.8 9.9 13.0 13.0
Diffs (K) 6.6 6.5 6.6 6.6 0.5 0.3
Migrations (K) 0 0 0 0 4.5 4.5

Water-NSQ Speedup (16 procs) 11.4 10.9 10.5 10.1 11.5 10.9
Page Transfers (K) 10.5 16.6 13.5 11.7 22.1 12.7
Invalidations (K) 21.8 27.7 24.8 24.2 31.8 23.6
Diffs (K) 101.3 120.0 120.4 123.7 14.6 19.6
Migrations (K) 0 0 0 0 8.2 6.0

Water-SP Speedup (16 procs) 6.5 6.4 6.1 6.2 8.7 8.6
Page Transfers (K) 2.3 2.7 2.9 2.9 3.4 3.7
Invalidations (K) 7.5 7.6 7.5 7.5 11.5 11.4
Diffs (K) 4.0 4.0 4.0 4.0 0.1 0.1
Migrations (K) 0 0 0 0 0.1 1.5

Table 6: Application speedups and statistics at 16 processors on first-generation platform.

23




