
The Effect of Network Total Order, Broadcast, and Remote-Write
Capability on Network-Based Shared Memory Computing

�

Robert Stets
�
, Sandhya Dwarkadas, Leonidas Kontothanassis

�
,

Umit Rencuzogullari, and Michael L. Scott

Dept. of Comp. Science
�
Western Research Lab

�
Cambridge Research Lab

University of Rochester Compaq Computer Corp. Compaq Computer Corp.
Rochester, NY 14627 Palo Alto, CA 94301 Cambridge, MA 02139

Abstract

Emerging system-area networks provide a variety of
features that can dramatically reduce network communi-
cation overhead. In this paper, we evaluate the impact
of such features on the implementation of Software Dis-
tributed Shared Memory (SDSM), and on the Cashmere
system in particular. Cashmere has been implemented on
the Compaq Memory Channel network, which supports
low-latency messages, protected remote memory writes, in-
expensive broadcast, and total ordering of network pack-
ets.

Our evaluation is based on several Cashmere protocol
variants, ranging from a protocol that fully leverages the
Memory Channel’s special features to one that uses the
network only for fast messaging. We find that the special
features improve performance by 18–44% for three of our
applications, but less than 12% for our other seven appli-
cations. We also find that home node migration, an opti-
mization available only in the message-based protocol, can
improve performance by as much as 67%.

These results suggest that for systems of modest size,
low latency is much more important for SDSM perfor-
mance than are remote writes, broadcast, or total ordering.
At the same time, results on an emulated 32-node system
indicate that broadcast based on remote writes of widely-
shared data may improve performance by up to 51% for
some applications. If hardware broadcast or multicast fa-
cilities can be made to scale, they can be beneficial in fu-
ture system-area networks.

�
This work was supported in part by NSF grants CDA–9401142, EIA–

9972881, CCR–9702466, and CCR–9705594; and an external research
grant from Compaq. Leonidas Kontothanassis is now with Akamai Tech-
nologies, Inc., 201 Broadway, Cambridge, MA 02139.

1. Introduction

Recent technological advances have led to the com-
mercial availability of inexpensive system area networks
(SANs) on which a processor can access the memory of
a remote node safely from user space [5, 6, 15]. These
memory-mapped network interfaces provide users with
high bandwidth (� 75MB/s), low latency (2–3 ���) commu-
nication. This latency is two to three decimal orders of
magnitude lower than that of traditional networks. In addi-
tion, these SANs sometimes also provide reliable, inexpen-
sive broadcast and total ordering of packets [10, 15, 16].

In comparison to the traditional network of (uniproces-
sor) workstations, a cluster of symmetric multiprocessor
(SMP) nodes on a high-performance SAN can see much
lower communication overhead. Communication within
the same node can occur through shared memory, while
cross-SMP communication overhead can be ameliorated
by the high performance network. Several groups have de-
veloped software distributed shared memory (SDSM) pro-
tocols that exploit low-latency networks [18, 22, 24, 28].

In this paper, we examine the impact of advanced net-
working features on the performance of the state-of-the-
art Cashmere-2L [28] protocol. The Cashmere protocol
uses the virtual memory subsystem to track data accesses,
allows multiple concurrent writers, employs home nodes
(i.e. maintains one master copy of each shared data page),
maintains a global page directory, and leverages shared
memory within SMPs to reduce protocol overhead. In
practice, Cashmere-2L has been shown to have very good
performance [12, 28].

Cashmere was originally designed to maximize perfor-
mance by placing shared data directly in remotely writable
memory, using remote writes and broadcast to replicate the
page directory among nodes, and relying on network to-
tal order and reliability to avoid acknowledging the receipt

mls
HPCA 2000

of metadata information. This paper evaluates the perfor-
mance implications of each of these design decisions.

Our investigation builds on earlier results from the GeN-
IMA SDSM [4]. GeNIMA’s creators examined the perfor-
mance impact of remote reads, remote writes, and special-
ized locking suport in the network interface. In our investi-
gation, we examine remote writes, inexpensive broadcast,
and network total order. In subsequent sections, we will ex-
plain how these features are used by Cashmere and could
be or are used by GeNIMA. We also examine two effective
protocol optimizations, both of which have ramifications
for the use of special hardware.

In general, an SDSM protocol incurs three kinds of
communication: the propagation of shared data, the main-
tenance of metadata (internal protocol data structures), and
synchronization. We have constructed several variants of
the Cashmere protocol that allow us to isolate the impact
of Memory Channel features on each of these kinds of
communication. Overall, we find that only three of our
ten benchmark applications can obtain significant perfor-
mance advantages (more than 12%) from a protocol that
takes full advantage of the Memory Channel’s special fea-
tures in comparison with an alternative protocol based en-
tirely on point to point messages. The message-only proto-
col has simpler hardware requirements, and allows the size
of shared memory to grow beyond the addressing limits
of the network interface. � It also enables us to implement
variants of Cashmere that employ home node migration.
These variants improve performance by as much as 67%,
more than offsetting the advantage of using special Mem-
ory Channel features. These results suggest that for sys-
tems of modest size (up to 8 nodes), low latency is much
more important for SDSM performance than are remote
writes, broadcast, or total ordering. However, broadcasting
using remote writes, if it can be scaled to larger numbers
of nodes, can be beneficial for applications with widely
shared data. Results on an emulated 32-node system sug-
gest that the availability of inexpensive broadcast can im-
prove the performance of these applications by as much as
51%.

The next section discusses the Memory Channel and its
special features, along with the Cashmere protocol. Sec-
tion 3 evaluates the impact of the Memory Channel fea-
tures and the home node migration and broadcast optimiza-
tions. Section 4 covers related work, and Section 5 outlines
our conclusions.
	
Most current commodity remote access networks have a limited

remotely-accessible memory space. Methods to eliminate this restriction
are a focus of ongoing research [7, 30].

2. Protocol Variants and Implementation

Cashmere was designed for SMP clusters connected by
a high performance system area network, such as Com-
paq’s Memory Channel [15]. Earlier work on Cash-
mere [12, 28] and other systems [12, 14, 22, 23, 24] has
quantified the benefits of SMP nodes to SDSM perfor-
mance. In this paper, we examine the performance impact
of the special network features.

We begin by providing an overview of the Memory
Channel network and its programming interface. Follow-
ing this overview is a description of the Cashmere protocol
and of its network communication in particular. A discus-
sion of the design decisions related to SMP nodes can be
found in earlier work [28].

2.1. Memory Channel

The Memory Channel is a reliable, low-latency network
with a memory-mapped, programmed I/O interface. The
hardware provides a remote-write capability, allowing pro-
cessors to modify remote memory without remote proces-
sor intervention. To use remote writes, a processor must
first attach to transmit or receive regions in the Memory
Channel’s address space. Transmit regions are mapped
to uncacheable I/O addresses on the Memory Channel’s
PCI-based network adapter. Receive regions are backed
by physical memory, which must be “wired down” by the
operating system.

An application sets up a message channel by logically
connecting transmit and receive regions. A store to a trans-
mit region passes from the host processor to the Memory
Channel adapter, where the data is placed into a packet and
injected into the network. At the destination, the network
adapter removes the data from the packet and uses DMA to
write the data to the corresponding receive region in main
memory.

A store to a transmit region can optionally be reflected
back to a receive region on the source node by instructing
the source adaptor to use loopback mode for a given chan-
nel. A loopback message goes out through the hub and
back, and is then processed as a normal message.

By connecting a transmit region to multiple receive re-
gions, nodes can make use of hardware broadcast. The net-
work guarantees that broadcast messages will be observed
in the same order by all receivers, and that all messages
from a single source will be observed in the order sent.
Broadcast is more expensive than point-to-point messages,
because it must “take over” the crossbar-based network
hub. Broadcast and total ordering, together with loopback,
are useful in implementing cluster-wide synchronization,
to be described in the following section.

2.2. Protocol Overview

Cashmere is an SMP-aware protocol. The protocol
allows all data sharing within an SMP to occur through
the hardware coherence mechanism in the SMP. Software
coherence overhead is incurred only when sharing spans
nodes.

Cashmere uses the virtual memory (VM) subsystem to
track data accesses. The coherence unit is an 8KB VM
page. Cashmere implements “moderately lazy” release
consistency [17]. Invalidation messages are sent at release
operations, but need not be processed until a subsequent
acquire operation. Cashmere requires all applications to
follow a data-race-free [1] programming model. Simply
stated, one process must synchronize with another in order
to see its modifications, and all synchronization primitives
must be visible to the system.

In Cashmere, each page of shared memory has a single,
distinguished home node and an entry in a global page di-
rectory. The home node maintains a master copy of the
page. The directory entry identifies the home node of the
page and the members of its sharing set—the nodes that
currently have copies.

The main protocol entry points are page faults and syn-
chronization operations. On a page fault, the protocol up-
dates the sharing set information in the directory and ob-
tains an up-to-date copy of the page from the home node.
If the fault is due to a write access, the protocol will also
create a pristine copy of the page (called a twin) and add
the page to the local dirty list. As an optimization in the
write fault handler, a page that is shared by only one node
is moved into exclusive mode. In this case, the twin and
dirty list operations are skipped, and the page will incur no
protocol overhead until another sharer emerges.

At a release operation, the protocol examines each page
in the dirty list and compares the page to its twin in or-
der to identify the modifications. These modifications are
collected and either written directly into the master copy
at the home node (using remote writes) or, if the page is
not mapped into Memory Channel space, sent to the home
node in the form of a diff message, for local incorpora-
tion. After performing diffs, the protocol downgrades per-
missions on the dirty pages and sends write notices to all
nodes in the sharing set. Like diffs, write notices can be
sent by means of remote writes or explicit messages, de-
pending on protocol variant. Notices sent to a given node
are accumulated in a list that each of the node’s processors
will peruse on its next acquire operation, invalidating any
mentioned pages for which it has a mapping, and which
have not subsequently been updated by another processor.

2.3. Protocol Variants

In order to isolate the effects of Memory Channel fea-
tures on shared data propagation, protocol metadata main-
tenance, and synchronization, we evaluate seven variants
of the Cashmere protocol, summarized in Table 1. For
each of the areas of protocol communication, the protocols
either leverage the full Memory Channel capabilities (i.e.
remote write access, total ordering, and inexpensive broad-
cast) or instead send explicit messages between nodes. We
assume a reliable network (as is common in current SANs).
Since we wish to establish ordering, however, most explicit
messages require an acknowledgement.
Message Polling: All of our protocol variants rely in some
part on efficient explicit messages. To minimize delivery
overhead [18], we arrange for each processor to poll for
messages on every loop back edge, branching to a handler
if appropriate. The polling instructions are added to ap-
plication binaries automatically by an assembly language
rewriting tool.

2.3.1. CSM-DMS: Data, Metadata, and Synchroniza-
tion using Memory Channel. The base protocol, de-
noted CSM-DMS, is the Cashmere-2L protocol described
in our study on the effects of SMP clusters [28]. This pro-
tocol exploits the Memory Channel for all SDSM commu-
nication: to propagate shared data, to maintain metadata,
and for synchronization.
Data: All shared data is mapped into the Memory Channel
address space. Each page is assigned a home node, which
is chosen to be the first node to touch the page after initial-
ization. The home node creates a receive mapping for the
page. All other nodes create a transmit mapping as well as
a local copy of the page. Shared data is fetched from the
home node using messages. Fetches could be optimized
by a remote read operation or by allowing the home node
to write the data directly to the working address on the re-
questing node. Unfortunately, the first optimization is not
available on the Memory Channel. The second optimiza-
tion is also effectively unavailable because it would require
shared data to be mapped at distinct Memory Channel ad-
dresses on each node. With only 128MBytes of Memory
Channel address space, this significantly limits the maxi-
mum dataset size. (For eight nodes, the maximum dataset
would be only about 16MBytes.)

Modifications are written back to the home node in the
form of diffs.
 With home node copies kept in Mem-
ory Channel space these diffs can be applied with remote
writes, avoiding the need for processor intervention at the
home. Address space limits still constrain dataset size, but
the limit is reasonably high.

To avoid race conditions, Cashmere must be sure all
diffs are completed before exiting a release operation. To
�
An earlier Cashmere study [18] investigated using write-through to

propagate data modifications. Diffs were found to use bandwidth more
efficiently than write-through, and to provide better performance.

Protocol Name Data Metadata Synchronization Home Migration
CSM-DMS MC MC MC No
CSM-MS Explicit MC MC No
CSM-S Explicit Explicit MC No
CSM-None Explicit Explicit Explicit No
CSM-MS-Mg Explicit MC MC Yes
CSM-None-Mg Explicit Explicit Explicit Yes
CSM-ADB (32 Nodes) MC/ADB MC MC No
CSM-ADB (8 Nodes) Explicit/ADB MC MC Yes

Table 1. These protocol variants have been chosen to isolate the performance impact of special network features on
the areas of SDSM communication. Use of special Memory Channel features is denoted by an “MC” under the area
of communication. Otherwise, explicit messages are used. The use of Memory Channel features is also denoted in
the protocol suffix (D, M, and/or S), as is the use of home node migration (Mg). ADB (Adaptive Data Broadcast)
indicates the use of broadcast to communicate widely shared data modifications.

avoid the need for explicit acknowledgements, CSM-DMS
writes all diffs to the Memory Channel and then resets
a synchronization location in Memory Channel space to
complete the release. Network total ordering ensures that
the diffs will be complete before the completion of the re-
lease is observed.
Metadata: System-wide metadata in CSM-DMS consists
of the page directory and write notice lists. CSM-DMS
replicates the page directory on each node and uses remote
write to broadcast all changes. It also uses remote writes to
deliver write notices to a list on each node. At an acquire,
a processor simply reads its write notices from local mem-
ory. As with diffs, CSM-DMS takes advantage of network
ordering to avoid write notice acknowledgements.
Synchronization: Application locks, barriers, and flags all
leverage the Memory Channel’s broadcast and write order-
ing capabilities. Locks are represented by an 8-entry array
in Memory Channel space, and by a test-and-set flag on
each node. A process first acquires the local test-and-set
lock and then asserts and broadcasts its node entry in the
8-entry array. The process waits for its write to appear via
loopback, and then reads the entire array. If no other entries
are set, the lock is acquired; otherwise the process resets
its entry, backs off, and tries again. This lock implementa-
tion allows a processor to acquire a lock without requiring
any remote processor assistance. Barriers are represented
by an 8-entry array, a “sense” variable in Memory Channel
space, and a local counter on each node. The last processor
on each node to arrive at the barrier updates the node’s en-
try in the 8-entry array. A single master processor waits for
all nodes to arrive and then toggles the sense variable, on
which the other nodes are spinning. Flags are write-once
notifications based on remote write and broadcast.

2.3.2. CSM-MS: Metadata and Synchronization us-
ing Memory Channel. CSM-MS does not place shared
data in Memory Channel space and so avoids network-
induced limitations on dataset size. CSM-MS, however,
cannot use remote-write diffs. Instead, diffs are sent as ex-

plicit messages, which require processing assistance from
the home node and explicit acknowledgements to establish
ordering. In CSM-MS, metadata and synchronization still
leverage all Memory Channel features.

2.3.3. CSM-S: Synchronization using Memory Chan-
nel. CSM-S uses special network features only for syn-
chronization. Explicit messages are used both to propagate
shared data and to maintain metadata. Instead of broad-
casting a directory change, a process must send the change
to the home node in an explicit message. The home node
updates the entry and acknowledges the request. The home
node is the only node guaranteed to have an up-to-date di-
rectory entry.

Directory updates (or reads) can usually be piggybacked
onto an existing message. For example, a directory update
is implicit in a page fetch request and so can be piggy-
backed. Also, write notices always follow diff operations,
so the home node can simply piggyback the sharing set
(needed to identify where to send write notices) onto the
diff acknowledgement. In fact, an explicit directory mes-
sage is needed only when a page is invalidated.

2.3.4. CSM-None: No Use of Special Memory Chan-
nel Features. The fourth protocol, CSM-None, uses ex-
plicit messages (and acknowledgements) for all commu-
nication. This protocol variant relies only on low-latency
messaging, and so could easily be ported to other low-
latency network architectures. Our message polling mech-
anism, described above, should be considered independent
of remote write; similarly efficient polling can be imple-
mented on other networks [10, 30].

2.3.5. CSM-MS-Mg and CSM-None-Mg: Home Node
Migration. All of the above protocol variants use first-
touch home node assignment [20]. Home assignment is
extremely important because processors on the home node
write directly to the master copy and so do not incur the

overhead of twins and diffs. If a page has multiple writ-
ers during the course of execution, protocol overhead can
potentially be reduced by migrating the home node to an
active writer.

Migrating home nodes cannot be used when data is re-
motely accessible. The migration would force a re-map
of Memory Channel space that can only be accomplished
through a global synchronization. The synchronization
would be necessary to ensure that no diffs or other re-
mote memory accesses occur while the migration is pro-
ceeding. Hence, home node migration cannot be com-
bined with CSM-DMS. In our experiments we incorporate
it into CSM-MS and CSM-None, creating CSM-MS-Mg
and CSM-None-Mg. When a processor incurs a write fault,
these protocols check the local copy of the directory to see
if the home is actively writing the page. If not, a migra-
tion request is sent to the home. The request is granted
if received when the home is not writing the page. The
home changes the directory entry to point to the new home.
Since the new home node has touched the page, the trans-
fer of data occurs as part of the corresponding page update
operation. The marginal cost of changing the home node
identity is therefore very low.

CSM-None-Mg uses a local copy of page directory in-
formation to see whether the home node is writing the
page. If this copy is out of date, useless migration requests
can occur. We do not present CSM-S-Mg because its per-
formance does not differ significantly from that of CSM-S.

2.3.6. CSM-ADB: Adaptive Shared Data Broadcast.
The protocol variants described in the previous sections all
use invalidate-based coherence: data is updated only when
accessed. CSM-ADB uses Memory Channel broadcast
to efficiently communicate application data that is widely
shared (read by multiple consumers). To build the protocol,
we modified the messaging system to create a new set of
buffers, each of which is mapped for transmit by any node
and for receive by all nodes, except the sender. Pages are
written to these globally mapped buffers selectively, based
on the following heuristics: multiple requests for the same
page are received simultaneously; multiple requests for the
same page are received within the same synchronization
interval on the home node (where a new interval is defined
at each release); or there were two or more requests for the
page in the previous interval. These heuristics enable us to
capture multiple-consumer access patterns that are repeti-
tive, as well as those that are not. Pages in the broadcast
buffers are invalidated at the time of a release if the page
has been modified in that interval (at the time at which
the directory on the home node is updated). Nodes that
are about to update their copy of a page check the broad-
cast buffers for a valid copy before requesting one from
the home node. The goal is to reduce contention and band-
width consumption by eliminating multiple requests for the
same data. In an attempt to assess the effects of scaling,
we also report CSM-ADB results using 32 processors on

Operation MC Features Explicit Messages
Diff (� s) 31–129 70–245
Lock Acquire (� s) 10 33
Barrier (� s) 29 53

Table 2. Basic operation costs on 32 processors. Diff
cost varies according to the size of the diff.

a one-level protocol (one that does not leverage hardware
shared memory for sharing within the node) described in
earlier work [18].

3. Results

We begin this section with a brief description of our
hardware platform and our application suite. Next, we
discuss the results of our investigation of the impact of
Memory Channel features and the home node migration
and broadcast optimizations.

3.1. Platform and Basic Operation Costs

Our experimental environment is a set of eight Al-
phaServer 4100 5/600 nodes, each with four 600 MHz
21164A processors, an 8 MB direct-mapped board-level
cache with a 64-byte line size, and 2 GBytes of memory.
The 21164A has two levels of on-chip cache. The first
level consists of 8 KB each of direct-mapped instruction
and (write-through) data cache, with a 32-byte line size.
The second level is a combined 3-way set associative 96
KB cache, with a 64-byte line size. The nodes are con-
nected by a Memory Channel II system area network, a
PCI-based network with a peak point-to-point bandwidth
of 75 MBytes/sec and a one-way, cache-to-cache latency
for a 64-bit remote-write operation of 3.3 � s.

Each AlphaServer node runs Digital Unix 4.0F, with
TruCluster v1.6 (Memory Channel) extensions. The sys-
tems execute in multi-user mode, but with the exception
of normal Unix daemons no other processes were active
during the tests. In order to increase cache efficiency, ap-
plication processes are pinned to a processor at startup. No
other processors are connected to the Memory Channel.
Execution times represent the lowest values of three runs.

In practice, the round-trip latency for a null message
in Cashmere is 15 � s. This time includes the transfer of
the message header and the invocation of a null handler
function. A page fetch operation costs 220 � s, and a twin
operation requires 68 � s.

As described earlier, Memory Channel features can be
used to significantly reduce the cost of diffs, directory up-
dates, write notice propagation, and synchronization. Ta-
ble 2 shows the costs for diff operations, lock acquires,
and barriers, both when leveraging (MC Features) and not

Program Problem Size Time (s)
Barnes 128K bodies (26MBytes) 120.4
CLU 2048x2048 (33MBytes) 75.4
LU 2500x2500 (50MBytes) 143.8
EM3D 64000 nodes (52MBytes) 30.6
Gauss 2048x2048 (33MBytes) 234.8
Ilink CLP (15MBytes) 212.7
SOR 3072x4096 (50MBytes) 36.2
TSP 17 cities (1MByte) 1342.49
Water-Nsquared 9261 mols. (6MBytes) 332.6
Water-Spatial 9261 mols. (16MBytes) 20.2

Table 3. Data set sizes and sequential execution time
of applications.

leveraging (Explicit Messages) special Memory Channel
features. The cost of diff operations varies according to
the size of the diff. Directory updates, write notices, and
flag synchronization all use the Memory Channel’s remote-
write and total ordering features. Directory updates and
flag synchronization also rely on the inexpensive broadcast
support. Without these features, these operations are ac-
complished via explicit messages. Directory updates are
small messages with simple handlers, so their cost is only
slightly more than the cost of a null message. The cost of
write notices will depend greatly on the write notice count
and destinations. Write notices sent to different destina-
tions can be overlapped, thus reducing the operation’s over-
all latency. Flags are inherently broadcast operations, but
again messages to different destinations can be overlapped,
so perceived latency should not be much more than that of
a null message.

3.2. Application Suite

Our applications consist primarily of well-known
benchmarks from the Splash [25, 31] and TreadMarks [2]
suites. Due to space limitations, we refer the reader to
earlier descriptions [12]. The applications are Barnes,
an N-body simulation from the TreadMarks [2] distri-
bution (based on the same application in the SPLASH-
1 [25] suite); CLU and LU, lower and upper triangu-
lar matrix factorization kernels with and without contigu-
ous allocation of a single processor’s data, respectively,
from the SPLASH-2 [31] suite; EM3D, a program to sim-
ulate electromagnetic wave propagation through 3D ob-
jects [9]; Gauss, a locally-developed solver for a system
of linear equations ������� using Gaussian Elimination
and back-substitution; Ilink, a widely used genetic link-
age analysis program from the FASTLINK 2.3P [11] pack-
�
Both CLU and LU tile the input matrix and assign each column of

tiles to a contiguous set of processors. Due to its different allocation strat-
egy, LU incurs a large amount of false sharing across tiles. To improve
scalability, we have modified LU to assign a column of tiles to proces-
sors within the same SMP, thereby reducing false sharing across node
boundaries.

age that locates disease genes on chromosomes; SOR, a
Red-Black Successive Over-Relaxation program, from the
TreadMarks distribution; TSP, a traveling salesman prob-
lem, from the TreadMarks distribution; Water-Nsquared,
a fluid flow simulation from the SPLASH-2 suite; and
Water-Spatial, another SPLASH-2 fluid flow simulation
that solves the same problem as Water-Nsquared, but
where the data is partitioned spatially.

The data set sizes and uniprocessor execution times for
these applications are presented in Table 3. The size of
shared memory is listed in parentheses. Execution times
were measured by running each uninstrumented applica-
tion sequentially without linking it to the protocol library.

3.3. Performance

Throughout this section, we will refer to Figure 1 and
Table 4. Figure 1 shows a breakdown of execution time,
normalized to that of the CSM-DMS protocol, for the first
six protocol variants. The breakdown indicates time spent
executing application code (User), executing protocol
code (Protocol), waiting on synchronization operations
(Wait), and sending or receiving messages (Message).
Table 4 lists the speedups and statistics on protocol com-
munication for each of the applications running on 32 pro-
cessors. The statistics include the number of page trans-
fers, diff operations, home node migrations, and migration
attempts (listed in parentheses).

3.3.1. The Impact of Memory Channel Features.
This subsection begins by discussing the impact of Mem-
ory Channel support, in particular, remote-write capabili-
ties, inexpensive broadcast, and total-ordering properties,
on the three types of protocol communication: shared data
propagation, protocol metadata maintenance, and synchro-
nization. All protocols described in this subsection use a
first-touch initial home node assignment. �

Five of our ten applications show a measurable perfor-
mance advantage running on CSM-DMS (fully leveraging
Memory Channel features) as opposed to CSM-None (us-
ing explicit messages). Barnes runs 80% faster on CSM-
DMS than it does on CSM-None, while EM3D and Water-
Nsquared run 20-25% faster. LU and Water-Spatial run ap-
proximately 10% faster. CLU, Gauss, Ilink, SOR, and TSP
are not sensitive to the use of Memory Channel features
and do not show any significant performance differences
across our protocols.

Barnes exhibits a high degree of sharing and incurs a
large Wait time on all protocol variants (see Figure 1).
CSM-DMS runs roughly 40% faster than CSM-MS and
80% faster than CSM-S and CSM-None. This performance
�
In the case of multiple sharers per page, the timing differences be-

tween protocol variants can lead to first-touch differences. To eliminate
these differences and isolate Memory Channel impact, we captured the
first-touch assignments from CSM-DMS and used them to explicitly as-
sign home nodes in the other protocols.

difference is due to the lower Message and Wait times
in CSM-DMS. In this application, the Memory Channel
features serve to optimize data propagation and metadata
maintenance, thereby reducing application perturbation,
and resulting in lower wait time. Due to the large amount
of false sharing in Barnes, application perturbation also re-
sults in large variations in the number of pages transferred.
As is true with most of our applications, the use of Mem-
ory Channel features to optimize synchronization has little
impact on overall performance. Synchronization time is
dominated by software coherence protocol overhead, and
in general limits the performance of applications with ac-
tive fine-grain synchronization on SDSM.

At the given matrix size, LU incurs a large amount of
protocol communication due to write-write false sharing
at row boundaries. In this application, CSM-DMS per-
forms 12% better than the other protocols. The advantage
is due primarily to optimized data propagation, as CSM-
DMS uses remote writes and total ordering to reduce the
diffing overhead. The Message time in CSM-DMS is much
lower than in the other protocols. In CSM-MS, CSM-S,
and CSM-None, some of the increased Message time is
hidden by existing Wait time.

CSM-DMS also provides the best performance for
EM3D: a 23% margin over the other protocols. Again,
the advantage is due to the use of Memory Channel fea-
tures to optimize data propagation. In contrast to Barnes
and LU, the major performance differences in EM3D are
due to Wait time, rather than Message time. Performance
of EM3D is extremely sensitive to higher data propagation
costs. The application exhibits a nearest neighbor shar-
ing pattern, so diff operations in our SMP-aware protocol
occur only between adjacent processors spanning nodes.
These processors perform their diffs at barriers, placing
them directly in the critical synchronization path. Any
increase in diff cost will directly impact the overall Wait
time. Figure 1 shows this effect, as Message time increases
slightly from CSM-DMS to CSM-MS (18% and 24%, re-
spectively), but Wait time increases dramatically (41% and
65% for CSM-DMS and CSM-MS, respectively). This ap-
plication provides an excellent example of the sensitivity
of synchronization Wait time to any protocol perturbation.

Water-Nsquared obtains its best performance again on
CSM-DMS. As can be seen in Figure 1, CSM-MS, CSM-
S, and CSM-None all have much higher Protocol times
than CSM-DMS. Detailed instrumentation shows that the
higher Protocol time is spent in write fault handlers, con-
tending for a set of per-page locks shared by the write fault
and diff message handlers. The average time spent acquir-
ing these locks shows a four-fold increase from CSM-DMS
to CSM-MS. CSM-DMS does not experience this con-
tention since it relies on remote writes and total ordering
to deliver diffs without a message handler. The Memory
Channel features also provide a noticeable performance ad-
vantage by optimizing synchronization operations in this
application. Water-Nsquared uses per-molecule locks, and

so performs a very large number of lock operations. Over-
all, CSM-DMS performs 13% better than CSM-MS and
CSM-S and 18% better than CSM-None.

Like EM3D, Water-Spatial is sensitive to data propaga-
tion costs. The higher cost of data propagation in CSM-
MS, CSM-S, and CSM-None perturbs the synchronization
Wait time and hurts overall performance. CSM-DMS out-
performs the other protocols on Water-Spatial by 10%.

CLU shows no significant difference in overall perfor-
mance across the protocols. This application has little com-
munication that can be optimized. Any increased Message
time is hidden by the existing synchronization time. Ilink
performs a large number of diffs, and might be expected to
benefit significantly from remote writes. However, 90% of
the diffs are applied at the home node by idle processors,
so the extra overhead is mostly hidden from the applica-
tion. Hence, the benefits are negligible. Of the remaining
applications, Gauss, SOR, and TSP are not noticeably de-
pendent on the use of Memory Channel features.

3.3.2. Home Node Migration: Optimization for a
Scalable Data Space. Home node migration can reduce
the number of remote memory accesses by moving the
home node to active writers, thereby reducing the number
of twin/diffs and invalidations, and sometimes the amount
of data transferred across the network. Our results show
that this optimization can be very effective. Six of our ten
applications are affected by home node migration. Two of
them (EM3D and Ilink) suffer; four (LU, Water-Spatial,
Barnes, and Water-Nsquared) benefit.

Migration is particularly effective in LU and Water-
Spatial, where it significantly reduces the number of diff
(and attendant twin) operations (see Table 4). In fact, for
these applications, CSM-None-Mg, which does not lever-
age the special Memory Channel features at all, outper-
forms the full Memory Channel protocol, CSM-DMS, re-
ducing execution time by 67% in LU and 34% in Water-
Spatial. �

In Barnes and Water-Nsquared, there are also benefits,
albeit smaller, from using migration. In both applications,
CSM-MS-Mg and CSM-None-Mg outperform their first-
touch counterparts, CSM-MS and CSM-None. Both appli-
cations show large reductions in diffs when using migra-
tion (see Table 4). The smaller number of diffs (and twins)
directly reduces Protocol time, and indirectly, Wait time.
In Barnes, the execution time for CSM-MS-Mg and CSM-
None-Mg is lower by 12% and 27% compared to CSM-
MS and CSM-None, bringing performance to within 30%
of CSM-DMS for CSM-None-Mg. Water-Nsquared shows
an 8% and 12% improvement in CSM-MS-Mg and CSM-
None-Mg, respectively, bringing performance to within
7% of CSM-DMS for CSM-None-Mg.

Home migration hurts performance in EM3D and Ilink.
�
As described earlier, migration cannot be used when data is placed in

the Memory Channel address space (for example, in CSM-DMS), because
of the high cost of remapping.

Barnes

0

20

40

60

80

100

120

140

160

180

200

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

CLU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

LU

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

EM3D

0

20

40

60

80

100

120

140

160

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

Gauss

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

. /01 2
34 56
74 8
09 :
0;<= 5 >
6
? @A

Ilink

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

SOR

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

TSP

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

Water-Nsquared

0

20

40

60

80

100

120

140

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

Water-Spatial

0

20

40

60

80

100

120

CSM-D
MS

CSM-M
S

CSM-S

CSM-N
one

CSM-M
S-M

g

CSM-N
one-M

g

� ��� �
� !"
$
�% &
�'()
! *"
+ ,-

Message

Wait

Protocol

User

Figure 1. Normalized execution time breakdown for the applications and protocol variants on 32 processors. The suffix
on the protocol name indicates the kinds of communication using special Memory Channel features (D: shared Data
propagation, M: protocol Meta-data maintenance, S: Synchronization, None: No use of Memory Channel features).
Mg indicates a migrating home node policy.

Application CSM-DMS CSM-MS CSM-S CSM-None CSM-MS-Mg CSM-None-Mg
Barnes Speedup (32 procs) 7.6 5.5 4.2 4.2 6.3 5.9

Page Transfers (K) 66.0 63.4 96.8 96.1 69.1 78.5
Diffs (K) 60.8 50.2 66.4 61.8 45.1 47.5
Migrations (K) 0 0 0 0 15.6 (15.6) 11.6 (67.4)

CLU Speedup (32 procs) 18.3 18.4 18.0 18.0 18.2 17.7
Page Transfers (K) 8.3 11.9 11.9 11.9 11.9 11.9
Diffs (K) 0 0 0 0 0 0
Migrations (K) 0 0 0 0 3.5 (3.5) 3.5 (3.5)

LU Speedup (32 procs) 4.0 3.5 3.6 3.6 12.5 12.4
Page Transfers (K) 44.1 44.4 44.6 44.4 51.1 53.1
Diffs (K) 285.6 278.06 278.9 277.4 1.1 1.1
Migrations (K) 0 0 0 0 5.5 (5.5) 5.5 (5.5)

EM3D Speedup (32 procs) 13.5 10.5 10.5 10.3 10.2 9.8
Page Transfers (K) 32.8 32.8 33.1 33.1 43.9 43.8
Diffs (K) 7.1 7.1 7.1 7.1 0 0
Migrations (K) 0 0 0 0 1.9 (1.9) 1.9 (1.9)

Gauss Speedup (32 procs) 22.7 21.9 23.2 23.0 22.1 21.9
Page Transfers (K) 38.2 42.2 40.1 40.3 43.9 44.1
Diffs (K) 3.6 3.6 3.6 3.6 0.5 0.1
Migrations (K) 0 0 0 0 4.5 (4.5) 4.6 (4.6)

Ilink Speedup (32 procs) 12.5 12.1 11.1 11.1 11.6 11.4
Page Transfers (K) 50.0 50.0 53.1 53.1 51.9 56.1
Diffs (K) 12.0 12.2 12.4 12.4 8.7 8.6
Migrations (K) 0 0 0 0 1.9 (2.7) 1.9 (6.2)

SOR Speedup (32 procs) 31.2 30.1 30.1 29.9 31.2 30.9
Page Transfers (K) 0.3 0.3 0.3 0.3 0.7 0.7
Diffs (K) 1.4 1.4 1.4 1.4 0 0
Migrations (K) 0 0 0 0 0 0

TSP Speedup (32 procs) 33.9 34.0 33.8 34.2 33.9 34.0
Page Transfers (K) 12.6 12.2 12.3 12.2 14.1 13.9
Diffs (K) 8.0 7.8 7.8 7.8 0.1 0.1
Migrations (K) 0 0 0 0 5.0 (5.0) 5.0 (5.0)

Water-Nsquared Speedup (32 procs) 20.6 18.0 17.8 17.0 19.6 19.3
Page Transfers (K) 31.5 29.8 29.4 22.9 28.3 32.9
Diffs (K) 251.1 234.4 249.7 243.7 17.2 26.3
Migrations (K) 0 0 0 0 9.2 (9.3) 11.0 (11.7)

Water-Spatial Speedup (32 procs) 7.7 7.0 7.0 7.2 12.3 11.8
Page Transfers (K) 4.0 4.5 4.8 4.9 5.2 5.6
Diffs (K) 6.2 6.2 6.4 6.4 0.1 0.1
Migrations (K) 0 0 0 0 0.3 (0.3) 0.3 (0.3)

Table 4. Application speedups and statistics at 32 processors.

The reduction in the number of diff operations comes at
the expense of increased page transfers due to requests by
the consumer, which was originally the home node. Only
a subset of the data in a page is modified. The net re-
sult is a larger amount of data transferred, which nega-
tively impacts performance. For EM3D, CSM-MS-Mg and
CSM-None-Mg perform 3% and 6% worse than CSM-MS
and CSM-None, respectively. Similarly, for Ilink, CSM-
MS-Mg and CSM-None-Mg both perform 5% worse than
their first-touch counterparts. Also, CSM-None-Mg suf-
fers from a large number of unsuccessful migration re-
quests (see Table 4). These requests are denied because
the home node is actively writing the page. In CSM-MS-
Mg, the home node’s writing status is globally available in
the replicated page directory, so a migration request can be
skipped if inappropriate. In CSM-None-Mg, however, a re-
mote node only caches a copy of a page’s directory entry,
and may not always have current information concerning
the home node. Thus, unnecessary migration requests can-
not be avoided.

Overall, the migration-based protocol variants deliver
very good performance, while avoiding the need to map
shared data into the limited amount of remotely address-
able address space. The performance losses in EM3D and

Ilink are fairly low (3–5%), while the improvements in
other applications are comparatively large (up to to 67%).

3.3.3. Selective Broadcast for Widely Shared Data.
Selective use of broadcast for data that is accessed by mul-
tiple consumers (as in CSM-ADB) can reduce the number
of messages and the amount of data sent across the net-
work, in addition to reducing contention and protocol over-
head at the producer (home node). However, at 8 nodes
(see Figure 2), the performance improvement across all ap-
plications is a maximum of 13%.

In order to determine the effects on performance when
using a larger cluster, we emulated a 32-node system by
running a one-level (non-SMP-aware) protocol in which
each processor is in effect a separate node B . Performance
improvements at 32 nodes jumps to 18, 49, and 51% for
LU, Ilink and Gauss, respectively . The large gains for LU,
Ilink, and Gauss come from a reduction in the message
and wait time. In Gauss, the protocol is able to detect and
optimize the communication of each pivot row to the mul-
C
Emulation differs from a real 32-node system in that the (four) pro-

cessors within a node share the same network interface and messages
among processors within a node are exchanged through shared memory.
We also used CSM-DMS as the base to which ADB was added, since this
was the only protocol for which we had 32-node emulation capabilities.

8 Nodes (32 Procs)

0

20

40

60

80

100

120

BARNES-MS-Mg

BARNES-ADB

CLU-MS-Mg

CLU-ADB

LU-MS-Mg
LU-ADB

EM3D-MS-Mg

EM3D-ADB

GAUSS-MS-Mg

GAUSS-ADB

ILINK-MS-Mg

ILINK-ADB

SOR-MS-Mg

SOR-ADB

TSP-MS-Mg

TSP-ADB

WATER-NSQ-MS-Mg

WATER-NSQ-ADB

WATER-SPT-MS-Mg

WATER-SPT-ADB

Exe
cut

ion
 Tim

e B
rea

kdo
wn

(%)

32 Nodes

0

20

40

60

80

100

120

BARNES-DMS

BARNES-ADB

CLU-DMS

CLU-ADB

LU-DMS
LU-ADB

EM3D-DMS

EM3D-ADB

GAUSS-DMS

GAUSS-ADB

ILINK-DMS

ILINK-ADB

SOR-DMS

SOR-ADB

TSP-DMS

TSP-ADB

WATER-NSQ-DMS

WATER-NSQ-ADB

WATER-SPT-DMS

WATER-SPT-ADB

Ex
ecu

tion
 Ti

me
 Br

ea
kdo

wn
 (%

)

Broadcast Time
Message/Wait Time
Protocol Time
User Time

Figure 2. Normalized execution time breakdown for the applications using adaptive broadcast of data (CSM-ADB) in
comparison to CSM-MS-Mg at 8 and CSM-DMS at 32 nodes.

tiple consumers: 172K out of a total of 182K page updates
are satisfied by the broadcast buffers, while 10K pages are
actually placed in the buffers at 32 nodes. In the case of
Ilink, 191K out of a total of 205K page updates are sat-
isfied by the broadcast buffers, while only 12K pages are
placed in the broadcast buffers at 32 nodes. The number
of consumers in LU is not as large: 400K out of a total of
1.19M page updates are satisfied by the broadcast buffers,
while 106K pages are placed in the broadcast buffers. All
other applications, with the exception of SOR, also benefit
from the use of CSM-ADB by smaller amounts.

4. Related Work

Bilas et al. [4] use their GeNIMA SDSM to examine the
impact of special network features on SDSM performance.
Their network has remote write, remote read, and special-
ized lock support, but no broadcast or total ordering. GeN-
IMA disseminates write notices through broadcast and so
could benefit from the appropriate support. In base Cash-
mere, the lock implementation uses remote writes, broad-
cast, and total ordering to obtain the same benefits as GeN-
IMA’s specialized lock support.

The GeNIMA results show that a combination of remote
write, remote read, and synchronization support help avoid
the need for interrupts or polling and provide moderate im-
provements in SDSM performance. However, their base
protocol uses inter-processor interrupts to signal message
arrival. Interrupts on commodity machines are typically
on the order of a hundred microseconds, and so largely
erase the benefits of a low-latency network [18]. Our eval-
uation assumes that messages can be detected through a
much more efficient polling mechanism, as is found with
other SANs [10, 13], and so each of our protocols bene-
fits from the same low messaging latency. We also extend
the GeNIMA work by examining protocol optimizations
that are closely tied to the use (or non-use) of special net-
work features. One of the protocol optimizations, home
node migration, cannot be used when shared data is re-
motely accessible, while the other optimization, adaptive
data broadcast, relies on a very efficient mapping of re-
motely accessible memory.

Speight and Bennett [26] evaluate the use of multi-
cast and multithreading in the context of SDSM on high-
latency unreliable networks. In their environment, remote
processors must be interrupted to process multicast mes-
sages, thereby resulting in higher penalties when updates

are unnecessary. In addition, while their adaptive protocol
is purely history-based, we rely on information about the
current synchronization interval to predict requests for the
same data by multiple processors. This allows us to capture
multiple-consumer access patterns that do not repeat.

Our home node migration policy is conceptually simi-
lar to a current page migration policy found in some CC-
NUMA multiprocessors [19, 29]. Both policies attempt
to migrate pages to active writers. The respective mecha-
nisms are very different, however. In the CC-NUMA mul-
tiprocessors, the system will attempt to migrate the page
only after remote write misses exceed a threshold. The
hardware will then invoke the OS to transfer the page to the
new home node. In Cashmere, the migration occurs on the
first write to a page and also usually requires only an inex-
pensive directory change. The page transfer has most likely
already occurred on a processor’s previous (read) access to
the page. Since the migration mechanism is so lightweight,
Cashmere can afford to be very aggressive.

Amza et al. [3] describe adaptive extensions to the
TreadMarks [2] protocol that avoid twin/diff operations on
shared pages with only a single writer (pages with mul-
tiple writers still use twins and diffs). In Cashmere, if a
page has only a single writer, the home always migrates to
that writer, and so twin/diff operations are avoided. In the
presence of multiple concurrent writers, our scheme will
always migrate to one of the multiple concurrent writers,
thereby avoiding twin/diff overhead at one node. Cash-
mere is also able to take advantage of the replicated di-
rectory when making migration decisions (to determine if
the home is currently writing the page). Adaptive DSM
(ADSM) [21] also describes a history-based sharing pat-
tern characterization technique to adapt between single and
multi-writer modes, and between invalidate and update-
based coherence. Our adaptive update mechanism uses the
initial request to detect sharing, and then uses broadcast
to minimize overhead on the processor responding to the
request.

5. Conclusions

In this paper we have studied the effect of special
network features, specifically, remote writes, inexpensive
broadcast, and total packet ordering, on the state-of-the-art
Cashmere SDSM.

We have found that these network features do indeed
provide a performance benefit. Two applications improve
by 18% and 23% when all features are exploited. A third
improves by 44%, but this improvement leads to a speedup
of only 7.6 on 32 processors. The remaining seven appli-
cations improve by less than 12%. The network features
have little impact on synchronization overhead: the actual
cost of a lock, barrier, or flag is typically dwarfed by that of
the attendant software coherence protocol operations. The
features are somewhat more useful for protocol metadata
maintenance. They are primarily useful, however, for data

propagation. The direct application of diffs reduces syn-
chronization wait time and the cost of communication due
to false sharing, and minimizes the extent to which proto-
col operations perturb application timing.

On the other hand, we found that home node migration,
made possible by moving shared data out of the network
address space, is very effective at reducing the number of
twin/diff operations and associated protocol overhead. In
fact, the benefits of migration sometimes outweigh those
of using special network features for shared data propaga-
tion. Moreover, by allowing shared data to reside in private
memory, we eliminate the need for page pinning and allow
the size of shared memory to exceed the addressing lim-
its of the network interface. Our work on out-of-core data
sets [12] depends on this more scalable use of the address
space.

Overall, our results suggest that for systems of modest
size, low latency is much more important for SDSM per-
formance than are remote writes, broadcast, or total order-
ing. On larger networks, however, we found that an adap-
tive protocol capable of identifying widely-shared data can
potentially make effective use of broadcast with remote
writes.

In the future, we would like to examine the impact
of other basic network issues on SDSM performance.
These issues include DMA versus programmed I/O in-
terfaces, messaging latency, and bandwidth. We are also
interested in incorporating predictive migration mecha-
nisms [8, 21, 27] that would identify migratory pages and
then trigger migration at the time of an initial read fault.

Acknowledgement: The authors would like to thank Ri-
cardo Bianchini and Alan L. Cox for many helpful discus-
sions concerning this paper.

References

[1] S. V. Adve and M. D. Hill. A Unified Formulation of
Four Shared-Memory Models. IEEE Trans. on Parallel
and Distributed Systems, 4(6):613–624, June 1993.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Workstations.
Computer, 29(2):18–28, Feb. 1996.

[3] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel.
Software DSM Protocols that Adapt between Single
Writer and Multiple Writer. In Proc. of the 3rd Intl. Symp.
on High Performance Computer Architecture, San Anto-
nio, TX, Feb. 1997.

[4] A. Bilas, C. Liao, and J. P. Singh. Using Network Inter-
face Support to Avoid Asynchronous Protocol Processing
in Shared Virtual Memory Systems. In Proc. of 26th Intl.
Symp. on Computer Architecture, Atlanta, GA, May 1999.

[5] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten,
and J. Sandberg. Virtual Memory Mapped Network In-
terface for the SHRIMP Multicomputer. In Proc. of the

21st Intl. Symp. on Computer Architecture, pages 142–
153, Chicago, IL, Apr. 1994.

[6] G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, and
J. Wilkes. An Implementation of the Hamlyn Sender-
Managed Interface Architecture. In Proc. of the 2nd Symp.
on Operating Systems Design and Implementation, Seat-
tle, WA, Oct. 1996.

[7] Y. Chen, A. Bilas, S. N. Damianakis, C. Dubnicki, and K.
Li. UTLB: A Mechanism for Address Translation on Net-
work Interfaces. In Proc. of the 8th Intl. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, pages 193–203, San Jose, CA, Oct. 1998.

[8] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for
Detecting Migratory Shared Data. In Proc. of the 20th Intl.
Symp. on Computer Architecture, San Diego, CA, May
1993.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Pro-
gramming in Split-C. In Proc., Supercomputing ’93, pages
262–273, Portland, OR, Nov. 1993.

[10] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.
Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd.
The Virtual Interface Architecture. IEEE Micro, 18(2):66–
76, Mar. 1998.

[11] S. Dwarkadas, A. A. Schäffer, R. W. Cottingham Jr., A. L.
Cox, P. Keleher, and W. Zwaenepoel. Parallelization of
General Linkage Analysis Problems. Human Heredity,
44:127–141, 1994.

[12] S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J.
Scales, M. L. Scott, and R. Stets. Comparative Evaluation
of Fine- and Coarse-Grain Approaches for Software Dis-
tributed Shared Memory. In Proc. of the 5th Intl. Symp. on
High Performance Computer Architecture, Orlando, FL,
Jan. 1999.

[13] T. v. Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proc. of the 15th ACM Symp. on Operating
Systems Principles, Copper Mountain, CO, Dec. 1995.

[14] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy.
SoftFLASH: Analyzing the Performance of Clustered Dis-
tributed Virtual Shared Memory. In Proc. of the 7th Intl.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 210–220, Cam-
bridge, MA, Oct. 1996.

[15] R. Gillett. Memory Channel: An Optimized Cluster Inter-
connect. IEEE Micro, 16(2):12–18, Feb. 1996.

[16] R. W. Horst and D. Garcia. ServerNet SAN I/O Archi-
tecture. In Proc. of Hot Interconnects V Symposium, Palo
Alto, CA, Aug. 1997.

[17] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proc. of the 19th Intl. Symp. on Computer Architecture,
pages 13–21, Gold Coast, Australia, May 1992.

[18] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M.
Cierniak, S. Parthasarathy, W. Meira, S. Dwarkadas, and
M. L. Scott. VM-Based Shared Memory on Low-Latency,
Remote-Memory-Access Networks. In Proc. of the 24th
Intl. Symp. on Computer Architecture, pages 157–169,
Denver, CO, June 1997.

[19] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proc. of the 24th Intl. Symp. on
Computer Architecture, Denver, CO, June 1997.

[20] M. Marchetti, L. Kontothanassis, R. Bianchini, and M. L.
Scott. Using Simple Page Placement Policies to Reduce
the Cost of Cache Fills in Coherent Shared-Memory Sys-
tems. In Proc. of the 9th Intl. Parallel Processing Symp.,
Santa Barbara, CA, Apr. 1995.

[21] L. R. Monnerat and R. Bianchini. Efficiently Adapting to
Sharing Patterns in Software DSMs. In Proc. of the 4th
Intl. Symp. on High Performance Computer Architecture,
Las Vegas, NV, Feb. 1998.

[22] R. Samanta, A. Bilas, L. Iftode, and J. P. Singh. Home-
based SVM Protocols for SMP clusters: Design and Per-
formance. In Proc. of the 4th Intl. Symp. on High Perfor-
mance Computer Architecture, pages 113–124, Las Vegas,
NV, Feb. 1998.

[23] D. J. Scales and K. Gharachorloo. Towards Transparent
and Efficient Software Distributed Shared Memory. In
Proc. of the 16th ACM Symp. on Operating Systems Prin-
ciples, St. Malo, France, Oct. 1997.

[24] D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-
Grain Software Distributed Shared Memory on SMP Clus-
ters. In Proc. of the 4th Intl. Symp. on High Performance
Computer Architecture, Las Vegas, NV, Feb. 1998.

[25] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory. ACM
SIGARCH Computer Architecture News, 20(1):5–44, Mar.
1992.

[26] E. Speight and J. K. Bennett. Using Multicast and Mul-
tithreading to Reduce Communication in Software DSM
Systems. In Proc. of the 4th Intl. Symp. on High Perfor-
mance Computer Architecture, pages 312–322, Las Vegas,
NV, Feb. 1998.

[27] P. Stenström, M. Brorsson, and L. Sandberg. An Adap-
tive Cache Coherence Protocol Optimized for Migratory
Sharing. In Proc. of the 20th Intl. Symp. on Computer Ar-
chitecture, San Diego, CA, May 1993.

[28] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-
2L: Software Coherent Shared Memory on a Clustered
Remote-Write Network. In Proc. of the 16th ACM Symp.
on Operating Systems Principles, St. Malo, France, Oct.
1997.

[29] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum.
Operating System Support for Improving Data Locality
on CC-NUMA Compute Servers. In Proc. of the 7th
Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, Cambridge, MA, Oct.
1996.

[30] M. Welsh, A. Basu, and T. V. Eicken. Incorporat-
ing Memory Management into User-Level Network Inter-
faces. Technical Report TR97-1620, Cornell University,
Aug. 1997.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta. Methodological Considerations and Characteriza-
tion of the SPLASH-2 Parallel Application Suite. In Proc.
of the 22nd Intl. Symp. on Computer Architecture, Santa
Margherita Ligure, Italy, June 1995.

