
Energy Efficient Prefetching and Caching

Athanasios E. Papathanasiou and Michael L. Scott
Department of Computer Science

University of Rochester

Motivation

New OS Design Goal:
Increase Burstiness

  Maximize Energy Efficiency
  Maximize idle interval length to allow a
power state transitions
  Operate at max disk bandwidth when
disk is active
  Decrease number of transitions

 Design Guidelines
  Maximize idle phases

-  Aggressive, speculative prefetching
-  Bursty periodic update

  Coordinate I/O across applications
  Preactivate disk in anticipation of next use

Disk Usage Pattern

Prototype
  Epoch-Based Extensions to Linux
Memory Management System
  Two Phases per Epoch
  Request Generation Phase

-  Estimate memory size for prefetching
-  Predict and prefetch

  Idle Phase
-  Estimate time to next request
-  Power disk down if possible
-  Schedule preactivation

  Deciding what to prefetch
  Sequential Accesses

-  Detect pattern & rate -- Prefetch accordingly
  Random or multiple-file accesses

-  Improve prefetching accuracy through hints
-  Prefetch very speculatively

  Estimating Memory for Prefetching
  Extend LRU with Prefetch Cache
  First miss determines Prefetch Cache size

-  Compuslory Miss: No change
-  Prefetch Miss: Increase by constant
-  Eviction Miss: Decrease by number of useful
pages evicted in favor of prefetching

  Eviction Cache: Stores eviction history
  Coordinating across applications
  Prefetch Thread

-  Prefetching requests for all applications
  Bursty Periodic Update
  Application discloses reliability constraints

Experimental Evaluation

Prefetching and caching are standard practice in modern file systems. They serve to improve performance---to
increase throughput and decrease latency---by eliminating as many I/O requests as possible, and by spreading the
requests that remain as smoothly as possible over time, resulting in relatively short intervals of inactivity. This
strategy ignores the goal of energy efficiency so important to mobile systems, and in fact can frustrate that goal.
Magnetic disks, network interfaces, and similar devices provide low power modes that save energy only when idle
intervals are relatively long. A smooth access pattern can eliminate opportunities to save energy even during such
light workloads as MPEG and MP3 playback. In contrast a bursty access pattern can improve energy efficiency in
several important cases without significantly affecting performance, if implemented carefully.

  Power Efficient Devices:
  Save energy by exploiting idle time
  Require long idle intervals
  Remain in low power mode for a minimum
period: Breakeven point

  Modern operating systems:
  Maximize throughput
  Minimize latency

  What about energy?
  Idle times too short to exploit for savings

  File System behavior examples:
  MP3 Playback (300 seconds)

-  Disk idle time: 291 seconds
-  66% shorter than 8 seconds

  CD copy (1359 seconds)
-  Disk idle time: 1191 seconds
-  92% shorter than 5 seconds

  Intuitively increased system memory
  Leads to reduced disk energy consumption

-  But: 8-fold memory increase
-  Practically no energy savings

Breakeven

mls
SOSP '03

