
Efficient Distributed Shared State for Heterogeneous Machine Architectures ∗

Chunqiang Tang, DeQing Chen,
Sandhya Dwarkadas, and Michael L. Scott

Computer Science Department, University of Rochester
{sarrmor,lukechen,sandhya,scott}@cs.rochester.edu

Abstract

InterWeave is a distributed middleware system that sup-
ports the sharing of strongly typed, pointer-rich data struc-
tures across heterogeneous platforms. As a complement
to RPC-based systems such as CORBA, .NET, and Java
RMI, InterWeave allows processes to access shared data
using ordinary reads and writes. Experience indicates
that InterWeave-style sharing facilitates the rapid devel-
opment of distributed applications, and enhances perfor-
mance through transparent caching of state.

In this paper, we focus on the aspects of InterWeave
specifically designed to accommodate heterogeneous ma-
chine architectures. Beyond the traditional challenges of
message-passing in heterogeneous systems, InterWeave (1)
identifies and tracks data changes in the face of relaxed co-
herence models, (2) employs a wire format that captures
not only data but also diffs in a machine and language-
independent form, and (3) swizzles pointers to maintain
long-lived (cross-call) address transparency. To support
these operations, InterWeave maintains an extensive set of
metadata structures, and employs a variety of performance
optimizations. Experimental results show that InterWeave
achieves performance comparable to that of RPC param-
eter passing when transmitting previously uncached data.
When updating data that have already been cached, Inter-
Weave’s use of platform-independent diffs allows it to sig-
nificantly outperform the straightforward use of RPC.

1. Introduction

With the rapid growth of the Internet, more and more ap-
plications are being developed for (or ported to) wide area
networks in order to take advantage of resources available at
distributed sites. Examples include e-commerce, computer-
supported collaborative work, intelligent environments, in-
teractive data mining, and remote scientific visualization.

∗This work was supported in part by NSF grants CCR-9988361,
CCR-0204344, CCR-0219848, ECS-0225413, and EIA-0080124; by
DARPA/ITO under AFRL contract F29601-00-K-0182; and by the U.S.
Department of Energy Office of Inertial Confinement Fusion under Coop-
erative Agreement No. DE-FC03-92SF19460.

Conceptually, most of these applications involve some sort
of shared state: information that is needed at more than one
site, that has largely static structure (i.e., is not streaming
data), but whose content changes over time.

For the sake of locality, “shared” state must generally be
cached at each site, introducing the need to keep copies up-
to-date in the face of distributed updates. Traditionally the
update task has relied on ad-hoc, application-specific pro-
tocols built on top of RPC-based systems such as CORBA,
.NET, and Java RMI. We propose instead that it be auto-
mated. Specifically, we present a system known as Inter-
Weave that allows programs written in multiple languages
to map shared segments into their address space, regardless
of Internet address or machine type, and to access the data in
those segments transparently and efficiently once mapped.

We do not propose in most cases to supplant RPC with
a shared-memory style of programming. Rather, we take
as given that many distributed applications will continue to
be based on remote invocation. We see InterWeave-style
shared state as a complement to RPC. In this role, Inter-
Weave serves to (a) eliminate hand-written code to maintain
the coherence and consistency of cached data; (b) support
genuine reference parameters in RPC calls, eliminating the
need to pass large structures repeatedly by value, or to recur-
sively expand pointer-rich data structures using deep-copy
parameter modes; and (c) reduce the number of “trivial” in-
vocations used simply to put or get data.

Unfortunately, sharing is significantly more complex in a
heterogeneous, wide-area network environment than it is in
software distributed shared memory (S-DSM) systems such
as TreadMarks [1] and Cashmere [14]. With rare excep-
tions, S-DSM systems assume that clients are part of a sin-
gle program, written in a single language, running on iden-
tical hardware nodes on a system-area network. InterWeave
must support coherent, persistent sharing among programs
written in multiple languages, running on multiple machine
types, spanning potentially very slow Internet links. Coher-
ence and consistency (including persistence) [5], and sup-
port for Java [4] are the subjects of other papers; we con-
centrate here on the mechanisms required to accommodate
machine heterogeneity.

mls
ICDCS '03

RPC systems have of course accommodated multiple
machine types for many, many years. They do so using
stubs that convert value parameters to and from a machine-
independent wire format. InterWeave, too, employs a wire
format, but in a way that addresses three key challenges not
found in RPC systems. First, to minimize communication
bandwidth and to support relaxed coherence models (which
allow cached copies of data to be slightly out of date), In-
terWeave must efficiently identify all changes to a segment,
and track those changes over time. Second, in order to
update cached copies, InterWeave must represent not only
data, but also diffs (concise descriptions of only those data
that have changed) in wire format. Third, to support linked
structures and reference parameters, InterWeave must swiz-
zle pointers [16] in a way that turns them into appropriate
machine addresses. To support all these operations, Inter-
Weave maintains metadata structures comparable to those
of a sophisticated language reflection mechanism, and em-
ploys a variety of algorithmic and protocol optimizations
specific to distributed shared state.

When translating and transmitting previously uncached
data, InterWeave achieves throughput comparable to that
of standard RPC packages, and 20 times faster than Java
RMI [4]. When the data have been cached and only a frac-
tion of them are changed, InterWeave’s translation cost and
bandwidth requirements scale down proportionally and au-
tomatically; pure RPC code requires ad-hoc recoding to
achieve similar performance gains.

We describe the design of InterWeave in more detail in
Section 2. We provide implementation details in Section 3,
and performance results in Section 4. We compare our de-
sign to related work in Section 5, and conclude with a dis-
cussion of status and plans in Section 6.

2. InterWeave Design

The InterWeave programming model assumes a dis-
tributed collection of servers and clients. Servers main-
tain persistent copies of shared data and coordinate shar-
ing among clients. Clients in turn must be linked with a
special InterWeave library, which arranges to map a cached
copy of needed data into local memory. InterWeave servers
are oblivious to the programming languages used by clients,
and the client libraries may be different for different pro-
gramming languages. Figure 1 presents client code for a
simple shared linked list. The InterWeave API used in the
example is explained in more detail in the following sec-
tions. For consistency with the example, we present the C
version of the API. Similar versions exist for C++, Java,
and Fortran.

2.1. Data Allocation

The unit of sharing in InterWeave is a self-descriptive
segment (a heap) within which programs allocate strongly

node_t *head; IW_handle_t h;
void list_init(void) {

h = IW_open_segment("host/list");
head = IW_mip_to_ptr("host/list#head");

}

node_t *list_search(int key) {
IW_rl_acquire(h); // read lock
for (node_t *p=head->next; p; p=p->next)
if(p->key==key) {

IW_rl_relese(h); // read unlock
return p;

}
IW_rl_release(h); // read unlock
return NULL;

}

void list_insert(int key) {
node_t *p;
IW_wl_acquire(h); // write lock
p = (node_t*)IW_malloc(h, IW_node_t);
p->key = key;
p->next = head->next;
head->next = p;
IW_wl_release(h); // write unlock

}

Figure 1. Shared linked list in InterWeave. Variable
head points to an unused header node; the first
real item is in head->next.

typed blocks of memory. Every segment is specified by an
Internet URL. The blocks within a segment are numbered
and optionally named. By concatenating the segment URL
with a block name or number and optional offset (delimited
by pound signs), we obtain a machine-independent pointer
(MIP): “foo.org/path#block#offset”. To accom-
modate heterogeneous data formats, offsets are measured
in primitive data units—characters, integers, floats, etc.—
rather than in bytes.

Every segment is managed by an InterWeave server at
the IP address corresponding to the segment’s URL. Dif-
ferent segments may be managed by different servers. As-
suming appropriate access rights, IW open segment()
communicates with the appropriate server to open an ex-
isting segment or to create a new one if the segment does
not yet exist. The call returns an opaque handle that can be
passed as the initial argument in calls to IW malloc().

As in multi-language RPC systems, the types of shared
data in InterWeave must be declared in an interface descrip-
tion language (IDL). The InterWeave IDL compiler trans-
lates these declarations into the appropriate programming
language(s) (C, C++, Java, Fortran). It also creates initial-
ized type descriptors that specify the layout of the types on
the specified machine. The descriptors must be registered
with the InterWeave library prior to being used, and are
passed as the second argument (“IW node t” in Figure 1)
in calls to IW malloc(). These conventions allow the
library to translate to and from wire format, ensuring that

each type will have the appropriate machine-specific byte
order, alignment, etc. in locally cached copies of segments.

Synchronization (to be discussed further in Section 2.2)
takes the form of reader-writer locks that take a segment
handle as parameter. A process must hold a writer lock on
a segment in order to allocate, free, or modify blocks.

Given a pointer to a block in an InterWeave segment, or
to data within such a block, a process can create a corre-
sponding MIP: “IW mip t m = IW ptr to mip(p)”.

This MIP can then be passed to another process
through a message, a file, or a parameter of a remote
procedure. Given appropriate access rights, the other
process can convert back to a machine-specific pointer:
“my type *p = (my type*)IW mip to ptr(m)”.
The IW mip to ptr() call reserves space for the speci-
fied segment if it is not already locally cached, and returns
a local machine address. Actual data for the segment will
not be copied into the local machine unless and until the
segment is locked.

It should be emphasized that IW mip to ptr() is pri-
marily a bootstrapping mechanism. Once a process has one
pointer into a data structure (e.g. the head pointer in our
linked list example), any data reachable from that pointer
can be directly accessed in the same way as local data, even
if embedded pointers refer to data in other segments. In-
terWeave’s pointer-swizzling and data-conversion mecha-
nisms ensure that such pointers will be valid local machine
addresses. It remains the programmer’s responsibility to en-
sure that segments are accessed only under the protection of
reader-writer locks.

2.2. Coherence

When modified by clients, InterWeave segments move
over time through a series of internally consistent states.
When a process first locks a shared segment (for either read
or write), the InterWeave library obtains a copy from the
segment’s server. At each subsequent read-lock acquisition,
the library checks to see whether the local copy of the seg-
ment is “recent enough” to use. If not, it obtains an up-
date from the server. An adaptive polling/notification pro-
tocol [5] often allows the client library to avoid communi-
cation with the server when updates are not required. Twin
and diff operations [3], extended to accommodate heteroge-
neous data formats, allow the implementation to perform an
update in time proportional to the fraction of the data that
has changed.

The server for a segment need only maintain a copy of
the segment’s most recent version. The API specifies that
the current version of a segment is always acceptable. To
minimize the cost of segment updates, the server remem-
bers, for each block, the version number of the segment in
which that block was last modified. This information allows
the server to avoid transmitting copies of blocks that have

not changed. As partial protection against server failure, In-
terWeave periodically checkpoints segments and their meta-
data to persistent storage.

3. Implementation

In this section, we describe the implementation of the
InterWeave server and client library. For both the client and
the server we first describe the structure of the metadata,
followed by the algorithms for modification tracking, wire-
format diffing, and pointer swizzling.

InterWeave currently consists of approximately 31,000
lines of heavily commented C++ code. Both the client li-
brary and the server have been ported to a variety of ar-
chitectures (Alpha, Sparc, x86, and MIPS), operating sys-
tems (Windows NT/2000/XP, Linux, Solaris, Tru64 Unix,
and IRIX), and languages (C, C++, Fortran, and Java).

3.1. Client Implementation

Memory management and metadata. As described in
Section 2, InterWeave presents the programmer with two
granularities of shared data: segments and blocks. Each
block must have a well-defined type, but this type can be
a recursively defined structure of arbitrary complexity, so
blocks can be of arbitrary size. Every block has a serial
number within its segment, assigned by IW malloc(). It
may also have an optional symbolic name, specified as an
additional parameter. A segment is a named collection of
blocks. There is no a priori limit on the number of blocks
in a segment, and blocks within the same segment can be of
different types and sizes.

The copy of a segment cached by a given process need
not be contiguous in the application’s virtual address space,
so long as individually malloced blocks are contiguous.
The InterWeave library can therefore implement a segment
as a collection of subsegments, invisible to the user. Each
subsegment is contiguous, and can be any integral number
of pages in length. These conventions support blocks of
arbitrary size, and ensure that any given page contains data
from only one segment. New subsegments can be allocated
by the library dynamically, allowing a segment to expand
over time.

An InterWeave client manages its own heap area, rather
than relying on the standard C library function malloc().
The InterWeave heap routines manage subsegments, and
maintain a variety of bookkeeping information. Among
other things, this information includes a collection of bal-
anced search trees to allow InterWeave to quickly locate
blocks by name, serial number, or address.

Figure 2 illustrates the organization of memory into sub-
segments, blocks, and free space. The segment table has ex-
actly one entry for each segment being cached by the client
in local memory. It is organized as a hash table, keyed by

Segment Table

SegName FirstSubSeg FreeList

FirstSubSeg FreeList

FirstSubSeg FreeList

FirstSubSeg FreeList

SegName

SegName

SegName

Subsegment

subseg_addr_tree

Block data

Free memory

Pagemap (pointers to twins)

Key

hd
r

hd
r

hd
r

hd
r

...
...

...
...

...
...

hd
r

blk_number_tree blk_name_tree

blk_number_tree blk_name_tree

blk_number_tree blk_name_tree

blk_number_tree blk_name_tree

blk_addr_tree

TCPcon

TCPcon

TCPcon

TCPcon

blk_addr_tree blk_addr_tree

Figure 2. Simplified view of InterWeave client data structures: the segment table, subsegments, and blocks
within segments. Type descriptors, pointers from balanced trees to blocks and subsegments, and footers of
blocks and free space are not shown.

segment name. In addition to the segment name, each entry
in the table includes four pointers: one for the first sub-
segment that belongs to that segment, one for the first free
space in the segment, and two for a pair of balanced trees
containing the segment’s blocks. One tree is sorted by block
serial number (blk number tree), the other by block sym-
bolic name (blk name tree); together they support transla-
tion from MIPs to local pointers. An additional global tree
contains the subsegments of all segments, sorted by address
(subseg addr tree), and each subsegment has a balanced
tree of blocks sorted by address (blk addr tree); together
these trees support modification detection and translation
from local pointers to MIPs. Segment table entries may also
include a cached TCP connection over which to reach the
server. Free space within a segment is kept on a linked list,
with a head pointer in the segment table.

Modification tracking. When a process acquires a write
lock on a given segment, the InterWeave library asks the
operating system to write protect the pages that compose
the various subsegments of the local copy of the segment.
When a page fault occurs, the SIGSEGV signal handler,
installed by the library at program startup time, creates a
pristine copy, or twin [3], of the page in which the write
fault occurred. It saves a pointer to that twin in the faulting
subsegment’s header for future reference, and then asks the
operating system to re-enable write access to the page.

More specifically, if the fault occurs in page i of subseg-
ment j, the page fault handler places a pointer to the twin
in the ith entry of a structure called the pagemap, located in
j’s header (see Figure 2). With subseg addr tree, the han-
dler can easily determine i and j. Together, the pagemaps
and the linked list of subsegments in a given segment al-
low InterWeave to quickly find pages to be diffed when the
coherence protocol needs to send an update to the server.

Diff creation and translation. When a process releases a
write lock, the library gathers local changes and converts
them into machine-independent wire format in a process
called diff collection. Figure 3 shows an example of this
process. The changes are expressed in terms of segments,
blocks, and offsets of primitive data units (integers, doubles,
chars, etc.), rather than pages and bytes. A wire-format
block diff consists of a block serial number, the length of
the diff (measured in bytes), and a series of run length en-
coded data changes, each of which consists of the starting
point and length of the change (both measured in primitive
data units), and the updated data (in wire format).

The diffing routine must have access to type descriptors
in order to compensate for local byte order and alignment,
and in order to swizzle pointers. The content of each de-
scriptor specifies the substructure and layout of its type. For
primitive types there is a single pre-defined descriptor. For
derived types there is a descriptor indicating either an array,

blk# 0 1 i0 3 3 i2 d1 "blk#1"

i0

d0

i1 i2

d1

ptr

0

byte offset

8

16

24

32

0

primitive offset

1

2

4

5

local format

wire format

unchanged data
changed data

translation type descriptors
lookup

52

block serial
number block diff length,

measured in bytes
the starting point of changes,

measured in primitive data units

the length of changes,
measured in primitive data units

alignment padding

Figure 3. Wire format translation of a structure con-
sisting of three integers (i0–i2), two doubles (d0–
d1), and a pointer (ptr). All fields except d0 and
i1 are changed.

a record, or a pointer, together with pointer(s) that recur-
sively identify the descriptor(s) for the array element type,
record field type(s), or pointed-at type. For structures, the
descriptor records both the byte offset of each field from the
beginning of the structure in local format, and the machine-
independent primitive offset of each field, measured in the
number of primitive data units. Like blocks, type descrip-
tors have segment-specific serial numbers to be used by the
server and client in wire-format messages.

When translating local modifications into wire format,
the diffing routine scans the list of subsegments of the seg-
ment and the pagemap within each subsegment. When it
finds a modified page, it performs a word-by-word compar-
ison of the current version of the page and the page’s twin,
identifying the first (change begin) and last (change end)
words of a contiguous run of modified words. It searches
the blk addr tree within the subsegment to identify the
block that spans change begin, and translates changes to
this block into wire format.

To translate changes to a block into wire format, the diff-
ing routine uses the type descriptor pointer stored in the
header of each block to identify the primitive datum cor-
responding to change begin and its primitive offset from
the beginning of the block. Consecutive type descriptors,
from change begin to change end (or the end of the block,
whichever comes first), are then retrieved sequentially to
convert the run into wire format. When done, the diffing
routine translates the next block covered by current run if it
is not finished yet, or returns to word-by-word comparison
to find the next run to be translated.

When a client acquires a read lock and determines that
its local cached copy of the segment is not recent enough

to use under the desired coherence model, the client asks
the server to build a diff that describes the data that have
been changed between the current local copy at the client
and the master copy at the server. When the diff arrives, the
library uses it to update the local copy in a process called
diff application. In the inverse of diff collection, the diff ap-
plication routine uses type descriptors to identify the local-
format bytes that correspond to primitive data changes in
the wire-format diff.

Pointer swizzling. To accommodate references, Inter-
Weave relies on pointer swizzling [16]. To swizzle a lo-
cal pointer to a MIP, the library first searches the sub-
seg addr tree for the subsegment spanning the pointed-to
address. It then searches the blk addr tree within the sub-
segment to find the pointed-to block. It subtracts the starting
address of the block from the pointed-to address to obtain
the byte offset. With the help of the type descriptor stored
in the block header, the library then maps the byte offset
into the primitive offset inside the block. Finally, the li-
brary converts the block serial number and primitive offset
into strings, and concatenates them with the segment name
to form a MIP. Swizzling a MIP into a local pointer is an
analogous inverse process.

3.2. Server Implementation

Segment metadata. An InterWeave server can manage
an arbitrary number of segments, and maintains an up-to-
date copy of each of them. It also controls access to these
segments. To avoid an extra level of translation, the server
stores both data and type descriptors in wire format. It keeps
track of segments, blocks, and subblocks.

An InterWeave server maintains an entry for each of
its segments in a segment hash table keyed by the seg-
ment name. The blocks of a given segment are orga-
nized into a balanced tree sorted by their serial numbers
(svr blk number tree) and a linked list sorted by their ver-
sion numbers (blk version list). The linked list is sep-
arated by markers into sublists, each of which contains
blocks with the same version number. Markers are also
organized into a balanced tree sorted by version number
(marker version tree). Pointers to all these data structures
are kept in the segment table, along with the segment name.

To track changes at a sufficiently fine grain, the server
divides large blocks into smaller contiguous subblocks. It
then stores version numbers for these subblocks in a per-
block array. When a client needs an updated version of the
segment, the server sends the (full content of the) subblocks
that are newer than the version of the segment currently
cached at the client. (Modified subblocks are interpreted
by the client simply as runs of modified data; clients are
unaware of subblocks.) In order to avoid unnecessary data
relocation, MIPs and character string data are stored sepa-
rately from their blocks, since they can be of variable size.

Unlike the InterWeave client library, which obtains its
type descriptors from the application program, the Inter-
Weave server must obtain its type descriptors from clients,
and convert them to a form that describes the layout of
blocks in machine-independent wire format.

Modification tracking and diff creation. Upon receiv-
ing a diff, an InterWeave server first appends a new marker
to the end of the blk version list and inserts the marker into
the marker version tree. Newly created blocks are then ap-
pended to the end of the list. Modified blocks are first lo-
cated by searching the svr blk number tree, and then are
moved to the end of the list.

When an InterWeave client acquires a lock for a segment,
the server and client library collaboratively decide whether
the client needs to update the local copy of the segment,
based on the coherence model requested by the client.

Among the relaxed coherence models currently sup-
ported by InterWeave [5], Delta coherence guarantees that
the segment is no more than x versions out-of-date; Tempo-
ral coherence guarantees that it is no more than x time units
out of date; and Diff-based coherence guarantees that no
more than x% of the primitive data elements in the segment
are out of date. In all cases, x can be specified dynamically
by the process. The InterWeave library maintains a real-
time stamp for each cached segment at the client to support
Temporal coherence. With the segment version numbers
maintained by both the client and server, supporting delta
coherence is as simple as a comparison of version numbers.

Diff coherence, however, takes more effort. For each
client using Diff coherence, the server must track the per-
centage of the segment that has been modified since the last
update sent to the client. To minimize the cost of this track-
ing, the server conservatively assumes that all updates are
to independent portions of the segment. It adds the sizes of
these updates into a single counter. When the counter ex-
ceeds the specified fraction of the total size of the segment
(which the server also tracks), the server concludes that the
client’s copy is no longer recent enough.

When an update to the client is necessary, the server
traverses the marker version tree to locate the first marker
whose version is newer than the client’s version. As we de-
scribed above, the blk version list is organized such that in
this list all blocks after that marker have some subblocks
that need to be sent to the client. Those modified subblocks
are identified by version numbers associated with each sub-
block. The server then constructs a wire-format diff and
sends it back to the client. Diff collection and application
on the server are similar to their counterpart on the client,
except that searches are guided by the server’s machine-
independent type descriptors, and the modifications are col-
lected by inspecting version numbers of blocks and sub-
blocks. Because MIPs are kept in wire format on the server,
there is no need for the server to swizzle pointers.

3.3. Optimizations

Several optimizations improve the performance of Inter-
Weave in important common cases. We describe here those
related to memory management and heterogeneity.

Data layout for cache locality. InterWeave’s knowledge
of data types and formats allows it to organize blocks in
memory for the sake of spatial locality. When a segment
is cached at a client for the first time, blocks that have the
same version number, meaning they were modified by an-
other client in a single write critical section, are placed in
contiguous locations, in the hope that they may be accessed
or modified together by this client as well. Currently we do
not relocate blocks in an already cached copy of a segment.

Diff caching. The server maintains a cache of diffs that it
has received recently from clients, or collected recently it-
self, in response to client requests. These cached diffs can
often be used to respond to future requests, avoiding redun-
dant collection overhead. In most cases, a client sends the
server a diff, and the server caches and forwards it in re-
sponse to subsequent requests.

No-diff mode. As in TreadMarks [1], a client that repeat-
edly modifies most of the data in a segment (or a block
within a segment) will switch to a mode in which it sim-
ply transmits the whole segment (or individual block) to the
server at every write lock release. This no-diff mode elim-
inates the overhead of mprotects, page faults, and the
creation of twins and diffs. Moreover, translating an entire
block is more efficient than translating diffs. A client with
a segment in no-diff mode will periodicallly switch back to
diffing mode to capture changes in application behavior.

Isomorphic type descriptors. For a given data structure
declaration in IDL, our compiler outputs a type descriptor
most efficient for runtime translation rather than strictly fol-
lowing the original type declaration. For example, if a struct
contains 10 consecutive integer fields, the compiler gener-
ates a descriptor containing a 10-element integer array in-
stead. This altered type descriptor is used only by the In-
terWeave library, and is invisible to the programmer; the
language-specific type declaration always follows the struc-
ture of the IDL declaration.

Diff run splicing. In a diffing operation, if one or two ad-
jacent words are unchanged while both of their neighboring
words are changed, we treat the entire sequence as changed
in order to avoid starting a new run length encoding section
in the diff. It already costs two words to specify a head and
a length in the diff, and the spliced run is faster to apply.
Splicing is particularly effective when translating double-
word primitive data in which only one word has changed.

Last-block searches. On both the client and the server,
block predictions are used to avoid searching the balanced
tree of blocks sorted by serial number when mapping serial

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

int
_a

rra
y

do
ub

le_
arr

ay mix

int
_d

ou
ble

str
ing

int
_s

tru
ct

do
ub

le_
str

uc
t

po
int

er

sm
all

_s
tri

ng

T
ra

ns
la

ti
on

 C
os

t
(s

ec
.)

RPC XDR
collect block
collect diff
apply block
apply diff

Figure 4. Client’s cost to translate 1MB of data.

numbers in wire format to blocks. Based on the observation
that blocks modified together in the past tend to be modified
together in the future, we predict the next changed block in
the diff to be the next consecutive block in memory for the
client (since the layout is based on prior consecutive modifi-
cation of the blocks), or the next block in the blk version list
(which is sorted by version number) for the server.

4. Performance Results

Due to space limitations, we focus here on our evalu-
ation of InterWeave’s performance related to heterogene-
ity. More results can be found in the TR version of this
paper [15]. Unless otherwise noted, the results were col-
lected on a 500MHz Pentium III machine, with 256MB of
memory, a 16KB L1 cache, and a 512KB L2 cache, running
Linux 2.4.18.

4.1. Basic Translation Costs

Figure 4 shows the overhead to translate various data
structures from local to wire format and vice versa on
the client, assuming that all data has been modified and
the entire structure is transmitted. In each case, we ar-
range for the total amount of data to equal 1MB; what
differs is data formats and types. Int array and dou-
ble array employ a large array of integers or doubles,
respectively. Int struct and double struct em-
ploy an array of structures, each with 32 integer or dou-
ble fields, respectively. String and small string em-
ploy an array of strings, each of length 256 or 4 bytes, re-
spectively. Pointer employs an array of pointers to inte-
gers. Int double employs an array of structures contain-
ing integer and double fields, intended to mimic typical data
structures in scientific programs. Mix employs an array of
structures containing integer, double, string, small string,
and pointer fields, intended to mimic typical data structures
in non-scientific programs such as calendars and CSCW.

The “collect diff” and “apply diff” bars in Figure 4 show
the overhead of translation to and from wire format, re-
spectively, when diffing every block. The “collect block”
and “apply block” bars show the corresponding overheads

when diffing has been disabled (no diff mode). For compar-
ison purposes we also show the overhead of translating the
same data via RPC parameter marshaling functions gener-
ated with the standard Linux rpcgen tool. In our exper-
iments, we found unmarshaling costs to be roughly iden-
tical. All optimizations described in Section 3.3 were en-
abled. All of them provided measurable improvements in
performance and/or bandwidth; space constraints preclude
a separate presentation here for all but no-diff mode.

Generally speaking, InterWeave overhead is comparable
to that of RPC. Averaged across our 9 experiments, “col-
lect block” and “apply block” are 25% faster than RPC;
“collect diff” and “apply diff” are 8% faster. It is clear
that rpcgen is not good at marshaling pointers and small
strings. Excluding these two cases, InterWeave in no diff
(collect/apply block) mode is still 18% faster than RPC.
When diffing is performed, InterWeave is 0.5% slower than
RPC. “Collect block” is 39% faster than “collect diff” on
average, and “apply block” is 4% faster than “apply diff”,
justifying the use of the no diff mode.

When RPC marshals a pointer, deep copy semantics re-
quire that the pointed-to data, an integer in this experiment,
be marshaled along with the pointer. The size of the re-
sulting RPC wire format is the same as that of InterWeave,
because MIPs in InterWeave are strings, longer than four
bytes. In addition, the RPC overhead for structures with
doubles inside is high in part because rpcgen does not in-
line the marshaling routine for doubles.

The data management costs for the InterWeave server are
much lower than that on the client in all cases other than
pointer and small string because the server main-
tains data in wire format. The high costs for pointer and
small string stem from the fact that strings and MIPs
are of variable length, and are stored separately from their
wire format blocks. However, for data structures with a rea-
sonable number of pointers and small strings such as mix,
the server cost is still comparable (see [15] for the results).

4.2. Modifications at Different Granularities

Figure 5 shows client and server diffing overhead as a
function of the fraction of a segment that has changed. In
all cases the segment in question consists of a 1MB array
of integers. The X axis indicates the distance in words be-
tween consecutive modified words. Ratio 1 indicates that
the entire block has been changed. Ratio 4 indicates that
every 4th word has been changed, etc.

The “client collect diff” cost has been broken down into
“client word diffing”—word-by-word comparison of a page
and its twin—and “client translation”—converting the diff
to wire format. (Values on these two curves add together
to give the values on the “client collect diff” curve. We
show them as line graphs for the sake of clarity.) There
is a sharp knee for word diffing at ratio 1024. Before that

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Change Ratio

E
xe

cu
ti

on
 T

im
e

(s
ec

.)
client collect diff
client apply diff
client word diffing
server apply diff
client translation
server collect diff

Figure 5. Diff management cost as a function of
modification granularity (1MB total data).

point, every page in the segment has been modified; after
that point, the number of modified pages decreases linearly.
Due to the artifact of subblocks (16 primitive data units in
our current implementation), the “server collect diff” and
“client apply diff” costs are constant for ratios between 1

and 16, because in those cases the server loses track of fine-
grain modifications and treats the entire block as changed.
The jump in “client collect diff”, “server apply diff”, and
“client translation” between ratios 2 and 4 is due to the loss
of the run splicing optimization described in Section 3.3. At
ratio 2 the entire block is treated as changed, while at ratio
4 the block is partitioned into many small isolated changes.
The cost for “word diffing” increases between ratios 1 and 2

because the diffing is more efficient when there is only one
continuous changed section.

Figures 4 and 5 show that InterWeave is efficient at trans-
lating both entirely changed blocks and scattered modifica-
tions. When only a fraction of a block has changed, Inter-
Weave is able to reduce both translation cost and required
bandwidth by transmitting only the diffs. With straightfor-
ward use of an RPC-style system, both translation cost and
bandwidth remain constant regardless of the fraction of the
data that has changed.

4.3. Pointer Swizzling

Figure 6 shows the cost of swizzling (“collect pointer”)
and unswizzling (“apply pointer”) a single pointer variable.
This cost varies with the nature of the pointed-to data. The
“int 1” case represents an intra-segment pointer to the start
of an integer block. “Struct 1” is an intra-segment pointer
to the middle of a structure with 32 fields. The “cross #n”
cases are cross-segment pointers to blocks in a segment with
n total blocks. The modest rise in overhead with n reflects
the cost of search in various metadata trees. Performance
is best in the “int 1” case, which we expect to be repre-
sentative of the most common sorts of pointers. However,
even for moderately complex cross-segment pointers, Inter-
Weave can swizzle about one million of them per second.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

int
 1

str
uc

t 1

cro
ss

1

cro
ss

16

cro
ss

64

cro
ss

25
6

cro
ss

10
24

cro
ss

40
96

cro
ss

16
38

4

cro
ss

65
53

6

E
xe

cu
ti

on
 T

im
e

(u
se

c.
)

collect pointer
apply pointer

Figure 6. Pointer swizzling cost as a function of
pointed-to object type.

4.4. Translation Costs for a Datamining
Application

In an attempt to demonstrate the benefits that an ap-
plication can harvest from wire-format diffing, pointer-
swizzling, and relaxed coherence models, we have mea-
sured communication costs in a locally developed datamin-
ing application. The application performs incremental se-
quence mining on a remote database of transactions (e.g.,
retail purchases). Details of the application are described
elsewhere [5].

Our sample database is generated by tools from IBM re-
search [12]. It includes 100,000 customers and 1000 differ-
ent items, with an average of 1.25 transactions per customer
and a total of 5000 item sequence patterns of average length
4. The total database size is 20MB.

In our experiments, we have a database server and a
datamining client. Both are InterWeave clients. The
database server reads from an active, growing database and
builds a summary data structure (a lattice of item sequences)
to be used by mining queries. Each node in the lattice rep-
resents a potentially meaningful sequence of transactions,
and contains pointers to other sequences of which it is a pre-
fix. This summary structure is shared between the database
server and the mining client in an InterWeave segment. Ap-
proximately 1/3 of the space in the local-format version of
the segment is consumed by pointers.

The summary structure is initially generated using half
the database. The server then repeatedly updates the struc-
ture using an additional 1% of the database each time. As
a result, the summary structure changes slowly over time.
Given the statistical nature of the data, the datamining client
need not always access the most recent copy of the summary
structure to provide satisfactory results to mining queries: it
can save translation and communication overhead by using
InterWeave’s relaxed coherence models.

Figure 7 shows the total bandwidth requirement as the
client relaxes its coherence model. The leftmost bar rep-

0

1

2

3

4

5

6

7

8

9

10

11

12

Full transfer Diff-only Delta-2 Delta-3 Delta-4

Coherence Model Configurations

T
ot

al
 S

iz
e

T
ra

ns
fe

rr
ed

 (
M

B
)

Figure 7. Total bandwidth requirement of the
datamining application.

resents the bandwidth requirement if the client needs to
transfer the whole summary structure each time a new ver-
sion is available at the server. The second bar shows the
bandwidth requirement with wire-format diffs. The right
three bars show the bandwidth requirements as the client
relaxes its coherence model to let its summary structure be
updated every second, third, or fourth version (Section 3.2).
We can see that using the wire-format diff to update the
client’s cache can reduce bandwidth requirements by a to-
tal of 80%. Additional reductions can be achieved if the
coherence model is further relaxed.

4.5. Ease of Use

We have implemented several additional applications on
top of InterWeave. One particularly interesting example is
a stellar dynamics code called Astroflow, developed by col-
leagues in the department of Physics and Astronomy, and
modified by our group to take advantage of InterWeave’s
ability to share data across heterogeneous platforms.

Astroflow is a computational fluid dynamics system used
to study the birth and death of stars. The simulation en-
gine is written in Fortran, and runs on a cluster of four Al-
phaServer 4100 5/600 nodes under the Cashmere [14] S-
DSM system. As originally implemented, it dumps its re-
sults to a file, which is subsequently read by a visualization
tool written in Java and running on a Pentium desktop. We
used InterWeave to connect the simulator and visualization
tool directly, to support on-line visualization and steering.
The changes required to the two existing programs were
small and isolated. We wrote an IDL specification to de-
scribe the shared data structures and replaced the original
file operations with access to shared segments. No special
care is required to support multiple visualization clients.
Moreover, the visualization front end can control the fre-
quency of updates from the simulator simply by specifying
a temporal bound on relaxed coherence [5].

Performance experiments [5] indicate that InterWeave
imposes negligible overhead on the existing simulator. We

also believe the InterWeave version to be significantly sim-
pler, easier to understand, and faster to write than a hy-
pothetical version based on application-specific messaging.
Our experience changing Astroflow from an off-line to an
on-line client highlighted the value of middleware that hides
the details of network communication, multiple clients, and
the coherence of transmitted data.

5. Related Work

InterWeave finds context in an enormous body of related
work—far too much to document thoroughly in this paper.
We focus here on systems that address heterogeneity, leav-
ing conventional S-DSM and distributed shared object sys-
tems out of the discussion.

Toronto’s Mermaid system [17] allowed objects to be
shared across more than one type of machine, but required
that all data in the same VM page be of the same type, and
that objects be of the same length on all machines, with the
same byte offset for every subcomponent.

CMU’s Agora system [2] supported sharing among more
loosely-coupled processes, but in a significantly more re-
stricted fashion than in InterWeave. Pointers and recursive
types were not supported, and all shared data had to be ac-
cessed indirectly through a local mapping table.

Systems that support process or thread migration among
heterogeneous computers such as Emerald [13] and Tui [11]
employ data marshaling for mobility, but they do not em-
ploy data caching. As a result, they do not face the chal-
lenges of representing diffs in wire format. They also de-
pend on compiler support to extract data type information.

Smart RPC [7] is an extension to conventional RPC that
allows argument passing using call-by-reference rather than
deep copy call-by-value. The biggest difference with re-
spect to InterWeave is that Smart RPC does not have a
shared global space with a well-defined cache coherence
model. Smart RPC invalidates the cache after each RPC
session (initial client request and nested callbacks), while
InterWeave allows cache reuse.

ScaFDOCS [8] is an object caching framework built on
top of CORBA. As in Java RMI, shared objects are derived
from a base class and their writeToString and readFrom-
String methods are used to serialize and deserialize inter-
nal state. CASCADE [6] is a distributed caching service,
structured as a CORBA object. Both ScaFDOCS and CAS-
CADE encounter a fundamental limitation of CORBA’s ref-
erence model: because everything is an object with no ex-
ported data members, every use of a reference parameter
incurs a callback. They also suffer from the lack of diffs:
small changes to large objects still require large messages.

Object Oriented Databases (OODBs) such as Thor [9]
allow objects to be cached at client front ends, but they usu-
ally neither address heterogeneity nor attempt to support a
shared memory programming model.

InterAct [10] is an object-based system that uses re-
laxed coherence to support distributed sharing, but requires
shared data to be accessed through C++ templates. Inter-
Weave provides a more transparent interface, allowing or-
dinary reads and writes to shared data once mapped.

6. Conclusions and Future Work

We have described the design and implementation of a
middleware system, InterWeave, that allows processes to
access shared data transparently and efficiently across het-
erogeneous machine types and languages using ordinary
reads and writes. The twin goals of convenience and ef-
ficiency are achieved through the use of a wire format,
and accompanying algorithms and metadata, rich enough to
capture machine- and language-independent diffs of com-
plex data structures, including pointers or recursive data
types. InterWeave is compatible with existing RPC and
RMI systems, for which it provides a global name space
in which data structures can be passed by reference. Exper-
imental evaluation demonstrates that automatically cached,
coherent shared state can be maintained at reasonable cost,
and that it provides significant performance advantages over
straightforward (cacheless) use of RPC alone.

We are actively collaborating with colleagues in our own
and other departments to employ InterWeave in three prin-
cipal application domains: remote visualization and steer-
ing of high-end simulations, incremental interactive data
mining, and human-computer collaboration in richly instru-
mented physical environments. We are incorporating trans-
action support into InterWeave and studying the interplay of
transactions, RPC, and global shared state.

References

[1] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Soft-
ware DSM Protocols that Adapt between Single Writer and
Multiple Writer. In Proc. of the 3rd Intl. Symp. on High
Performance Computer Architecture, pages 261–271, San
Antonio, TX, Feb. 1997.

[2] R. Bisiani and A. Forin. Multilanguage Parallel Program-
ming of Heterogeneous Machines. IEEE Trans. on Com-
puters, 37(8):930–945, Aug. 1988.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-
mentation and Performance of Munin. In Proc. of the 13th
ACM Symp. on Operating Systems Principles, pages 152–
164, Pacific Grove, CA, Oct. 1991.

[4] D. Chen, C. Tang, S. Dwarkadas, and M. L. Scott. JVM for
a Heterogeneous Shared Memory System. In Proc. of the
Workshop on Caching, Coherence, and Consistency (WC3
’02), New York, NY, June 2002. Held in conjunction with
the 16th ACM Intl. Conf. on Supercomputing.

[5] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott.
Multi-level Shared State for Distributed Systems. In Proc.

of the 2002 Intl. Conf. on Parallel Processing, pages 131–
140, Vancouver, BC, Canada, Aug. 2002.

[6] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Im-
plementing a Caching Service for Distributed CORBA Ob-
jects. In Proc., Middleware 2000, pages 1–23, New York,
NY, Apr. 2000.

[7] K. Kono, K. Kato, and T. Masuda. Smart Remote Procedure
Calls: Transparent Treatment of Remote Pointers. In Proc.
of the 14th Intl. Conf. on Distributed Computing Systems,
pages 142–151, Poznan, Poland, June 1994.

[8] R. Kordale, M. Ahamad, and M. Devarakonda. Object
Caching in a CORBA Compliant System. Computing Sys-
tems, 9(4):377–404, Fall 1996.

[9] B. Liskov, M. Castro, L. Shrira, and A. Adya. Provid-
ing Persistent Objects in Distributed Systems. In Proc. of
the 13th European Conf. on Object-Oriented Programming,
pages 230–257, Lisbon, Portugal, June 1999.

[10] S. Parthasarathy and S. Dwarkadas. Shared State for Dis-
tributed Interactive Data Mining Applications. Intl. Jour-
nal of Distributed and Parallel Databases, 11(2):129–155,
Mar. 2002.

[11] P. Smith and N. C. Hutchinson. Heterogeneous Process Mi-
gration: The Tui System. Software — Practice and Experi-
ence, 28(6):611–639, 1998.

[12] R. Srikant and R. Agrawal. Mining Sequential Patterns.
IBM Research Report RJ9910, IBM Almaden Research
Center, Oct. 1994. Expanded version of paper presented
at the Intl. Conf. on Data Engineering, Taipei, Taiwan, Mar.
1995.

[13] B. Steensgaard and E. Jul. Object and Native Code Thread
Mobility among Heterogeneous Computers. In Proc. of the
15th ACM Symp. on Operating Systems Principles, pages
68–77, Copper Mountain, CO, Dec. 1995.

[14] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-
Write Network. In Proc. of the 16th ACM Symp. on Oper-
ating Systems Principles, pages 170–183, St. Malo, France,
Oct. 1997.

[15] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Support
for Machine and Language Heterogeneity in a Distributed
Shared State System. TR 783, Computer Science Dept.,
Univ. of Rochester, May 2002.

[16] P. R. Wilson. Pointer Swizzling at Page Fault Time: Effi-
ciently and Compatibly Supporting Huge Address Spaces
on Standard Hardware. In Proc. of the Intl. Workshop on
Object Orientation in Operating Systems, pages 364–377,
Paris, France, Sept. 1992.

[17] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heteroge-
neous Distributed Shared Memory. IEEE Trans. on Parallel
and Distributed Systems, 3(5):540–554, Sept. 1992.

